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The traveling umpire problem (TUP) consists of determining which games will be handled 
by each one of several umpire crews during a double round-robin tournament. The 
objective is to minimize the total distance traveled by the umpires, while respecting 
constraints that include visiting every team at home, and not seeing a team or venue 
too often. Even small instances of the TUP are very difficult to solve, and several exact 
and heuristic approaches for it have been proposed in the literature. To this date, however, 
no formal proof of the TUP’s computational complexity exists. We prove that the decision 
version of the TUP is NP-complete for certain values of its input parameters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The traveling umpire problem (TUP) consists of determining which games will be handled by each one of n umpire 
crews during a double round-robin tournament with 2n teams. The objective is to minimize the total distance traveled by 
the umpires, while respecting constraints that include visiting every team at home, and not seeing a team or venue too 
often throughout the season. The TUP was created as an abstraction of the real-life umpire scheduling problem faced by 
Major League Baseball in an attempt to isolate the few features that make the problem difficult to solve (see [1]). Since it 
was first introduced, several papers have proposed exact and heuristic approaches to tackle the TUP, such as [1–6]. Despite 
the steady progress in solving progressively larger instances of the problem, empirical evidence shows that the TUP is still a 
very difficult problem to solve. According to the official TUP benchmark set [7], no instances with more than 10 teams have 
known optimal solutions.

On the theoretical side, however, the TUP has attracted far less attention. To this date, no formal proof of the TUP’s 
computational complexity exists, and this is the focus of our paper. We are concerned with the decision version of the TUP, 
as defined below.

Definition 1. Given a double round-robin tournament T with 2n teams, the distance dij between the home venues of any 
two teams i and j, two non-negative integers d1 ≤ n − 1 and d2 ≤ �n/2� − 1, and a non-negative number �, the decision 
version of the TUP consists of determining whether or not there exists an assignment of n umpire crews (umpires, for short) 
to the games of T that satisfies all of the following conditions:
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U8,0

Rounds

0 1 2 3 4 5 6

(0, 7) (1, 7) (2, 7) (3, 7) (4, 7) (5, 7) (6, 7)
(1, 6) (2, 0) (3, 1) (4, 2) (5, 3) (6, 4) (0, 5)
(2, 5) (3, 6) (4, 0) (5, 1) (6, 2) (0, 3) (1, 4)
(3, 4) (4, 5) (5, 6) (6, 0) (0, 1) (1, 2) (2, 3)

U8,8

Rounds

0 1 2 3 4 5 6

(8, 15) (9, 15) (10, 15) (11, 15) (12, 15) (13, 15) (14, 15)
(9, 14) (10, 8) (11, 9) (12, 10) (13, 11) (14, 12) (8, 13)
(10, 13) (11, 14) (12, 8) (13, 9) (14, 10) (8, 11) (9, 12)
(11, 12) (12, 13) (13, 14) (14, 8) (8, 9) (9, 10) (10, 11)

U8,16

Rounds

0 1 2 3 4 5 6

(16, 23) (17, 23) (18, 23) (19, 23) (20, 23) (21, 23) (22, 23)
(17, 22) (18, 16) (19, 17) (20, 18) (21, 19) (22, 20) (16, 21)
(18, 21) (19, 22) (20, 16) (21, 17) (22, 18) (16, 19) (17, 20)
(19, 20) (20, 21) (21, 22) (22, 16) (16, 17) (17, 18) (18, 19)

U8,24

Rounds

0 1 2 3 4 5 6

(24, 31) (25, 31) (26, 31) (27, 31) (28, 31) (29, 31) (30, 31)
(25, 30) (26, 24) (27, 25) (28, 26) (29, 27) (30, 28) (24, 29)
(26, 29) (27, 30) (28, 24) (29, 25) (30, 26) (24, 27) (25, 28)
(27, 28) (28, 29) (29, 30) (30, 24) (24, 25) (25, 26) (26, 27)

Fig. 1. Tournaments U8,0, U8,8, U8,16, and U8,24.

(i) In every round of T , each umpire is assigned to exactly one game, and each game is assigned to exactly one umpire;
(ii) Each umpire visits the home venue of every team at least once;

(iii) No umpire visits a venue more than once in any sequence of n − d1 consecutive rounds;
(iv) No umpire sees a team more than once in any sequence of �n/2� − d2 consecutive rounds;
(v) The total distance traveled by the n umpires during T is less than or equal to �.

Our main contribution is to prove that the decision version of the TUP is an NP-complete problem when d1 ≤ n/2 and 
d2 = �n/2� − 1.

