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1. Introduction
One of the central trends in the optimization community
over the past several years has been the steady improvement
of general-purpose solvers. Such mixed-integer solvers as
CPLEX (ILOG 2007) and XPRESS-MP (Guéret et al.
2002) have become significantly more effective and robust,
and similar advancements have occurred in continuous
global optimization (BARON, Tawarmalani and Sahinidis
2004; LGO, Pintér 2005) and constraint programming
(CHIP, Dincbas et al. 1988; ILOG Solver, ILOG 2003).
These developments promote the use of optimization and
constraint-solving technology because they spare practi-
tioners the inconvenience of acquiring and learning differ-
ent software for every application.
A logical next step in this evolution is to combine mixed-

integer linear programming (MILP), constraint program-
ming (CP), and global optimization in a single system.
This not only brings together a wide range of methods
under one roof, but it allows users to reap the advantages
of integrated problem solving. Recent research in this area
shows that the right combination of different technologies
can simplify modeling and speed up computation substan-
tially. Commercial-grade solvers are already moving in this
direction, as witnessed by the ECLiPSe solver (Rodošek

et al. 1999), OPL Studio (Van Hentenryck et al. 1999), and
the Mosel language (Colombani and Heipcke 2002, 2004),
all of which combine mathematical programming and con-
straint programming techniques to a greater or lesser extent.
Our objective is not to demonstrate, in a single paper,

that integrated methods can provide a superior alternative to
state-of-the-art standalone MILP or CP solvers. This must
be accomplished by an entire community of researchers
examining a wide variety of problems. There is, in fact, a
growing literature that documents the advantages of inte-
grated methods. Table 1 presents a sampling of these
results, and Hooker (2007) cites many additional examples.
Our contribution is to show, both theoretically and empir-
ically, that it is possible to unify most of what is known
about integrated methods under one modeling and solution
paradigm, without sacrificing performance.
Integration is most effective when techniques interleave

at a micro level. To achieve this in current systems, however,
one must often write special-purpose code, which slows
research and discourages application. We have attempted
to address this situation by designing an architecture that
achieves low-level integration of solution techniques with
a high-level modeling language. The ultimate goal is to
build an integrated solver that can be used as conveniently

342



Yunes, Aron, and Hooker: An Integrated Solver for Optimization Problems
Operations Research 58(2), pp. 342–356, © 2010 INFORMS 343

Table 1. Sampling of computational results for integrated methods.

Source Type of problem/method Speedup

Loose integration of CP and MILP

Hajian et al. (1996) British Airways fleet assignment. Twice as fast as MILP, 4 times faster
CP solver provides starting feasible than CP.
solution for MILP.

CP plus relaxations similar to those used in MILP

Focacci et al. (1999) Lesson timetabling. Reduced-cost 2 to 50 times faster than CP.
variable fixing using an assignment
problem relaxation.

Refalo (1999) Piecewise-linear costs. Method similar 2 to 200 times faster than MILP. Solved
to that described in §6. two instances that MILP could not solve.

Hooker and Osorio (1999) Boat party scheduling, flow shop Solved 10-boat instance in 5 min that
scheduling. Logic processing plus MILP could not solve in 12 hours. Solved
linear relaxation. flow shop instances 4 times faster than

MILP.
Thorsteinsson and Ottosson (2001) Product configuration. Method similar 30 to 40 times faster than MILP (which

to that described in §7. was faster than CP).
Sellmann and Fahle (2001) Automatic digital recording. CP plus 1 to 10 times faster than MILP (which

Lagrangean relaxation. was faster than CP).
Van Hoeve (2003) Stable set problems. CP plus semidefinite Significantly better suboptimal solutions

programming relaxation. than CP in fraction of the time.
Bollapragada et al. (2001) Nonlinear structural design. Logic Up to 600 times faster than MILP. Solved 2

processing plus convex relaxation. problems in <6 min that MILP could not
solve in 20 hours.

Beck and Refalo (2003) Scheduling with earliness and tardiness Solved 67 of 90 instances, while CP
costs. solved only 12.

CP-based branch and price

Easton et al. (2002) Traveling tournament scheduling. First to solve 8-team instance.
Yunes et al. (2005) Urban transit crew management. Solved problems with 210 trips, while

traditional branch and price could
accommodate only 120 trips.

Benders-based integration of CP and MILP

Jain and Grossmann (2001) Min-cost planning and disjunctive 20 to 1,000 times faster than CP, MILP.
scheduling. MILP master problem,
CP subproblem (§8).

Thorsteinsson (2001) Jain and Grossmann problems. Branch Additional factor of 10 over Jain and
and check. Grossmann (2001).

Timpe (2002) Polypropylene batch scheduling at Solved previously insoluble problem
BASF. MILP master, CP subproblem. in 10 min.

Benoist et al. (2002) Call center scheduling. CP master, Solved twice as many instances as
LP subproblem. traditional Benders.

Hooker (2004) Min-cost and min-makespan planning 100 to 1,000 times faster than CP, MILP.
and cumulative scheduling. MILP Solved significantly larger instances.
master, CP subproblem.

Hooker (2005b) Min-tardiness planning and cumulative 10 to >1,000 times faster than CP, MILP
scheduling. MILP master, CP when minimizing number of late jobs;
subproblem. ∼10 times faster when minimizing total

tardiness, much better solutions
when suboptimal.

Rasmussen and Trick (2005) Sports scheduling to minimize number of Speedup of several orders of magnitude
consecutive home or away games. compared to previous state of the art.

as current mixed-integer, global, and constraint solvers. We
have implemented our approach in a system called SIMPL,
which can be read as a permuted acronym for Modeling
Language for Integrated Problem Solving.

SIMPL is based on two principles: algorithmic unifica-
tion and constraint-based control. Algorithmic unification
begins with the premise that integration should occur at a
fundamental and conceptual level, rather than postponed to
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the software design stage. Optimization methods and their
hybrids should be viewed, to the extent possible, as special
cases of a single solution method that can be adjusted to
exploit the structure of a given problem. We address this
goal with a search-infer-and-relax algorithmic framework,
coupled with constraint-based control in the modeling lan-
guage. The search-infer-and-relax scheme encompasses a
wide variety of methods, including branch-and-cut meth-
ods for integer programming, branch-and-infer methods
for constraint programming, popular methods for contin-
uous global optimization, nogood-based methods such as
Benders decomposition and dynamic backtracking, and
even heuristic methods such as local search and greedy ran-
domized adaptive search procedures (GRASPs).
Constraint-based control allows the design of the model

itself to tell the solver how to combine techniques so as
to exploit problem structure. Highly structured subsets of
constraints are written as metaconstraints, which are similar
to “global constraints” in constraint programming. Syntac-
tically, a metaconstraint is written much as linear or global
constraints are written, but it is accompanied by parame-
ters that specify how the constraint is to be implemented
during the solution process (see §5 for details). For exam-
ple, a metaconstraint may specify how it is to be relaxed,
how it will filter domains, and/or how the search proce-
dure will branch when the constraint is violated. When such
parameters are omitted, a prespecified default behavior is
used. The relaxation, inference, and branching techniques
are devised for each constraint’s particular structure. For
example, a metaconstraint may be associated with a tight
polyhedral relaxation from the integer programming litera-
ture and/or an effective domain filter from constraint pro-
gramming. Because constraints also control the search, if
a branching method is explicitly indicated for a metacon-
straint, the search will branch accordingly.
The selection of metaconstraints to formulate the prob-

lem determines how the solver combines algorithmic ideas
to solve the problem. This means that SIMPL deliber-
ately sacrifices independence of model and method: The
model must be formulated with the solution method in
mind. However, we believe that successful combinatorial
optimization leaves no alternative. This is evident in both
integer programming and constraint programming because
in either case one must carefully write the formulation to
obtain tight relaxations, effective propagation, or intelligent
branching. We attempt to make a virtue of necessity by
explicitly providing the resources to shape the algorithm
through a high-level modeling process.
We focus here on branch-and-cut, branch-and-infer, gen-

eralized Benders, and a subclass of global optimization
methods because these have been implemented so far in
SIMPL. The system architecture is designed, however, for
extension to general global optimization, general nogood-
based methods, and heuristic methods.
A key contribution of this paper is to demonstrate that

a general-purpose solver and modeling system can achieve

the computational advantages of integrated methods while
preserving much of the convenience of existing commer-
cial solvers. We use SIMPL to model and solve four
classes of problems that have been successfully solved
by custom implementations of integrated approaches. We
find that a properly engineered high-level modeling lan-
guage and solver can match and even exceed the perfor-
mance of handcrafted implementations. We presented the
basic ideas of SIMPL’s architecture, without computational
results, in Aron et al. (2004). The present paper provides
more detailed descriptions of SIMPL’s syntax and seman-
tics and demonstrates its performance empirically on a col-
lection of problem instances.
After a brief survey of previous work, we review the

advantages of integrated problem solving and present
the search-infer-and-relax framework. We then summarize
the syntax and semantics of SIMPL models. Following this,
we describe how to model and solve the four problem
classes just mentioned in an integrative mode. A pro-
duction planning problem with semicontinuous piecewise-
linear costs illustrates metaconstraints and the interaction
of inference and relaxation. A product configuration prob-
lem illustrates variable indices and how further inference
can be derived from the solution of a relaxation. Finally, a
machine-scheduling problem, followed by network design
and truss structure design problems, show how Benders
decomposition and global optimization methods, respec-
tively, fit into our framework. For the truss structure design
problem, in particular, we also demonstrate the use of an
effective quasi-relaxation technique that can be applied to
a general class of global optimization problems (Hooker
2005c). In each case, we exhibit the SIMPL model and
present computational results in online Appendix C. We
conclude with suggestions for further development. An
electronic companion to this paper is available as part of
the online version that can be found at http://or.journal.
informs.org/.

2. Previous Work
Comprehensive surveys of hybrid methods that combine
CP and MILP are provided by Hooker (2000, 2002, 2006,
2007), and tutorial articles may be found in Milano (2003).
Various elements of the search-infer-and-relax frame-

work presented here were proposed by Hooker (1994,
1997, 2000, 2003), Bockmayr and Kasper (1998), Hooker
and Osorio (1999), and Hooker et al. (2000). An exten-
sion to dynamic backtracking and heuristic methods is
given in Hooker (2005a). The present paper builds on
this framework and introduces the idea of constraint-based
control, which is key to SIMPL’s architecture. A prelimi-
nary description of the architecture appears in a conference
paper (Aron et al. 2004), without computational results.
The present paper develops these ideas further and demon-
strates that SIMPL can reproduce the computational advan-
tages of integrated methods with much less implementation
effort.
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Existing hybrid solvers include ECLiPSe, OPL Studio,
Mosel, and SCIP. ECLiPSe is a Prolog-based constraint
logic programming system that provides an interface with
linear and MILP solvers (Rodošek et al. 1999, Cheadle
et al. 2003, Ajili and Wallace 2003). The CP solver in
ECLiPSe communicates tightened bounds to the MILP
solver, whereas the MILP solver detects infeasibility and
provides a bound on the objective function that is used by
the CP solver. The optimal solution of the linear constraints
in the problem can be used as a search heuristic.
OPL Studio provides an integrated modeling lan-

guage that expresses both MILP and CP constraints (Van
Hentenryck et al. 1999). It sends the problem to a CP or
MILP solver, depending on the nature of constraints. A
script language allows one to write algorithms that call the
CP and MILP solvers repeatedly.
Mosel is both a modeling and programming language

that interfaces with various solvers, including MILP and
CP solvers (Colombani and Heipcke 2002, 2004). SCIP
is a callable library that gives the user control of a solu-
tion process that can involve both CP and MILP solvers
(Achterberg et al. 2008).

3. Advantages of Integrated
Problem Solving

One obvious advantage of integrated problem solving is its
potential for reducing computation time. Table 1 presents
a sampling of some of the better computational results
reported in the literature, divided into four groups: (a) Early
efforts at integration coupled solvers rather loosely but
obtained some speedup nonetheless. (b) More recent hybrid
approaches combine CP or logic processing with various
types of relaxations used in MILP, and they yield more sub-
stantial speedups. (c) Several investigators have used CP
for column generation in a branch-and-price MILP algo-
rithm, as independently proposed by Junker et al. (1999)
and Yunes et al. (1999). (d) Some of the largest computa-
tional improvements to date have been obtained by using
generalizations of Benders decomposition to unite solution
methods, as proposed by Hooker (2000) and implemented
for CP/MILP by Jain and Grossmann (2001). MILP is
most often applied to the master problem and CP to the
subproblem.
We solve four of the problem classes in Table 1 with

SIMPL: piecewise-linear costs (Refalo 1999; Ottosson
et al. 1999, 2002), product configuration (Thorsteinsson
and Ottosson 2001), planning and scheduling (Jain and
Grossmann 2001), and truss structure design (Bollapragada
et al. 2001). We selected these problems because the
reported results are among the most impressive, and because
they illustrate a variety of solution approaches.
Our experiments show that SIMPL reproduces or

exceeds the reported advantage of integrated methods over
the state of the art at that time. This level of performance
can now be obtained with much less effort than invested by

the original authors. All of the problems in Table 1 can in
principle be implemented in a search-infer-and-relax frame-
work, although SIMPL in its current form is not equipped
for all of them.
Aside from computational advantages, an integrated

approach provides a richer modeling environment that can
result in simpler models and less debugging. The full reper-
tory of global constraints used in CP are potentially avail-
able, as well as nonlinear expressions used in continuous
global optimization. Frequent use of metaconstraints not
only simplifies the model, but allows the solver to exploit
problem structure.
This implies a different style of modeling than is cus-

tomary in mathematical programming, which writes all
constraints using a few primitive terms (equations, inequal-
ities, and some algebraic expressions). Effective integrated
modeling draws from a large library of metaconstraints and
presupposes that the user has some familiarity with this
library. For example, the library may contain a constraint
that defines piecewise-linear costs, a constraint that requires
flow balance in a network, a constraint that prevents sched-
uled jobs from overlapping, and so forth. Each constraint is
written with parameters that specify the shape of the func-
tion, the structure of the network, or the processing times
of the jobs. When sitting down to formulate a model, the
user would browse the library for constraints that appear to
relate to the problem at hand.
Integrated modeling therefore places on the user the bur-

den of identifying problem structure, but in so doing it takes
full advantage of the human capacity for pattern recogni-
tion. Users identify highly structured subsets of constraints,
which allows the solver to apply the best-known analysis
of these structures to solve the problem efficiently. In addi-
tion, only certain metaconstraints tend to occur in a given
problem domain. This means that only a relevant portion
of the library must be presented to a practitioner in that
domain.

4. The Basic Algorithm
The search-infer-and-relax algorithm can be summarized as
follows:
Search. The search proceeds by solving problem restric-

tions, each of which is obtained by adding constraints to the
problem. The motivation is that restrictions may be easier
to solve than the original problem. For example, a branch-
and-bound method for MILP enumerates restrictions that
correspond to nodes of the search tree. Branch-and-infer
methods in CP do the same. Benders decomposition enu-
merates restrictions in the form of subproblems (slave prob-
lems). If the search is exhaustive, the best feasible solution
of a restriction is optimal in the original problem. A search
is exhaustive when the restrictions have feasible sets whose
union is the feasible set of the original problem.
Infer. Very often the search can be accelerated by infer-

ring valid constraints from the current problem restric-
tion, which are added to the constraint set. MILP methods
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infer constraints in the form of cutting planes. CP methods
infer smaller variable domains from individual constraints.
(A variable’s domain is the set of values it can take.) Clas-
sical Benders methods infer valid cuts from the subproblem
by solving its dual.
One can often exploit problem structure by designing

specialized inference methods for certain metaconstraints
or highly structured subsets of constraints. Thus, MILP
generates specialized cutting planes for certain types of
inequality sets (e.g., flow cuts). CP applies specialized
domain reduction or “filtering” algorithms to such com-
monly used global constraints as all-different, element, and
cumulative. Benders cuts commonly exploit the structure
of the subproblem.
Inference methods that are applied only to subsets of

constraints often miss implications of the entire constraint
set, but this can be partially remedied by constraint prop-
agation, a fundamental technique of CP. For example,
domains that are reduced by a filtering algorithm for one
constraint can serve as the starting point for the domain
reduction algorithm applied to the next constraint, and so
forth. Thus, the results of processing one constraint are
“propagated” to the next constraint.
Relax. It is often useful to solve a relaxation of the cur-

rent problem restriction, particularly when the restriction is
too hard to solve. The relaxation can provide a bound on
the optimal value, perhaps a solution that happens to be
feasible in the original problem, and guidance for generat-
ing the next problem restriction.
In MILP, one typically solves linear programming or

Lagrangian relaxations to obtain bounds or solutions that
may happen to be integer. The solution of the relaxation
also helps to direct the search, as, for example, when one
branches on a fractional variable. In Benders decomposi-
tion, the master problem is the relaxation. Its solution pro-
vides a bound on the optimum and determines the next
restriction (subproblem) to be solved.
Like inference, relaxation is very useful for exploiting

problem structure. For example, if the model identifies a
highly structured subset of inequality constraints (by treat-
ing them as a single metaconstraint), the solver can gen-
erate a linear relaxation for them that contains specialized
cutting planes. This allows one to exploit structure that is
missed even by current MILP solvers. In addition, such
global constraints as all-different, element, and cumulative
can be given specialized linear relaxations (Hooker 2007,
Williams and Yan 2001, Yan and Hooker 1999).

5. The Syntax and Semantics of SIMPL
An optimization model in SIMPL is comprised of four
main parts: declarations of constants and problem data,
the objective function, declaration of metaconstraints, and
search specification. The first two parts are straightforward
in the sense that they look very much like their counterparts
in other modeling languages such as AMPL (Fourer et al.

2003), GAMS (Brooke et al. 1988), Mosel (Colombani
and Heipcke 2002, 2004), and OPL (Van Hentenryck et al.
1999). Hence, this section concentrates on explaining the
syntax of the metaconstraints and search specification, as
well as the semantics of the model. Complete modeling
examples are given in online Appendix C.

5.1. Multiple Problem Relaxations

Each iteration in the solution of an optimization problem P
examines a restriction N of P . In a tree search, for exam-
ple, N is the problem restriction at the current node of the
tree. Because solving N can be hard, we usually solve a
relaxation NR of N , or possibly several relaxations.
In an integrated CP-MILP modeling system, linear con-

straints are posted to a linear programming (LP) solver,
normally along with linear relaxations of some of the other
constraints. Constraints suitable for CP processing, perhaps
including some linear constraints, are posted to a CP solver
as well. Extending this idea to other kinds of relaxations is
straightforward.

5.2. Constraints and Constraint Relaxations

In SIMPL, each constraint is associated with one or more
constraint relaxations. To post a constraint means to add
its constraint relaxations to the appropriate problem relax-
ations. For example, both the LP and the CP relaxations
of a linear constraint are equivalent to the constraint itself.
The CP relaxation of the element constraint is equivalent
to the original constraint, but its LP relaxation can be
the convex hull formulation of its set of feasible solutions
(Hooker 2000).
In branch-and-bound search, problem relaxations are

solved at each node of the enumeration tree. In principle,
the relaxations could be generated from scratch at every
node because they are a function of the variable domains.
Nonetheless, it is more efficient to regenerate only relax-
ations that change significantly at each node. We there-
fore distinguish static constraint relaxations, which change
very little (in structure) when the domains of its variables
change (e.g., relaxations of linear constraints are equal to
themselves, perhaps with some variables removed due to
fixing), from volatile relaxations, which change radically
when variable domains change (e.g., linear relaxations of
global constraints). When updating the relaxations at a new
node in the search tree, only the volatile constraint relax-
ations are regenerated. Regeneration is never necessary to
create valid relaxations, but it strengthens the relaxation
bounds.
A metaconstraint in SIMPL receives a declaration of the

form

<name> means {
<constraint-list>
relaxation = { <relaxation-list> }
inference = { <inference-list> }

}
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where the underlined words are reserved words of the mod-
eling language. <name> is an arbitrary name given to the
metaconstraint, whose purpose will be explained in §A.1
of the online supplement. <constraint-list> is a list of
one or more constraints that constitute the metaconstraint.
For example, this list could be a single global or linear
constraint, a collection of linear constraints, or a collection
of logical propositions. Finally, there are two other state-
ments: relaxation, which is mandatory, and inference,
which is optional. The <relaxation-list> contains a list
of problem relaxations to which the constraint relaxations
of <constraint-list> should be posted. An example of
such a list is {lp, cp}, which indicates a linear program-
ming relaxation and a constraint programming relaxation.
The <inference-list> contains a list of types of infer-
ence that <constraint-list> should perform. For exam-
ple, if <constraint-list> is a global constraint such as
cumulative, we could invoke a particular inference (or filter-
ing) algorithm for that constraint by writing inference =
{edge-finding3}, which indicates an O	n3� edge-finding
filtering algorithm (Baptiste et al. 2001). In the absence of
the inference statement, either a default inference mech-
anism will be used or no inference will be performed. The
actual behavior will depend on the types of constraints
listed in <constraint-list>.