The remainder of this paper is organized as follows. Section 2 introduces some notation used throughout the paper and 
establishes a few preliminary results. Section 3 presents an NP-complete problem that can be reduced to the TUP, followed 
by the proof of our main result. Finally, we conclude the paper and propose future research directions in Section 4.

2. Notation and preliminary results

In this section we introduce some notation that will be used in our main result and prove a number of auxiliary results.
Let T be a tournament with 2n teams and m rounds. Then, T can be defined as a sequence of sets of ordered pairs 

by writing T = S0, S1, . . . , Sm−1, where Ss contains the games that take place in the (s + 1)-th round.1 We assume that 
the first team in each ordered pair is the home team. Let C = {(i0, j0), (i1, j1), . . . , (iv−1, jv−1)} be a set with v ordered 
pairs. We denote by C the set obtained from C by reversing the order of the elements in each ordered pair in C . Therefore, 
C = {( j0, i0), ( j1, i1), . . . , ( jv−1, iv−1)}. Using this notation, the reversal of the home venues of T can be denoted by T =
S0, S1, . . . , Sm−1. In other words, for every pair of teams i and j, if i plays at home against j in round s of T , then j plays 
at home against i in round s of T .

A single (double) round-robin tournament is a tournament in which each team plays against each other team exactly 
once (twice: once at each team’s home venue). Eqs. (1)–(3) define a constructive way of creating a single round-robin 
tournament Ua,b with an even number of teams a ≥ 2, a − 1 rounds, and team IDs ranging from b to b + a − 1:

Ua,b = Ua,b[0,a − 2], (1)

Ua,b[s1, s2] = Q a,b[s1], Q a,b[s1 + 1], ..., Q a,b[s2], ∀0 ≤ s1 ≤ s2 ≤ a − 2, (2)

Q a,b[s] = {(
b + (

s mod (a − 1)
)
,b + a − 1

)
,

(
b + (

(s + 1) mod (a − 1)
)
,b + (

(s + a − 2) mod (a − 1)
))

,

(
b + (

(s + 2) mod (a − 1)
)
,b + (

(s + a − 3) mod (a − 1)
))

,

...

(
b + (

(s + a/2 − 1) mod (a − 1)
)
,b + (

(s + a − a/2) mod (a − 1)
))}

, ∀0 ≤ s ≤ a − 2. (3)

This algebraic definition results in a method equivalent to the well-known circle/polygon method, also known in literature as 
Kirkman’s method, which was first introduced in [8]. Fig. 1 illustrates four 8-team Ua,b tournaments, and Lemma 1 asserts 
the correctness of (1)–(3).

1 Although we use round indices starting at zero, we avoid referring to round 0 as the zero-th round. Hence, S0 is the first round, S1 is the second 
round, and so on. The same applies to other ordinal indices throughout the paper.
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Lemma 1. Given an even number of teams a ≥ 2 with IDs represented by consecutive numbers starting at b ≥ 0, Ua,b is a single 
round-robin tournament among those teams.

Proof. See [9]. �
In addition to U , we now define another kind of tournament denoted by P . Later on, we will combine U and P tourna-

ments of different sizes to create a large double round-robin tournament that will form the basis of our main proof.
Eqs. (4)–(6) define a tournament Pa,b with a > 0 rounds and 2a teams with consecutive IDs starting at b ≥ 0. The 

tournament is such that each one of the first a teams, namely b, . . . , b + a − 1, plays against each one of the next a teams, 
namely b + a, . . . , b + 2a − 1, exactly once. Moreover, teams b, . . . , b + a − 1 do not play against each other, and neither do 
teams b + a, . . . , b + 2a − 1.

Pa,b = Pa,b[0,a − 1], (4)

Pa,b[s1, s2] = Xa,b[s1], Xa,b[s1 + 1], ..., Xa,b[s2], ∀0 ≤ s1 ≤ s2 ≤ a − 1, (5)

Xa,b[s] = {(
b + 0,b + a + (s mod a)

)
,

(
b + 1,b + a + (

(s + 1) mod a
))

,

...
(
b + a − 1,b + a + (

(s + a − 1) mod a
))}

, ∀0 ≤ s ≤ a − 1. (6)

Note that every team plays exactly once in each round of a Pa,b tournament. Fig. 2 presents three examples of Pa,b tourna-
ments, two with eight teams and one with sixteen teams. The notation Pa,b[s1, s2] from (5) is used to represent the stretch 
of a Pa,b tournament that extends from round s1 to round s2.

We are now ready to explain how U and P tournaments can be combined to produce a double round-robin tour-
nament T . We begin by defining three operations that apply to generic sequences of elements. Let A = A1, A2, ..., Ag
and B = B1, B2, ..., Bh be two sequences with g and h elements each. The concatenation operation A ⊕ B produces 
A1, A2, . . . , Ag, B1, B2, . . . , Bh . The interleaving operation A 	 B produces A1, B1, A2, B2, . . . , Ag, Bh when g = h, and pro-
duces A1, B1, A2, B2, . . . , Ah, Bh, Ah+1, Ah+2, . . . , Ag when g > h. (The case g < h works analogously.) Finally, when A and 
B are sequences of sets, the pairwise union operation A 
 B produces (A1 ∪ B1), (A2 ∪ B2), . . . , (Ag ∪ Bh) when g = h.

We combine tournaments Uk,0, U k,0, Uk,k , U k,k , Uk,2k , U k,2k , Uk,3k , U k,3k , Pk,0, Pk,0, Pk,2k , Pk,2k , P2k,0, and P 2k,0 to 
obtain a tournament T with 4k teams. Figs. 1 and 2 illustrate tournaments Uk,0, Uk,k , Uk,2k , Uk,3k , Pk,0, Pk,2k , and P2k,0
for k = 8. We omit illustrations of U k,0, U k,k , U k,2k , U k,3k , Pk,0, Pk,2k , and P 2k,0 because they are equal to the previous 
tournaments with home venues reversed. Tournament T is defined by (7)–(10). Fig. 3 shows all games of T for k = 8, while 
also indicating which term from (7)–(10) created the games underneath each stretch of rounds.

T1 = P 2k,0[0,k − 1] 	 (Uk,0 
 U k,k 
 Uk,2k 
 U k,3k), (7)

T2 = P 2k,0[k,2k − 1] 	 (Uk,0 
 Uk,k 
 Uk,2k 
 Uk,3k), (8)

T3 = (Pk,0 
 P k,2k) 	 (Pk,0 
 Pk,2k), (9)

T = T1 ⊕ P2k,0[0,k − 1] ⊕ T2 ⊕ P2k,0[k,2k − 1] ⊕ T3. (10)

Theorem 1. T is a double round-robin tournament.

Proof. By definition and Lemma 1, Uk,0 and Uk,k are single round-robin tournaments with different teams. Uk,0 
 Uk,k is a 
tournament with k − 1 rounds in which each pair of teams in the interval [0, k − 1] plays exactly once, as does each pair of 
teams in the interval [k, 2k − 1]. For this tournament to become a round-robin tournament we need the teams in [0, k − 1]
to play the teams in [k, 2k − 1] exactly once during an additional k rounds. But this is exactly what happens during the 
rounds defined by Pk,0. Therefore, (Uk,0 
Uk,k) ⊕ Pk,0 is a single round-robin tournament. Tournament (Uk,2k 
Uk,3k) ⊕ Pk,2k
corresponds to tournament (Uk,0 
 Uk,k) ⊕ Pk,0 with all team IDs increased by 2k. This means that (Uk,2k 
 Uk,3k) ⊕ Pk,2k
is also a single round-robin tournament, and all of its teams are different from the teams in (Uk,0 
 Uk,k) ⊕ Pk,0. We 
combine these two tournaments in a manner that is similar to the way Uk,0 and Uk,k were combined to obtain a larger 
single round-robin tournament. This way, the result of (((Uk,0 
 Uk,k) ⊕ Pk,0) 
 ((Uk,2k 
 Uk,3k) ⊕ Pk,2k)) ⊕ P2k,0 is a single 
round-robin tournament as well. Note that (((Uk,0 
 Uk,k) ⊕ Pk,0) 
 ((Uk,2k 
 Uk,3k) ⊕ Pk,2k)) ⊕ P2k,0 = (Uk,0 
 Uk,k 
 Uk,2k 

Uk,3k) ⊕ (Pk,0 
 Pk,2k) ⊕ P2k,0. To obtain a double round-robin tournament, we combine the latter tournament with a copy 
of itself that has the home venues reversed. In the resulting tournament, each team plays against every other team, once 
at home and once on the road. The result is (Uk,0 
 Uk,k 
 Uk,2k 
 Uk,3k) ⊕ (Pk,0 
 Pk,2k) ⊕ P2k,0 ⊕ (U k,0 
 U k,k 
 U k,2k 

U k,3k) ⊕ (Pk,0 
 Pk,2k) ⊕ P 2k,0. Finally, note that we can obtain T by simply rearranging the order of the rounds in this last 
tournament, which completes the proof. �
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5 6 7