5.3. Specifying the Search

Syntactically, the search section of a SIMPL model is
declared as follows:

SEARCH
type = { <search-type> }
branching = { <branching-list> }
inference = { <general-inference-list>

}

where the underlined words are reserved words of the mod-
eling language. <search-type> indicates the type of search
to be performed. For example, the key words bb, benders,
bp, and ls mean branch and bound, logic-based Benders
decomposition, branch and price, and local search, respec-
tively. Sometimes, an argument can be added to the search
type to specify a particular node selection strategy. For
example, bb:bestbound means we want to do branch and
bound with best-bound node selection.
The <branching-list> is a comma-separated list of

terms in which each term assumes the following form:
<name>:<selection-module>:<branching-module>.
<name> is the name of a metaconstraint, as described in
§5.2. <selection-module> and <branching-module>
represent, respectively, the selection module and branching
module to be used when branching on the constraint named
<name>. Constraints are checked for violation (for branching
purposes) in the order they appear in <branching-list>,
from left to right. When <constraint-list> in the
metaconstraint <name> contains more than one con-
straint, <selection-module> will specify the order in

which to check those constraints for violation. Current
possibilities are most (most violated first), least (least
violated first), and first (first violation in the list). Once
a violated constraint c is selected, the optional argument
branching-module specifies how to branch on c. For
example, let us say our model has two metaconstraints
named c1 and c2. The branching statement could look like
branching = { c1:most, c2:first:sos1 }. This means
we first check the constraints in c1 for violation and branch
on the most violated of those, if any, according to some
default criterion. If the solution of the current relaxation
satisfies c1, we scan the constraints in c2 for violation in
the order they are listed (because of first). If one is found
violated, we use sos1 branching. In case a variable name is
used in the branching list instead of a metaconstraint name,
this means we want to use the indomain constraints of that
set of variables for branching. The indomain constraint
of a variable is the constraint that specifies the possible
values of that variable in the variable declaration section.
Examples of such constraints are: x[1..10] in {0, 1} for
binary variables, and y[1..5] in [0..10, 12..15] for
real-valued variables with holes in their domains.
The <general-inference-list> is an optional list of

inferences that should be performed in addition to the
inferences specified inside each individual metaconstraint
(see §5.2). If, for example, we want to generate lift-and-
project cuts (Balas et al. 1993) (recall that cutting planes
are a form of inference) and also perform reduced-cost
fixing on our x variables, the inference statement in the
search section of the model would look like inference =
{ lift-and-project, x:redcost }.
Due to space limitations, further details on SIMPL’s

implementation of search and inference are given in online
Appendix A.1.

6. Example: Piecewise-Linear Functions
A simple production planning example with piecewise-
linear functions illustrates integrated modeling as well as
the search-infer-and-relax process. The approach taken here
is similar to that of Refalo (1999) and Ottosson et al.
(1999, 2002).
The objective is to manufacture several products at a

plant of limited capacity C so as to maximize net income.
Each product must be manufactured in one of several pro-
duction modes (small scale, medium scale, large scale,
etc.), and only a certain range of production quantities are
possible for each mode. Thus, if xi units of product i are
manufactured in mode k, xi ∈ �Lik�Uik�. The net income
fi	xi� derived from making product i is linear in each inter-
val �Lik�Uik�, with fi	Lik�= cik and fi	Uik�= dik. Thus, fi
is a continuous or semicontinuous piecewise-linear function
(Figure 1):

fi	xi�=
Uik−xi
Uik−Lik

cik+
xi−Lik

Uik−Lik

dik if xi∈ �Lik�Uik�� (1)
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Figure 1. A semicontinuous piecewise-linear function
fi	xi�.

xi

fi(xi)

Li0

Ui0

ci0        = di0
Li1 Ui1

ci1

di1

Li2 Ui2

ci2

di2

Li3 Ui3

ci3

di3

Making none of product i corresponds to mode k= 0, for
which �Li0�Ui0�= �0�0�.
An integer programming model for this problem intro-

duces 0-1 variables yik to indicate the production mode of
each product. The functions fi are modeled by assigning
weights �ij , �ik to the endpoints of each interval k. The
model is

max
∑
ik

�ikcik+�ikdik

∑
i

xi�C�

xi=
∑
k

�ikLik+�ikUik�
∑
k

�ik+�ik=1 for all i�

∑
k

yik=1 for all i,

0��ik�yik� 0��ik�yik� yik∈�0�1� for all i�k�

(2)

If desired, one can identify �i0��i0��i1��i1� � � � as a spe-
cially ordered set of type 2 for each product i. However,
specially ordered sets are not particularly relevant here
because the adjacent pair of variables �ik, �i�k+1 are never
both positive for any k.
We formulate a model that directly informs the solver of

the piecewise-linear nature of the costs. For each product i,
the point 	xi� ui� must lie on one of the line segments of the
piecewise-continuous cost function. If the solver is aware
of this fact, it can construct a tight linear relaxation by
requiring 	xi� ui� to lie in the convex hull of these line
segments, thus resulting in a substantially faster solution.
This is accomplished by equipping the modeling lan-

guage with metaconstraint piecewise to model continu-
ous or semicontinuous piecewise-linear functions. A single
piecewise constraint represents the constraints in (b) that
correspond to a given i. The model is written as

max
∑
i

ui

∑
i

xi �C� 	a�

piecewise	xi� ui�Li�Ui� ci� di� for all i. 	b�

(3)

Here, Li is an array containing Li0�Li1� � � �, and simi-
larly for Ui, ci, and di. Each piecewise constraint enforces
ui = fi	xi�.
In general, the solver has a library of metaconstraints that

are appropriate to common modeling situations. Typically,
some constraints are written individually, as is (a) above,
whereas others are collected under one or more metacon-
straints to simplify the model and allow the solver to exploit
problem structure. It does so by applying inference meth-
ods to each metaconstraint, relaxing it, and branching in an
intelligent way when it is not satisfied. In each case, the
solver exploits the peculiar structure of the constraint.
Let us suppose the solver is instructed to solve the pro-

duction planning problem by branch and bound, which
defines the search component of the algorithm. The search
proceeds by enumerating restrictions of the problem, each
one corresponding to a node of the search tree. At each
node, the solver infers a domain �ai� bi� for each variable xi.
Finally, the solver generates bounds for the branch-and-
bound mechanism by solving a relaxation of the problem.
It branches whenever a constraint is violated by the solu-
tion of the relaxation, and the nature of the branching is
dictated by the constraint that is violated. If more than one
constraint turns out to be violated, the solver will branch
on the one with the highest priority, as specified by the user
(see §C.1 in the online supplement for an example).
It is useful to examine these steps in more detail. At

a given node of the search tree, the solver first applies
inference methods to each constraint. Constraint (a) trig-
gers a simple form of interval propagation. The upper
bound bi of each xi’s domain is adjusted to become
min�bi�C −∑

j �=i aj�. Constraint (b) can also reduce the
domain of xi, as will be seen shortly. Domains reduced
by one constraint can be cycled back through the other
constraint for possible further reduction. As branching and
propagation reduce the domains, the problem relaxation
becomes progressively tighter until it is infeasible or its
solution is feasible in the original problem.
The solver creates a relaxation at each node of the search

tree by pooling relaxations of the various constraints. It
relaxes each constraint in (b) by generating linear inequal-
ities to describe the convex hull of the graph of each fi, as
illustrated in Figure 2. The fact that xi is restricted to �ai� bi�
permits a tighter relaxation, as shown in the figure. Simi-
lar reasoning reduces the domain �ai� bi� of xi to �Li1� bi�.
The linear constraint (a) also generates a linear relaxation,
namely, itself. These relaxations, along with the domains,
combine to form a linear relaxation of the entire problem:

max
∑
i

ui

∑
i

xi �C�

conv	piecewise	xi� ui�Li�Ui� ci� di�� for all i,

ai � xi � bi for all i�

(4)
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Figure 2. Convex hull relaxation (shaded area) of fi	xi�
when xi has domain �ai� bi�.

xi

fi (xi)

ai
–xi bi

–ui

Li1 Ui1 Li2 Ui2 Li3

where conv denotes the convex hull description just
mentioned.
The solver next finds an optimal solution 	x̄i� ūi� of the

relaxation (4) by calling a linear programming plug-in. This
solution will necessarily satisfy (a), but it may violate (b)
for some product i, for example, if x̄i is not a permissible
value of xi, or ūi is not the correct value of fi	x̄i�. The latter
case is illustrated in Figure 2, where the search creates
three branches by splitting the domain of xi into three parts:
�Li2�Ui2�, everything below Ui1, and everything above Li3.
Note that in this instance the linear relaxation at all three
branches will be exact, so that no further branching will be
necessary.
The problem is therefore solved by combining ideas from

three technologies: search by splitting intervals, from con-
tinuous global optimization; domain reduction, from con-
straint programming; and polyhedral relaxation, from
integer programming.

Summary of Computational Results

SIMPL is much faster than the original hand-coded imple-
mentation of the integrated approach, which was compara-
ble to state-of-the-art commercial MILP technology at the
time (CPLEX). Although CPLEX has since improved by a
factor of a thousand on the larger instances, SIMPL is about
twice as fast as the most recent version of CPLEX on the
original problem set (up to 100 jobs). SIMPL’s advantage
grows dramatically on larger instances (300 to 600 jobs).
The search tree, compared that of CPLEX, is 1,000 to 8,000
times smaller, and the computation time 20 to 120 times
less. For further details, see §C.1 in the online supplement.

7. Example: Variable Indices
A variable index is a versatile modeling device that is read-
ily accommodated by a search-infer-and-relax solver. If an
expression has the form uy , where y is a variable, then y
is a variable index or variable subscript. A simple product

configuration problem (Thorsteinsson and Ottosson 2001)
illustrates how variable indices can be used in a model and
processed by a solver.
The problem is to choose an optimal configuration of

components for a product, such as a personal computer. For
each component i, perhaps a memory chip or power supply,
one must decide how many qi to install and what type ti
to install. Only one type of each component may be used.
The types correspond to different technical specifications,
and each type k of component i supplies a certain amount
aijk of attribute j . For example, a given type of memory
chip might supply a certain amount of memory, generate
a certain amount of heat, and consume a certain amount
of power; in the last case, aijk < 0 to represent a nega-
tive supply. There are lower and upper bounds Lj�Uj on
each attribute j . Thus, there may be a lower bound on total
memory, an upper bound on heat generation, a lower bound
of zero on net power supply, and so forth. Each unit of
attribute j produced incurs a (possibly negative) penalty cj .
A straightforward integer programming model introduces

0-1 variables xik to indicate when type k of component i
is chosen. The total penalty is

∑
j cjvj , where vj is the

amount of attribute j produced. The quantity vj is equal
to

∑
ik aijkqixik. Because this is a nonlinear expression, the

variables qi are disaggregated, so that qik becomes the num-
ber of units of type k of component i. The quantity vj is
now given by the linear expression

∑
ik aijkqik. A big-M

constraint can be used to force qij to zero when xij = 0.
The model becomes

min
∑
j

cjvj

vj =
∑
ik

aijkqik� Lj � vj �Uj for all j ,

qik �Mixik for all i, k,∑
k

xik = 1 for all i,

(5)

where each xij is a 0-1 variable, each qij is integer, and Mi

is an upper bound on qi.
An integrated model uses the original notation ti for the

type of component i, without the need for 0-1 variables
or disaggregation. The key is to permit ti to appear as a
subscript:

min
∑
j

cjvj

vj =
∑
i

qiaijti
for all j ,

(6)

where the bounds Lj�Uj are reflected in the initial domain
assigned to vj .
The modeling system automatically decodes variably

indexed expressions with the help of the element constraint,
which is frequently used in CP modeling. In this case,
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the variably indexed expressions occur in indexed linear
expressions of the form

∑
i

qiaijti
� (7)

where each qi is an integer variable and each ti a discrete
variable. Each term qiaijti

is automatically replaced with a
new variable zij and the constraint

element	ti� 	qiaij1� � � � � qiaijn�� zij � (8)

This constraint in effect forces zij = qiaijti
. The solver

can now apply a domain reduction or “filtering” algorithm
to (8) and generate a relaxation for it. The filtering pro-
cedure is straightforward, if tedious, and is described in
Appendix B of the online supplement.
As for the relaxation, note that since (8) implies a

disjunction
∨

k∈Dti
	zij = aijkqi�, it can be given the stan-

dard convex hull relaxation for a disjunction, which in this
case simplifies to

zij =
∑
k∈Dti

aijkqik� qi =
∑
k∈Dti

qik� (9)

where qik � 0 are new variables.
If there is a lower bound L on expression (7), the relax-

ation used by Thorsteinsson and Ottosson (2001) can be
strengthened with integer knapsack cuts (and similarly if
there is an upper bound). Because

∑
i

qiaijti
=∑

i

∑
k∈Dti

aijkqik �
∑
i

max
k∈Dti

�aijk�
∑
k∈Dti

qik

=∑
i

max
k∈Dti

�aijk�qi�

the lower bound L on (7) yields the valid inequality

∑
i

max
k∈Dti

�aijk�qi � L� (10)

Because the qis are general integer variables, integer knap-
sack cuts can be generated for (10).
Based on these ideas, the automatically generated relax-

ation of (6) becomes

min
∑
j

cjvj

vj =
∑
i

∑
k∈Dti

aijkqik� Lj � vj �Uj for all j ,

qi =
∑
k∈Dti

qik� q
i
� qi � q̄i for all i,

knapsack cuts for
∑
i

max
k∈Dti

�aijk�qi � Lj and

∑
i

min
k∈Dti

�aijk�qi �Uj for all j ,

qik � 0 for all i, k.

(11)

There is also an opportunity for postrelaxation inference,
which in this case takes the form of reduced-cost variable
fixing. Suppose that the best feasible solution found so far
has value z∗, and let ẑ be the optimal value of (11). If
ẑ + rik � z∗, where rik is the reduced cost of qik in the
solution of (11), then k can be removed from the domain
of ti. In addition, if rik > 0, one can infer

q̄i �max
k∈Dti

{⌊
z∗ − ẑ

rik

⌋}
for all i.

Postrelaxation inference can take other forms as well, such
as the generation of separating cuts.
The problem can be solved by branch and bound. In

this case, we can start by branching on the domain con-
straints ti ∈ Dti

. Because ti does not appear in the linear
relaxation, it does not have a determinate value until it
is fixed by branching. The domain constraint ti ∈ Dti

is
viewed as unsatisfied as long as ti is undetermined. The
search branches on ti ∈ Dti

by splitting Dti
into two sub-

sets. Branching continues until all the Dti
are singletons,

or until at most one qik (for k ∈Dti
) is positive for each i.

At that point we check if all qi variables are integer and
branch on q if necessary.

Summary of Computational Results

The original integrated approach was orders of magnitude
faster than the contemporary CPLEX solver, both in terms
of search nodes and time. SIMPL is even better than the
original implementation and therefore achieves our main
goal. It generates a search tree that is 10 times smaller on
average. However, CPLEX has again become far better at
solving this problem and now requires an average of 0.15
seconds, compared to 0.40 seconds for SIMPL, because it
solves most problems at the root node. One might expect
a commercial implementation of SIMPL to see comparable
speedups as the technology and implementation improve.
For further details, see §C.2 in the online supplement.

8. Example: Logic-Based Benders
Decomposition

Nogood-based methods search the solution space by gener-
ating a nogood each time a candidate solution is examined.
The nogood is a constraint that excludes the solution just
examined, and perhaps other solutions that can be no bet-
ter. The next solution enumerated must satisfy the nogoods
generated so far. The search is exhaustive when the nogood
set becomes infeasible.
Benders decomposition is a special type of a nogood-

based method in which the nogoods are Benders cuts and
the master problem contains all the nogoods generated so
far. In classical Benders, the subproblem (slave problem) is
a linear or nonlinear programming problem, and Benders
cuts are obtained by solving its dual—or in the nonlin-
ear case by deriving Lagrange multipliers. Logic-based
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Benders generalizes this idea to an arbitrary subproblem by
solving the inference dual of the subproblem (Hooker and
Yan 1995; Hooker 1996, 1999).
A simple planning and scheduling problem illustrates

the basic idea (Hooker 2000, Jain and Grossmann 2001,
Bockmayr and Pisaruk 2003). A set of n jobs must
be assigned to machines, and the jobs assigned to each
machine must be scheduled subject to time windows. Job
j has release time rj , deadline dj , and processing time pij

on machine i. It costs cij to process job j on machine i. It
generally costs more to run a job on a faster machine. The
objective is to minimize processing cost. The MILP model
used by Jain and Grossmann appears in §C.3 of the online
supplement.
A hybrid model can be written with the cumulative meta-

constraint, which is widely used in constraint programming
for “cumulative” scheduling, in which several jobs can run
simultaneously but subject to a resource constraint and time
windows. Let tj be the time at which job j starts processing
and uij the rate at which job j consumes resources when it
is running on machine i. The constraint

cumulative	t� pi� ui�Ui�

requires that the total rate at which resources are consumed
on machine i always be less than or equal to Ui. Here t =
	t1� � � � � tn�, pi = 	pi1� � � � � pin�, and similarly for ui.
In the present instance, jobs must run sequentially on

each machine. Thus, each job j consumes resources at the
rate uij = 1, and the resource limit is Ui = 1. Thus, if yj is
the machine assigned to job j , the problem can be written
as

min
∑
j

cyj j

rj � tj �dj−pyj j
for all j ,

cumulative		tj �yj = i��	pij �yj = i��e�1� for all i,

(12)

where e is a vector of ones.
This model is adequate for small problems, but solution

can be dramatically accelerated by decomposing the prob-
lem into an assignment portion to be solved by MILP and
a subproblem to be solved by CP. The assignment portion
becomes the Benders master problem, which allocates job j
to machine i when xij = 1:

min
∑
ij

cijxij

∑
i

xij = 1 for all j ,

relaxation of subproblem,

Benders cuts,

xij ∈ �0�1��

(13)

The solution x̄ of the master problem determines the
assignment of jobs to machines. Once these assignments

are made, problem (12) separates into a scheduling feasi-
bility problem on each machine i:

rj � tj � dj −pȳj j
for all j�

cumulative		tj � ȳj = i�� 	pij � ȳj = i�� e�1�,
(14)

where ȳj = i when x̄ij = 1. If there is a feasible schedule
for every machine, the problem is solved. If, however,
the scheduling subproblem (14) is infeasible on some
machine i, a Benders cut is generated to rule out the solu-
tion x̄, perhaps along with other solutions that are known
to be infeasible. The Benders cuts are added to the master
problem, which is re-solved to obtain another assignment x̄.
The simplest sort of Benders cut for machine i rules out

assigning the same set of jobs to that machine again:

∑
j∈Ji

	1− xij�� 1� (15)

where Ji = �j � x̄ij = 1�. A stronger cut can be obtained,
however, by deriving a smaller set Ji of jobs that are actu-
ally responsible for the infeasibility. This can be done by
removing elements from Ji one at a time, and re-solving
the subproblem, until the scheduling problem becomes fea-
sible (Hooker 2005a). Another approach is to examine the
proof of infeasibility in the subproblem and note which
jobs actually play a role in the proof (Hooker 2005b).
In CP, an infeasibility proof generally takes the form
of edge-finding techniques for domain reduction, perhaps
along with branching. Such a proof of infeasibility can be
regarded as a solution of the subproblem’s inference dual.
(In linear programming, the inference dual is the classical
linear programming dual.) Logic-based Benders cuts can
also be developed for planning and scheduling problems
in which the subproblem is an optimization rather than a
feasibility problem. This occurs, for example, in minimum
makespan and minimum tardiness problems (Hooker 2004).
It is computationally useful to strengthen the master

problem with a relaxation of the subproblem. The sim-
plest relaxation requires that the processing times of jobs
assigned to machine i fit between the earliest release time
and latest deadline:

∑
j

pijxij �max
j
�dj�−min

j
�rj�� (16)

A Benders method (as well as any nogood-based
method) fits easily into the search-infer-and-relax frame-
work. It solves a series of problem restrictions in the form
of subproblems. The search is directed by the solution of
a relaxation, which in this case is the master problem. The
inference stage generates Benders cuts.
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The decomposition is communicated to the solver by
writing the model

min
∑
ij

cijxij 	a�

∑
i

xij =1 for all j , 	b�

	xij =1� ⇔ 	yj = i� for all i, j , 	c�

rj � tj �dj−pyj j
for all j , 	d�

cumulative		tj �yj = i��	pij � ȳj = i��e�1�
for all i� 	e�

(17)

where the domain of each xij is �0�1�. Each constraint
is associated with a relaxation parameter and an inference
parameter. The relaxation parameters for constraints (b)
and (d) will indicate that these constraints contribute to
the MILP master relaxation of the problem. Note that (d)
and (e) are part of the Benders subproblem. The relaxation
parameter for (e) will add the inequalities (16) to the linear
relaxation. The inference parameter for (e) will specify the
type of Benders cuts to be generated. When the solver is
instructed to use a Benders method, it automatically adds
the Benders cuts to the relaxation. For more details on
how these parameters are stated, see §C.3 in the online
supplement.

Summary of Computational Results

SIMPL matches or exceeds the performance of the original
integrated implementation. SIMPL is also several orders of
magnitude faster than the most recent version of CPLEX,
and the advantage increases rapidly with problem size.
It solves, in a second or less, some instances that are
intractable for CPLEX. For further details, see §C.3 in the
online supplement.

9. Example: Global Optimization
We solved two sets of global problems. We first solved
a few bilinear problems taken from Chapter 5 of Floudas
et al. (1999). Bilinear problems are an important subclass of
nonconvex quadratic programming problems whose appli-
cations include pooling and blending, separation sequenc-
ing, heat exchanger network design, and multicommodity
network flow problems.
The global solver BARON already implements what is in

many ways an integrated approach to solving a problem of
this kind because it uses filtering techniques (known in the
field as range reduction techniques) as well as relaxations.
We implemented a similar approach in SIMPL and obtained
performance that is roughly competitive with but somewhat
slower than BARON’s. This suggests that SIMPL could
benefit from the primal heuristics and other techniques used
in BARON. Further details may be found in §C.4 of the
online supplement.