6, 28) (16, 29) (16, 30) (16, 31)
7, 29) (17, 30) (17, 31) (17, 24)
8, 30) (18, 31) (18, 24) (18, 25)
9, 31) (19, 24) (19, 25) (19, 26)
0, 24) (20, 25) (20, 26) (20, 27)
1, 25) (21, 26) (21, 27) (21, 28)
2, 26) (22, 27) (22, 28) (22, 29)
3, 27) (23, 28) (23, 29) (23, 30)

12 13 14 15

(0, 28) (0, 29) (0, 30) (0, 31)
(1, 29) (1, 30) (1, 31) (1, 16)
(2, 30) (2, 31) (2, 16) (2, 17)
(3, 31) (3, 16) (3, 17) (3, 18)
(4, 16) (4, 17) (4, 18) (4, 19)
(5, 17) (5, 18) (5, 19) (5, 20)
(6, 18) (6, 19) (6, 20) (6, 21)
(7, 19) (7, 20) (7, 21) (7, 22)
(8, 20) (8, 21) (8, 22) (8, 23)
(9, 21) (9, 22) (9, 23) (9, 24)
(10, 22) (10, 23) (10, 24) (10, 25)
(11, 23) (11, 24) (11, 25) (11, 26)
(12, 24) (12, 25) (12, 26) (12, 27)
(13, 25) (13, 26) (13, 27) (13, 28)
(14, 26) (14, 27) (14, 28) (14, 29)
(15, 27) (15, 28) (15, 29) (15, 30)
P8,0

Rounds

0 1 2 3 4 5 6 7

(0, 8) (0, 9) (0, 10) (0, 11) (0, 12) (0, 13) (0, 14) (0, 15)
(1, 9) (1, 10) (1, 11) (1, 12) (1, 13) (1, 14) (1, 15) (1, 8)
(2, 10) (2, 11) (2, 12) (2, 13) (2, 14) (2, 15) (2, 8) (2, 9)
(3, 11) (3, 12) (3, 13) (3, 14) (3, 15) (3, 8) (3, 9) (3, 10)
(4, 12) (4, 13) (4, 14) (4, 15) (4, 8) (4, 9) (4, 10) (4, 11)
(5, 13) (5, 14) (5, 15) (5, 8) (5, 9) (5, 10) (5, 11) (5, 12)
(6, 14) (6, 15) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12) (6, 13)
(7, 15) (7, 8) (7, 9) (7, 10) (7, 11) (7, 12) (7, 13) (7, 14)

P8,16

Rounds

0 1 2 3 4

(16, 24) (16, 25) (16, 26) (16, 27) (1
(17, 25) (17, 26) (17, 27) (17, 28) (1
(18, 26) (18, 27) (18, 28) (18, 29) (1
(19, 27) (19, 28) (19, 29) (19, 30) (1
(20, 28) (20, 29) (20, 30) (20, 31) (2
(21, 29) (21, 30) (21, 31) (21, 24) (2
(22, 30) (22, 31) (22, 24) (22, 25) (2
(23, 31) (23, 24) (23, 25) (23, 26) (2