Our research objective in this paper, however, is to deter-
mine whether SIMPL can perform well on problems for
which hand-coded integrated methods have been found to
deliver substantial speedups. For this purpose we solved the
mixed discrete/nonlinear truss structure design problems
to which Bollapragada et al. (2001) applied an integrated
method.
Trust structure optimization is one of the fundamen-

tal problems in engineering design. The goal is to find
a minimum-cost placement and sizing of truss mem-
bers (bars) to support a given load. The possible cross-
sectional areas of the bars come from a discrete set of
values that correspond to commonly manufactured sizes.
Due to the presence of nonconvex physical constraints
(i.e., Hooke’s law), these problems are very difficult to
solve. The nonlinear formulation can be converted into
an MILP model by adding 0-1 and continuous variables
(Ghattas and Grossmann 1991), which allows us to compare
SIMPL’s performance with that of both global and MILP
solvers.
The structure to be built is represented as a network of

nodes and arcs in two or three dimensions. The coordinates
of the nodes are given, and structural bars are joined at the
nodes. The problem consists of selecting the cross-sectional
area of the bar to be placed along each arc, where the area
is zero if no bar is placed. The objective is to minimize cost,
which in our case is the volume of metal (aluminum) used
in the bars. Each node has freedom of movement in a spec-
ified number of directions (degrees of freedom). Several
possible loading conditions are anticipated, each of which
is represented by a force applied to a subset of the nodes
and along one or more degrees of freedom. There are lim-
its on the displacement of each node along their degrees of
freedom for each loading condition. In addition, the elon-
gation, compression, and stress on each bar must lie within
given limits.
This problem can be formulated as follows:

min
I∑

i=1
cihiAi

I∑
i=1

bijsil = pjl for all j , l, 	a�

J∑
j=1

bijdjl = vil for all i, l, 	b�

Ei

hi

Aivil = sil for all i, l, 	c�

vLi � vil � vUi for all i, l, 	d�

dL
j � djl � dU

j for all j , l, 	e�

Ki∨
k=1

	Ai =Aik� for all i, 	f�

(18)

where I is the number of bars, J the number of degrees of
freedom (summed over all nodes), L the number of loading
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conditions, and Ki the number of discrete cross-sectional
areas for bar i. Also, hi is the length of bar i, Aik is the
kth discrete cross-sectional area of bar i, Ei is the modulus
of elasticity of bar i, pjl is the force imposed by loading
condition l at degree of freedom j , bij is the cosine of the
angle between bar i and degree of freedom j , and ci is the
cost per unit volume of bar i (typically the weight den-
sity). Finally, 1L

i and 1U
i are the minimum and maximum

allowable stress in bar i, vLi and vUi are the limits on elon-
gation/contraction of bar i, and dL

j and dU
j are the limits on

displacement for degree of freedom j .
The variables are as follows. Ai is the cross-sectional

area chosen for bar i, where the absence of bar i is rep-
resented by assigning a very small value to Ai; sil is the
force in bar i due to loading condition l; 1il is the stress
in bar i due to loading condition l; vil is the elongation (or
contraction, if negative) of bar i due to loading condition l;
and djl is the node displacement along degree of freedom
j for loading condition l. Constraints (a) represent equi-
librium equations that balance the external loads with the
forces induced in the bars; (b) are compatibility equations
that relate the displacement of the nodes with the elonga-
tion of the bars; (c) represents Hooke’s law, which relates
the elongation or compression of a bar to the force applied
to it (note that this constraint is nonlinear); and the disjunc-
tive constraints (f) require that each area Ai take one of the
discrete values Aik.
If we add 0-1 variables yik that are equal to 1 when Ai =

Aik, (f) can be replaced by two constraints, Ai =
∑

k Aikyik
and

∑
k yik = 1, for each i. This transforms (18) into

a mixed-integer nonlinear programming model (MINLP),
which can be solved by a global optimization solver like
BARON. Furthermore, if we disaggregate the vil variables,
we can convert (18) to an MILP model by replacing vil
with

∑
k vikl and replacing (c) with

Ei

hi

Ki∑
k=1

Aikvikl = sil for all i, l.

A disadvantage of the MILP model is the large num-
ber of variables. Bollapragada et al. (2001) show how to
obtain a much smaller relaxation of a problem that has the
same optimal value as (18). The resulting quasi-relaxation
of (18) therefore provides a valid bound on the optimal
value of (18).
The quasi-relaxation technique, generalized in Hooker

(2005c), applies to any constraint of the form g	x� y�� 0,
where g is semihomogeneous in x and concave in y, and
where x ∈ �n and y is a scalar. The function g	x� y� is
semihomogeneous in x when g	3x� y�� 3g	x� y� for all x,
y and 3 ∈ �0�1� and g	0� y�= 0 for all y. We also suppose
there are bounds xL � x � xU and yL � y � yU , and the

objective function involves variables in x. Then, a quasi-
relaxation can be obtained by replacing g	x� y�� 0 with

g	x1� yL�+ g	x2� yU �� 0�

3xL � x1 � 3xU �

	1−3�xL � x2 � 	1−3�xU �

x= x1 + x2�

The bilinear constraints (c) in (18) have the form
g	x� y�� 0 and satisfy the conditions for quasi-relaxation.
The following is therefore a quasi-relaxation of (18):

min
I∑

i=1
cihi�A

L
i yi +AU

i 	1− yi��

I∑
i=1

bijsil = pjl for all j , l,

J∑
j=1

bijdjl = vi0l + vi1l for all i, l,

Ei

hi

	AL
i vi0l +AU

i vi1l�= sil for all i, l,

vLi yi � vi0l � vUi yi�

vLi 	1− yi�� vi1l � vUi 	1− yi� for all i, l,

dL
j � djl � dU

j for all j , l,

0� yi � 1 for all i.

(19)

The quasi-relaxation technique is sufficiently general
to justify a metaconstraint that represents constraints of
the form g	x� y� � 0 satisfying the conditions for quasi-
relaxation. However, because any bilinear function satisfies
the condition, we invoke the quasi-relaxation simply by
adding an additional relaxation option to the bilinear con-
straint introduced earlier.
Model (18) can be solved by branch and bound using

(19) as the relaxation at each node. If 0 < yi < 1 in the
optimal solution of (19) and AL

i �= AU
i , let A

∗
i = AL

i yi +
AU

i 	1− yi�. We split the domain of Ai into two parts: the
cross-sectional areas strictly smaller than A∗

i , and the cross-
sectional areas greater than or equal to A∗

i . We branch first
on the second part because it is more likely to lead to a
feasible solution. Another property of the quasi-relaxation
(19) is that whenever it is feasible, there exists a feasible
solution in which both vi0l and vi1l have the same sign.
Therefore, if vi0l and vi1l have opposite signs in the solution
of (19), we can branch by introducing logic cuts of the form
vi0l� vi1l � 0 (left branch) and vi0l� vi1l � 0 (right branch).
These logic cuts are particularly useful in the presence of
displacement bounds (dL

j > −� and dU
j < �), and they

are checked for violation before the check on yi described
above.
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Summary of Computational Results

SIMPL replicates the performance of the hand-coded inte-
grated method for this problem, becoming superior to it as
the problem size increases from 10 to 108 bars. In addi-
tion, SIMPL solves the problem instances between two and
seven times faster than the most recent version of CPLEX.
The advantage over BARON is substantially greater. None
of the methods solves a 200-bar problem to optimality, but
after 24 hours of computation, SIMPL finds a better fea-
sible solution than the original integrated implementation,
whereas neither BARON nor CPLEX finds a feasible solu-
tion. For further details, see §C.5 of the online supplement.

10. Final Comments and Conclusions
In this paper, we describe a general-purpose integrated
solver for optimization problems, to which we refer by
the acronym SIMPL. It incorporates the philosophy that
many traditional optimization techniques can be seen as
special cases of a more general method, one that iterates
a three-step procedure: solving relaxations, performing
logical inferences, and intelligently enumerating problem
restrictions. The main objective of SIMPL is to make the
computational and modeling advantages of integrated prob-
lem solving conveniently available.
We tested SIMPL’s modeling and solution capabilities on

five types of optimization problems. We found that SIMPL
(a) reproduces or exceeds the computational advantage of
custom-coded integrated algorithms on four of these prob-
lems; (b) solves three of the problem classes faster than
current state of the art, one of them by orders of magnitude,
even though SIMPL is still an experimental code; (c) pro-
vides these advantages with modest effort on the part of the
user because the integrated models are written in a concise
and natural way; and (d) accommodates a wide range of
problem types.
One may argue that it is unfair to compare SIMPL with

an off-the-shelf commercial solver because the latter does
not contain facilities to exploit problem structure in the
way that SIMPL does. However, a major advantage of
an integrated solver is precisely that it can exploit struc-
ture while remaining a general-purpose solver and pro-
viding the convenience of current commercial systems.
SIMPL’s constraint-based approach automatically performs
the tedious job of integrating solution techniques while
exploiting the complementary strengths of the various tech-
nologies it combines.
Our examples suggest that a SIMPL user must be more

aware of the solution algorithm than an MILP user, but
again this allows the solver to benefit from the user’s under-
standing of problem structure. We anticipate that future
development of SIMPL and related systems will allow them
to presuppose less knowledge on the part of the average
user to solve less difficult problems, while giving experts
the power to solve harder problems within the same mod-
eling framework. In addition, we plan to increase SIMPL’s

functionality by increasing its library of metaconstraints,
solver types, constraint relaxations, and search strategies,
with the goal of accommodating the full spectrum of prob-
lems described in Table 1.
Those interested in reproducing our results can download

a demo version of SIMPL from http://moya.bus.miami.
edu/∼tallys/simpl.php. The package includes all the prob-
lem instances used in our experiments.

11. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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by Tallys Yunes, Ionuţ D. Aron, and J. N. Hooker,
Operations Research, doi 10.1287/opre.1090.0733.



Online Supplement for the Paper Entitled
An Integrated Solver for Optimization Problems
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A SIMPL’s Implementation of Search and Inference

This section explains how SIMPL internally implements a model’s search specification and its
inference parameters.

A.1 Search

The main search loop inside SIMPL is implemented as shown below.

procedure Search(A)
If A 6= ∅ and stopping criteria not met

N := A.getNextNode()
N.explore()
A.addNodes(N.generateRestrictions())
Search(A)

Here, N is again the current problem restriction, and A is the current list of restrictions waiting
to be processed. Depending on how A, N and their subroutines are defined, we can have different
types of search, as mentioned in Section 1. The routine N.explore() implements the infer-relax
sequence. The routine N.generateRestrictions() creates new restrictions, and A.addNodes()
adds the restrictions to A. Routine A.getNextNode() implements a mechanism for selecting the
next restriction, such as depth-first, breadth-first, or best-bound.

In tree search, N is the problem restriction that corresponds to the current node, and A is the
set of open nodes. In local search, N is the restriction that defines the current neighborhood, and
A is the singleton containing the restriction that defines the next neighborhood to be searched. In
Benders decomposition, N is the current subproblem and A is the singleton containing the next
subproblem to be solved. In the case of Benders, the role of N.explore() is to infer Benders
cuts from the current subproblem, add them to the master problem, and solve the master prob-
lem. N.generateRestrictions() uses the solution of the master problem to create the next
subproblem. In the sequel, we restrict our attention to branch-and-bound search.

A.2 Node Exploration

The behavior of N.explore() for a branch-and-bound type of search is

1. Pre-relaxation inference
2. Repeat
3. Solve relaxations
4. Post-relaxation inference
5. Until (no changes) or (iteration limit)
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The inference procedures in Steps 1 and 4 extract information from each relaxation in order to
accelerate the search, as explained in Section A.4 below. The loop continues to execute as desired
until the domains reach a fixed point.

A.3 Branching

SIMPL implements a tree search by branching on constraints. This scheme is considerably more
powerful and generic than branching on variables alone. If branching is needed, it is because some
constraint of the problem is violated, and that constraint should “know” how to branch as a result.
This knowledge is embedded in the branching module associated with the constraint. For example,
if a variable x ∈ {0, 1} has a fractional value in the current LP, its indomain constraint Ix is
violated. The branching module of Ix outputs the constraints x ∈ {0} and x ∈ {1}, meaning
that two subproblems should be created by the inclusion of those two new constraints. Traditional
branching on a variable x can therefore be interpreted as a special case of branching on a constraint.
In general, a branching module returns a sequence of constraint sets C1, . . . , Ck. Each Ci defines a
subproblem at a successor node when it is merged with the current problem. There is no restriction
on the type of constraints appearing in Ci.

Clearly, there may be more than one constraint violated by the solution of the current set of
problem relaxations. A selection module is responsible for selecting, from a given set of constraints,
the one on which to branch next. Some possible criteria for selection are picking the first constraint
found to be violated or the one with the largest degree of violation.

A.4 Inference

We now take a closer look at the inference steps of the node exploration loop in Section A.2. In
step 1 (pre-relaxation inference), one may have domain reductions or the generation of new implied
constraints (Hooker and Osorio 1999), which may have been triggered by the latest branching
decisions. If the model includes a set of propositional logic formulas, this step can also execute
some form of resolution algorithm to infer new resolvents. In step 4 (post-relaxation inference),
other types of inference may take place, such as fixing variables by reduced cost or the generation
of cutting planes. After that, it is possible to implement some kind of primal heuristic or to try
extending the current solution to a feasible solution in a more formal way, as advocated in Sect.
9.1.3 of Hooker (2000).

Since post-relaxation domain reductions are associated with particular relaxations, the reduced
domains that result are likely to differ across relaxations. Therefore, at the end of the inference
steps, a synchronization step must be executed to propagate domain reductions across different
relaxations. This is done in the algorithm below.
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1. V := ∅
2. For each problem relaxation r
3. Vr := variables with changed domains in r
4. V := V ∪ Vr

5. For each v ∈ Vr

6. Dv := Dv ∩Dr
v

7. For each v ∈ V
8. Post constraint v ∈ Dv

In step 6, Dr
v denotes the domain of v inside relaxation r, and Dv works as a temporary domain

for variable v, where changes are centralized. The initial value of Dv is the current domain of
variable v. By implementing the changes in the domains via the addition of indomain constraints
(step 8), those changes will be transparently undone when the search moves to a different part of
the enumeration tree. Similarly, those changes are guaranteed to be redone if the search returns to
descendants of the current node at a later stage.

B Filtering for the Element Constraint

For a given j, filtering for (8) is straightforward. If zij ’s domain is [zij , zij ], ti’s domain is Dti , and
qi’s domain is {q

i
, q

i
+1, . . . , qi} at any point in the search, then the reduced domains [z′ij , z

′
ij ], D′ti ,

and {q′
i
, . . . , q′i} are given by

z′ij = max
{

zij , min
k

{
aijkqi

, aijkqi

}}
, z′ij = min

{
zij , max

k

{
aijkqi

, aijkqi

}}
,

D′ti = Dti ∩
{

k
∣∣∣ [z′ij , z′ij] ∩ [min{aijkqi

, aijkqi}, max{aijkqi
, aijkqi}

]
6= ∅

}
q′
i

= max
{

q
i
, min

k

{⌈
z′ij
aijk

⌉
,

⌈
z′ij
aijk

⌉}}
, q′i = min

{
qi, max

k

{⌊
z′ij
aijk

⌋
,

⌊
z′ij
aijk

⌋}}

C Models and Computational Experiments

We formulate integrated models for the five examples described in sections 6 through 9 of the main
paper. We solve them with SIMPL version 0.08.22 and compare its performance to the reported
performance of previously implemented integrated methods. When applicable, we also formulate
and solve the corresponding MILP and global optimization models with CPLEX 11.0.0 (CPLEX
11, for short) and BARON version 7.2.5, respectively. We also use CPLEX 9.0.0 (CPLEX 9, for
short) for comparison purposes in some of our experiments.

We report both the number of search nodes and the computation time. Since SIMPL is still a
research code, the node count may be a better indication of performance at the present stage of
development. The amount of time SIMPL spends per node can be reduced by optimizing the code,
whereas the node count is more a function of the underlying algorithm. Even though the focus
of this paper is not to show that integrated approaches can outperform traditional optimization
approaches, we note that SIMPL requires less time, as well as fewer nodes, than current technology
on three of the five problem classes studied here.
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Unless indicated otherwise, all the experiments reported in this section have been run on a
Pentium 4, 3.7 GHz with 4GB of RAM, running Ubuntu 8.04 with Linux kernel 2.6.24-19. We used
CPLEX 11 as the LP solver and ECLiPSe 5.8.103 as the CP solver in SIMPL. For simplicity, when
showing the SIMPL code of each model we omit the data and variable declaration statements.

C.1 Production Planning

The SIMPL code that corresponds to the integrated model (3) of the production planning problem
is shown below.

01. OBJECTIVE
02. maximize sum i of u[i]
03. CONSTRAINTS
04. capacity means {
05. sum i of x[i] <= C
06. relaxation = { lp, cp } }
07. piecewisectr means {
08. piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i
09. relaxation = { lp, cp } }
10. SEARCH
11. type = { bb:bestdive }
12. branching = { piecewisectr:most }

Lines 06 and 09 of the above code tell SIMPL that those constraints should be posted to both
the linear programming (lp) and constraint programming (cp) relaxations/solvers. Recall that the
linear programming relaxation of the ith piecewise constraint is the collection of inequalities on xi

and ui that define the convex hull of their feasible values in the current state of the search. Line
11 indicates that we use branch-and-bound (bb), select the current active node with the best lower
bound, and dive from it until we reach a leaf node (keyword bestdive). Finally, in line 12 we
say that the branching strategy is to branch on the piecewise constraint with the largest degree
of violation (keyword most). The amount of violation is calculated by measuring how far the LP
relaxation values of xi and ui are from the closest linear piece of the function. That is, we measure
the rectilinear distance between the point (xi, ui) and the current convex hull of piecewise.

We ran the integrated model over 28 randomly generated instances with the number of products
n ranging from 5 to 600. Similar problems were solved by Ottosson, Thorsteinsson and Hooker
(1999, 2002), but their models had a few additional constraints and their piecewise linear functions
were continuous. We did not use their original instances because we wanted to experiment with
a more challenging version of the problem (including discontinuous functions and more products).
The performance of their implementation was comparable to the best MILP results at that time,
whereas our implementation is superior to the MILP approach. In all instances, products have the
same cost structure with five production modes. For the purpose of reducing symmetry, the model
also includes constraints of the form xi ≤ xi+1 for all i ∈ {1, . . . , n− 1}.

The number of search nodes and CPU time (in seconds) required to solve the instances to
optimality are shown in Table 2. For reference, we also include results obtained with the pure MILP
model (2) with the above symmetry breaking constraints. As the number of products increases,
the number of search nodes required by the integrated approach can be 1000 to 8000 times smaller
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than the number of nodes required by the MILP approach. This problem used to be considerably
more challenging for previous versions of CPLEX, as shown by the columns under ”MILP (CPLEX
9)”. Nevertheless, it is also possible to find larger instances that are challenging for CPLEX 11. If
we change the LP solver in SIMPL from CPLEX 11 to CPLEX 9, the numbers under the SIMPL
columns in Table 2 do not change significantly. This indicates that the integrated models solved
with SIMPL are more robust than the MILP models.

C.2 Product Configuration

The product configuration problem of Section 7 can be coded in SIMPL as follows.

01. OBJECTIVE
02. minimize sum j of c[j]*v[j]
03. CONSTRAINTS
04. usage means {
05. v[j] = sum i of q[i]*a[i][j][t[i]] forall j
06. relaxation = { lp, cp }
07. inference = { knapsack } }
08. quantities means {
09. q[1] >= 1 => q[2] = 0
10. relaxation = { lp, cp } }
11. types means {
12. t[1] = 1 => t[2] in {1,2}
13. t[3] = 1 => (t[4] in {1,3} and t[5] in {1,3,4,6} and t[6] = 3 and

t[7] in {1,2})
14. relaxation = { lp, cp } }
15. SEARCH
16. type = { bb:bestdive }
17. branching = { quantities, t:most, q:least:triple, types:most }
18. inference = { q:redcost }

For our computational experiments, we used the ten hardest problem instances proposed by Thorsteins-
son and Ottosson (2001), which have 26 components, up to 30 types per component, and 8
attributes. According to Thorsteinsson and Ottosson (2001), these instances were generated to
“closely resemble” real-world instances. In addition, there are a few extra logical constraints on
the qi and ti variables, which are implemented in lines 08 through 14 above. These constraints are
also added to the MILP model (5).

For the usage constraints, note the variable subscript notation in line 05 and the statement that
tells it to infer integer knapsack cuts (as described in Section 7) in line 07 (this would be the default
behavior anyway). We define our branching strategy in line 17 as follows: we first try to branch on
the q-implication (quantities), then on the indomain constraints of the t variables (most violated
first), followed by the indomain constraints on the q variables (least violated first), and finally
on the implications on the t variables (types, most violated first). The indomain constraint of a
ti variable is violated if its domain is not a singleton and two or more of the corresponding qik

variables have a positive value in the LP relaxation (see Section 7 for the relationship between ti
and qik). When the element constraint (8) is relaxed, the qik variables are created and variable
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qi is marked as a variable that decomposes into those qik variables (see the convex hull relaxation
(9) in Section 7). In addition, variable ti is marked as the indexing variable responsible for that
decomposition and it saves a pointer to qi and the list of qik variables. Hence, when the indomain
constraint of ti is checked for violation as described above, it knows which qik variables to look
at. The keyword triple that appears after q:least in line 17 indicates that we branch on qi

as suggested by Thorsteinsson and Ottosson (2001): let q̄i be the closest integer to the fractional
value of qi in the current solution of the LP relaxation; we create up to three descendants of the
current node by adding each of the following constraints in turn (if possible): qi = q̄i, qi ≤ q̄i − 1
and qi ≥ q̄i + 1. Finally, the post-relaxation inference using reduced costs is turned on for the q
variables in line 18.

The number of search nodes and CPU time (in seconds) required to solve each of the ten in-
stances to optimality are shown in Table 3. This problem has become easy for recent versions of
CPLEX, but Thorsteinsson and Ottosson’s (2001) original implementation was orders of magni-
tude better than the CPLEX of the time, both in terms of number of nodes and time. SIMPL’s
search tree is, on average, about 10 times smaller than Thorsteinsson and Ottosson (2001) search
tree on the same problem instances. We therefore achieved our goal of replicating or improving
on the performance of the original hand-coded integrated method. When we compare SIMPL’s
performance to that of the most recent version of CPLEX, it ranges from comparable to an order
of magnitude slower. This is perhaps because SIMPL’s current implementation does not include
strong cutting plane algorithms, which make a difference at the root node for this problem. The
commercialization of MILP solvers has resulted in dramatic speedups, due to the resources invested
in software engineering. One might similarly expect commercialization of integrated solvers to re-
sult in significant improvements. Computational comparisons between a research implementation
of integrated methods and a commercial implementation of MILP should be viewed with this in
mind.

C.3 Parallel Machine Scheduling

We first describe the MILP model used by Jain and Grossmann (2001). Let the binary variable
xij be one if job j is assigned to machine i, and let the binary variable yjj′ be one if both j and j′

are assigned to the same machine and j finishes before j′ starts. In addition, let tj be the time at
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which job j starts. The MILP model is as follows.

min
∑
ij

cijxij

rj ≤ tj ≤ dj −
∑

i

pijxij , all j (a)∑
i

xij = 1, all j (b)

yjj′ + yj′j ≤ 1, all j′ > j (c)

yjj′ + yj′j + xij + xi′j′ ≤ 2, all j′ > j, i′ 6= i (d)

yjj′ + yj′j ≥ xij + xij′ − 1, all j′ > j, i (e)

tj′ ≥ tj +
∑

i

pijxij − U(1− yjj′), all j′ 6= j (f)∑
j

pijxij ≤ max
j
{dj} −min

j
{rj}, all i (g)

xij ∈ {0, 1}, yjj′ ∈ {0, 1} for all j′ 6= j

Constraint (a) defines lower and upper bounds on the start time of job j, and (b) makes sure
every job is assigned to some machine. Constraints (c) and (d) are logical cuts which significantly
reduce solution time. Constraint (e) defines a logical relationship between the assignment (x) and
sequencing (y) variables, and (f) ensures start times are consistent with the value of the sequencing
variables y (U =

∑
j maxi{pij}). Finally, (g) are valid cuts that tighten the linear relaxation of

the problem. There is also a continuous-time MILP model suggested by Türkay and Grossmann
(1996), but computational testing indicates that it is much harder to solve than the above (Hooker
2004).

We now describe the SIMPL code to implement the Benders decomposition approach of Section 8
(model (17)) when the master problem is given by (13), with (14) as the subproblem, and (15) as
the Benders cuts.

01. OBJECTIVE
02. min sum i,j of c[i][j] * x[i][j];
03. CONSTRAINTS
04. assign means {
05. sum i of x[i][j] = 1 forall j;
06. relaxation = { ip:master } }
07. xy means {
08. x[i][j] = 1 <=> y[j] = i forall i, j;
09. relaxation = { cp } }
10. tbounds means {
11. r[j] <= t[j] forall j;
12. t[j] <= d[j] - p[y[j]][j] forall j;
13. relaxation = { ip:master, cp } }
14. machinecap means {

7



15. cumulative({ t[j], p[i][j], 1 } forall j | x[i][j] = 1, 1) forall i;
16. relaxation = { cp:subproblem, ip:master }
17. inference = { feasibility } }
18. SEARCH
19. type = { benders }

The keywords ip:master that appear in the relaxation statements in lines 06, 13 and 16 indi-
cate that those constraints are to be relaxed into an Integer Programming relaxation, which will
constitute the master problem. Constraints that have the word cp in their relaxation statements
will be posted to a CP relaxation and are common to all Benders subproblems. This is true for
the xy and tbounds constraints. For the machinecap constraints, the keywords cp:subproblem
in line 16, together with the forall i statement in line 15, indicate that, for each i, there will
be a different CP subproblem containing the corresponding cumulative constraint, in addition to
the common constraints mentioned above. Finally, we tell SIMPL that the cumulative constraints
should generate the feasibility-type Benders cuts (15) in line 17. Hence, when a subproblem turns
out to be infeasible, its cumulative constraint, which is aware of the jobs it was assigned to handle,
has all the information it needs to infer a cut that looks like (15).

For our computational experiments, we used the instances proposed by Jain and Grossmann (2001)
and, additionally, we followed their procedure to create three new instances with more than 20 jobs.
These are the last instance in Table 4 and the last two instances in Table 5. As was the case in
Section C.2, Jain and Grossmann (2001)’s instances were also generated to resemble real-world
instances.

Jain and Grossmann’s original implementation only needed a small number of master iter-
ations and a few seconds to solve these instances. The results we obtain with SIMPL match
this performance. Although state-of-the-art MILP solvers have considerably improved since Jain
and Grossmann’s results were published, the largest instances are still intractable with their pure
MILP model. In addition to being orders of magnitude faster in solving the smallest problems,
the integrated Benders approach can easily tackle larger instances as well. As noted by Jain and
Grossmann (2001), when processing times are shorter the problem tends to become easier, and we
report the results for shorter processing times in Table 5. Even in this case, the MILP model is
still much worse than the integrated Benders approach as the problem size grows. For instance,
after more than 27 million search nodes and a time limit of 48 hours of CPU time, the MILP
solver had found an integer solution with value 156 to the problem with 22 jobs and 5 machines,
whereas the optimal solution has value 155. As for the largest problem (25 jobs and 5 machines),
the MILP solver ran out of memory after 19 hours of CPU time and over 5 million search nodes,
having found a solution of value 182 (the optimal value is 179). It is worth mentioning that the
MILP formulations of these two problems only have 594 and 750 variables, respectively.
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C.4 Pooling, Distillation and Heat Exchanger Networks

We consider the following bilinear model from Floudas et al. (1999), which is often used for pooling,
distillation, and heat exchanger network problems:

min xT A0y + cT
0 x + dT

0 y

xT Aiy + cT
i x + dT

i y ≤ bi, i = 1, . . . , p

xT Aiy + cT
i x + dT

i y = bi, i = p + 1, . . . , p + q

x ∈ Rn, y ∈ Rm

(1)

where x and y are n- and m-dimensional variable vectors, respectively.
SIMPL replaces a nonlinear term of the form xiyj with a new variable zij and a metaconstraint

bilinear(xi,yj ,zij). This constraint enforces zij = xiyj and creates relaxations that are automatically
updated. The CP relaxation is the constraint itself, because CP solvers can propagate bilinear
constraints. A well-known linear relaxation is

Ljxi + Liyj − LiLj ≤ zij ≤ Ljxi + Uiyj − UiLj

Ujxi + Uiyj − UiUj ≤ zij ≤ Ujxi + Liyj − LiUj
(2)

where [Li, Ui] and [Lj , Uj ] are the current bounds on xi and yj , respectively. The search branches
on bilinear(xi,yj ,zij) if xiyi 6= zij when the variables are replaced by their values in the solution of
the current relaxation. Branching splits the domains of xi and/or yj , depending on a number of
conditions.

To demonstrate SIMPL’s ability to solve the bilinear global optimization problems, we selected
the 6 bilinear problems from chapter 5 of Floudas et al. (1999) that BARON was able to solve
in less than 24 hours. Problem names correspond to section numbers in that chapter. Problems
5.2.2.1, 5.2.2.2, 5.2.2.3, and 5.2.4 are pooling problems; problem 5.3.2 is a distillation problem; and
problem 5.4.2 is a heat exchanger network problem. For illustration purposes, we describe a SIMPL
model that could be used to model problem 5.2.2.1 (case 1 of section 5.2.2 in Floudas et al. 1999).
Models for the other problems would be very similar to this one.

01. OBJECTIVE
02. max 9*x + 15*y - 6*A - 16*B - 10*(Cx + Cy);
03. CONSTRAINTS
04. flow means {
05. Px + Py - A - B = 0;
06. x - Px - Cx = 0;
07. y - Py - Cy = 0;
08. relaxation = { lp, cp } }
09. pooling means {
10. p*Px + 2*Cx - 2.5*x <= 0;
11. p*Py + 2*Cy - 1.5*y <= 0;
12. p*Px + p*Py - 3*A - B = 0;
13. relaxation = { lp, cp } }
14. SEARCH
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15. type = { bb:bestdive }
16. branching = { pooling:most }
17. inference = { redcost }

If a non-linear programming solver is linked to SIMPL, line 13 could be changed to relaxation = {
lp, cp, nlp }. Because the CP solver can handle non-linear constraints directly, they are posted
to the CP relaxation as such, and ECLiPSe takes care of doing the proper bounds propagation (using
BARON’s terminology, this type of inference would be called feasibility-based range reduction).
Internally, the constraint in line 10 would be transformed into ZpPx + 2*Cx - 2.5*x <= 0 and
bilinear(p,Px,ZpPx); the constraint in line 11 would be transformed into ZpPy + 2*Cy - 1.5*y
<= 0 and bilinear(p,Py,ZpPy); and the constraint in line 12 would be transformed into the
linear constraint ZpPx + ZpPy - 3*A - B = 0, because its bilinear terms have appeared before
and there is no need for additional bilinear constraints. Branching is done on the most violated
of the bilinear metaconstraints, where the violation is measured by |xiyj−zij |. Line 17 tells SIMPL
to perform domain reduction based on reduced costs for all variables (using BARON’s terminology,
this type of inference would be called optimality-based range reduction).

Computational results appear in Table 6. For comparison purposes, we solved these problems
with both SIMPL and BARON version 7.2.5 (Tawarmalani and Sahinidis 2004). Because we ran
BARON on another machine (an IBM workstation with two 3.2 GHz Intel Xeon processors and 2.5
GB of RAM), the times reported in the BARON column of Table 6 cannot be directly compared with
the times reported for SIMPL. Even though BARON is a much more mature, stable and advanced
global optimization solver than SIMPL currently is, the results of Table 6 help to demonstrate that
SIMPL’s framework can also accommodate global optimization problems. As noted in Section 9,
what BARON does when solving a global optimization problem, known as Branch and Reduce, can
be interpreted as a special case of SIMPL’s search-infer-relax paradigm.

SIMPL’s implementation of global optimization still has a lot of room for improvement. In
addition to better memory management, these improvements include the use of more powerful
inference mechanisms (e.g. using lagrangian multipliers), support for other types of non-linear
constraints and, most importantly, strong pre-processing techniques and a local search mechanism
that help find good solutions early in the search, such as what BARON does. The next step is to
link a standalone non-linear solver to SIMPL, such as KNITRO (Byrd, Nocedal, and Waltz 2006)
or MINOS (Murtagh and Saunders 1983), which would increase the range of global optimization
problems that it can solve.

C.5 Truss Structure Design

We now describe the SIMPL model for (18). Note that constraints (d), (e) and (f) are part of the
variable declarations.

01. OBJECTIVE
02. maximize sum i of c[i]*h[i]*A[i]
03. CONSTRAINTS
04. equilibrium means {
05. sum i of b[i,j]*s[i,l] = p[j,l] forall j,l
06. relaxation = { lp } }
07. compatibility means {
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08. sum j of b[i,j]*d[j,l] = v[i,l] forall i,l
09. relaxation = { lp } }
10. hooke means {
11. E[i]/h[i]*A[i]*v[i,l] = s[i,l] forall i
12. relaxation = { lp:quasi } }
13. SEARCH
14. type = { bb:bestdive }
15. branching = { hooke:first:quasicut, A:splitup }

This model contains a few novel constructs. Internally, each constraint in line 11 will be transformed
into two constraints: E[i]/h[i]*z[i,l] = s[i,l] and bilinear(A[i],v[i,l],z[i,l]). The
lp:quasi statement creates a quasi-relaxation of the bilinear constraint and sends it to the LP
solver. This relaxation is volatile (i.e. it is updated whenever the lower and/or upper bounds on
Ai change) and consists of

vi` = vi0` + vi1`

Ai = AL
i yi + AU

i (1− yi)

zi` = AL
i vi0` + AU

i vi1`

vL
i yi ≤ vi0` ≤ vU

i yi

vL
i (1− yi) ≤ vi1` ≤ vU

i (1− yi)
yi ∈ [0, 1]

We first branch by looking for the first violation of the logic cuts (hooke:first:quasicut), and
then by choosing the first Ai that violates its indomain constraint. Following a recommendation
by Bollapragada, Ghattas and Hooker (2001), we turn off logic cuts when the problem has no
displacement bounds (i.e. when dL

j = −∞ and dU
j = ∞). When no logic cuts are found/enabled,

branching is performed on the Ai variables. The domain of the chosen Ai is split at the current
fractional value and we branch first on the upper (right) piece (splitup) (see Section 9). The
problem also includes the concept of equivalence classes (or linking groups), which are subsets of
bars that are supposed to have the same cross-sectional area. The choice of the Ai variable on
which to branch can be prioritized to scan the bars in non-increasing order of linking group size.
To do this, we can modify the A:splitup statement in line 15 to A:most(1,LinkSize):splitup.
Here, LinkSize is a vector of numbers (with the same dimension as the A vector). The number
1 indicates that the values in this vector are to be used as the first sorting criterion which, as a
consequence, makes the violation amount the second sorting criterion. This statement generalizes
to a larger number of criteria if we were to write, for example, A:most(1,C1,2,C2,4,C4). In this
last example, the A vector will be sorted with C1 as the first criterion, C2 as the second criterion,
the original violation as the third criterion (because the number 3 was omitted), and C4 as the
fourth criterion, in a lexicographical fashion.

For our computational experiments we used 12 instances from the literature (the same ones used
by Bollapragada, Ghattas and Hooker 2001). Eleven of them come from Venkayya (1971), and one
of them from Cai and Theirauf (1993). Table 7 shows the number of search nodes and CPU time
(in seconds) required to solve these problems with each of the following four approaches: solving
the MILP version of model (18) with CPLEX 11; solving the MINLP version of model (18) with
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BARON; using the original implementation of Bollapragada, Ghattas and Hooker (2001) (referred
to as BGH); and replicating the BGH approach with SIMPL. As in Section C.4, BARON was run
on an IBM workstation with two 3.2 GHz Intel Xeon processors and 2.5 GB of RAM. The other
three algorithms were run on the same machine as the other experiments in this paper. All runs
had a time limit of 24 CPU hours.

As the problem size increases, the standard global optimization approach (BARON column)
does not scale well and time becomes a factor. The MILP model solved by CPLEX tends to
get too large as the number of bars increases, and the solution time grows more quickly than in
the integrated approaches. It is worth noting that CPLEX found a solution of value 5096.99 for
instance 3, whereas BARON, BGH and SIMPL all found a solution of value 5156.64 (if we use
CPLEX version 9 instead of 11, the “optimal” solution it returns for instance 3 has value 5037.4).
Both BGH and SIMPL behave very similarly (as expected), with SIMPL having some advantage
on the larger instances. Surprisingly, even though SIMPL’s underlying code has considerably more
overhead than the BGH code (which was solely written for the purpose of solving the truss design
problem), SIMPL is only about two and a half times slower than BGH (on average, over the 12
instances) in terms of number of nodes processed per second.

For the 200-bar instance, in particular, neither BARON nor CPLEX were able to find a single
feasible solution within 24 hours of CPU time. Both BGH and SIMPL found a feasible (but not
provably optimal) solution in less than 24 hours, and the solution found by SIMPL (32700.25) was
slightly better than the one found by BGH (32747.58). Both codes processed about 1 node per
second in this particular instance.
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Table 2: Production planning: search nodes and CPU time.

Number of MILP (CPLEX 9) SIMPL (CPLEX 9) MILP (CPLEX 11) SIMPL (CPLEX 11)
Products Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)

5 93 0.03 16 0.02 45 0.03 20 0.02
10 423 0.12 50 0.05 198 0.08 41 0.06
15 1,321 0.34 36 0.08 265 0.19 51 0.10
20 4,573 1.14 67 0.15 652 0.64 38 0.14
25 5,105 2.43 44 0.18 660 0.78 47 0.20
30 4,504 2.10 79 0.39 375 0.44 61 0.34
35 6,089 3.30 34 0.28 550 0.79 34 0.29
40 7,973 4.06 68 0.44 592 1.29 69 0.44
45 23,414 14.72 39 0.36 746 1.44 34 0.41
50 18,795 9.45 44 0.42 677 2.39 45 0.43
55 46,349 34.60 48 0.52 679 2.14 40 0.50
60 99,606 55.07 141 1.33 767 1.78 99 1.14
65 43,759 39.85 92 1.53 784 2.86 101 1.42
70 103,470 98.77 41 0.74 899 2.56 54 0.82
75 76,540 84.54 106 2.10 698 3.61 84 1.79
80 78,479 60.82 47 1.05 865 4.55 59 1.25
85 143,457 185.11 197 2.94 1043 6.07 146 2.91
90 315,456 421.50 66 1.60 1043 6.22 69 1.69
95 345,724 503.95 164 3.36 1174 6.69 104 1.98
100 2,247,538 4,458.65 103 2.03 1229 4.40 137 2.75
300a 10,164 81.74 85 25.88 101,756 375.63 73 19.13
300b 43,242 700.78 111 41.09 128,333 372.39 58 18.74
400a 18,234 101.30 67 22.80 135,641 563.56 41 22.89
400b 44,941 221.80 58 26.55 160,972 659.96 72 31.77
500a 4,019 117.45 340 299.17 113,162 824.11 90 69.30
500b 10,862 307.60 295 64.64 186,952 1,068.97 81 64.21
600a 363,740 3,514.83 457 161.18 646,997 4,509.11 74 39.18
600b 7,732 213.59 85 39.61 1,297,071 9,416.08 214 130.55
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Table 3: Product configuration: search nodes and CPU time.

MILP (CPLEX 9) SIMPL (CPLEX 9) MILP (CPLEX 11) SIMPL (CPLEX 11)
Instance Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)

1 1 0.06 94 0.81 1 0.07 56 0.49
2 1 0.08 32 0.27 1 0.10 32 0.25
3 184 0.79 152 1.43 31 0.68 186 1.67
4 1 0.04 22 0.19 1 0.02 28 0.24
5 723 4.21 24 0.24 1 0.12 32 0.33
6 1 0.05 18 0.19 1 0.07 9 0.09
7 111 0.59 32 0.25 10 0.18 35 0.30
8 20 0.19 39 0.34 1 0.10 32 0.25
9 20 0.17 22 0.17 1 0.05 28 0.22
10 1 0.03 17 0.16 1 0.12 14 0.13

Table 4: Parallel machine scheduling: long processing times.

MILP (CPLEX 11) SIMPL Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.00 2 1 0.00
7 3 1 0.05 13 16 0.12
12 3 3,351 6.56 26 35 0.73
15 5 2,779 8.84 20 29 0.83
20 5 33,321 882.31 43 82 5.44
22 5 352,309 10,563.15 69 98 9.60

Table 5: Parallel machine scheduling: short processing times. An asterisk * means “out of memory”.

MILP (CPLEX 11) SIMPL Benders
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.01 1 0 0.00
7 3 1 0.02 1 0 0.00
12 3 499 0.98 1 0 0.01
15 5 529 2.63 2 1 0.06
20 5 250,047 396.19 6 5 0.28
22 5 > 27.5M > 48h 9 12 0.42
25 5 > 5.4M > 19h* 17 21 1.09
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Table 6: Bilinear global optimization: search nodes and CPU time. BARON and SIMPL were run
on different machines.

BARON SIMPL
Problem Variables Constraints Nodes Time (s) Nodes Time (s)
5.2.2.1 9 6 1 0.03 23 0.14
5.2.2.2 9 6 26 0.05 19 0.05
5.2.2.3 9 6 7 0.03 6 0.02
5.2.4 7 6 19 0.06 179 0.64
5.3.2 24 18 19 0.13 53 0.78
5.4.2 8 6 39 0.23 313 2.96

Table 7: Truss structure design: number of search nodes and CPU time (in seconds). Only CPLEX,
BGH and SIMPL were run on the same machine. ∗CPLEX’s solution to instance 3 is apparently
incorrect. †Instance 9 was run in SIMPL with depth-first search (like BGH).

BARON CPLEX 11 BGH SIMPL
Problem #Bars Nodes Time Nodes Time Nodes Time Nodes Time

1A 10 263 5.26 390 0.40 95 0.03 83 0.08
1B 10 175 3.83 106 0.26 81 0.02 73 0.07
1C 10 479 8.12 702 0.83 521 0.16 533 0.49
1D 10 518 8.76 1,320 1.17 719 0.22 726 0.63
2 10 449 24.28 2,977 4.86 841 0.64 1,028 1.84
3 10 11,354 327.19 403,683∗ 146.14∗ 517,255 144.67 94,269 64.75
4 10 34,662 2,067.43 678,471 1,086.72 1,088,955 600.09 508,816 650.71
5 25 3,190 3,301.62 3,739 43.65 11,351 44.09 2,401 20.23
6 72 291 3,375.93 1,962 207.81 665 33.01 489 27.93
7 90 782 21,610.86 2,376 576.46 1,889 130.86 826 92.47
8 108 no sol. > 24h 14,966 3,208.38 9,809 1,996.87 8,485 1,719.99
9 200 no sol. > 24h no sol. > 24h feasible > 24h feasible > 24h

cost = 32747.58 cost = 32700.25†
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