P16,0

Rounds

0 1 2 3 4 5 6 7 8 9 10 11

(0, 16) (0, 17) (0, 18) (0, 19) (0, 20) (0, 21) (0, 22) (0, 23) (0, 24) (0, 25) (0, 26) (0, 27)
(1, 17) (1, 18) (1, 19) (1, 20) (1, 21) (1, 22) (1, 23) (1, 24) (1, 25) (1, 26) (1, 27) (1, 28)
(2, 18) (2, 19) (2, 20) (2, 21) (2, 22) (2, 23) (2, 24) (2, 25) (2, 26) (2, 27) (2, 28) (2, 29)
(3, 19) (3, 20) (3, 21) (3, 22) (3, 23) (3, 24) (3, 25) (3, 26) (3, 27) (3, 28) (3, 29) (3, 30)
(4, 20) (4, 21) (4, 22) (4, 23) (4, 24) (4, 25) (4, 26) (4, 27) (4, 28) (4, 29) (4, 30) (4, 31)
(5, 21) (5, 22) (5, 23) (5, 24) (5, 25) (5, 26) (5, 27) (5, 28) (5, 29) (5, 30) (5, 31) (5, 16)
(6, 22) (6, 23) (6, 24) (6, 25) (6, 26) (6, 27) (6, 28) (6, 29) (6, 30) (6, 31) (6, 16) (6, 17)
(7, 23) (7, 24) (7, 25) (7, 26) (7, 27) (7, 28) (7, 29) (7, 30) (7, 31) (7, 16) (7, 17) (7, 18)
(8, 24) (8, 25) (8, 26) (8, 27) (8, 28) (8, 29) (8, 30) (8, 31) (8, 16) (8, 17) (8, 18) (8, 19)
(9, 25) (9, 26) (9, 27) (9, 28) (9, 29) (9, 30) (9, 31) (9, 16) (9, 17) (9, 18) (9, 19) (9, 20)
(10, 26) (10, 27) (10, 28) (10, 29) (10, 30) (10, 31) (10, 16) (10, 17) (10, 18) (10, 19) (10, 20) (10, 21)
(11, 27) (11, 28) (11, 29) (11, 30) (11, 31) (11, 16) (11, 17) (11, 18) (11, 19) (11, 20) (11, 21) (11, 22)
(12, 28) (12, 29) (12, 30) (12, 31) (12, 16) (12, 17) (12, 18) (12, 19) (12, 20) (12, 21) (12, 22) (12, 23)
(13, 29) (13, 30) (13, 31) (13, 16) (13, 17) (13, 18) (13, 19) (13, 20) (13, 21) (13, 22) (13, 23) (13, 24)
(14, 30) (14, 31) (14, 16) (14, 17) (14, 18) (14, 19) (14, 20) (14, 21) (14, 22) (14, 23) (14, 24) (14, 25)
(15, 31) (15, 16) (15, 17) (15, 18) (15, 19) (15, 20) (15, 21) (15, 22) (15, 23) (15, 24) (15, 25) (15, 26)

Fig. 2. Tournaments P8,0, P8,16, and P16,0.
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In Section 3 we use tournament T to create an instance of the TUP to which an instance of another NP-complete 
problem can be reduced in polynomial time.

3. Polynomial-time reduction

To show that the TUP is NP-complete, we show that the problem of determining whether or not there exists a hamilto-
nian circuit in a graph with an even number of vertices and at least one universal vertex (i.e. a vertex adjacent to all other 
vertices) is NP-complete, and then reduce this latter problem to the TUP in polynomial time.

Lemma 2. Deciding whether or not a graph with an even number of vertices and at least one universal vertex has a hamiltonian circuit 
is an NP-complete problem.

Proof. Deciding whether or not a general graph has a hamiltonian path is an NP-complete problem (see [10]). Let G =
(V , E) be a general graph and, therefore, an instance of the hamiltonian path problem. Starting from G we will construct, 
in polynomial time, a graph G ′ that is an instance of the problem described in this lemma. We first set G ′ = G and consider 
two cases:

Case 1: G has an odd number of vertices. Add a universal vertex p to G ′ , that is, p is a new vertex adjacent to all other 
vertices in G ′ . This takes O (|V |) time.

Case 2: G has an even number of vertices. Add four new vertices to G ′: p, q, r, and s. Make p and q universal vertices 
(adjacent to each other, as well as r and s), and add an edge between r and s in G ′ . This also takes O (|V |) time.

(⇒) If G has a hamiltonian path, this path is also in G ′ . In Case 1, by connecting both endpoints of this path to p we 
create a hamiltonian circuit in G ′ . In Case 2, we create a hamiltonian circuit in G ′ as follows: connect one of the endpoints 
of the hamiltonian path to p, connect p to s, s to r, r to q, and finally connect q to the other endpoint of the path.

(⇐) Assume G ′ has a hamiltonian circuit. In Case 1, we simply remove p from the circuit to obtain a hamiltonian path 
in G . In Case 2, the only way to reach vertices r and s is via p and q. This means that any hamiltonian circuit in G ′ goes 
through p (or q), immediately followed by r and s (in any order), and then goes through q (or p). Hence, by removing p, q, 
r, and s from the hamiltonian circuit in G ′ we end up with a hamiltonian path in G . �

We now show how to convert, in polynomial time, an instance of the decision problem of Lemma 2 into an instance of 
the TUP with d1 ≤ n/2 and d2 = �n/2� − 1.

Definition 2. Given a graph G with an even number of vertices k ≥ 4 and at least one universal vertex, we define a TUP 
instance I(G) as follows. Its tournament T is the 4k-team tournament defined by (7)–(10) in which we create a one-to-one 
correspondence between teams 0, . . . , k − 1 and the vertices of G . The number of umpires is n = 2k, 0 ≤ d1 ≤ n/2, and 
d2 = �n/2� − 1. Finally, for each pair of teams i and j, dij = 0 if 0 ≤ i, j ≤ k − 1 and the vertices corresponding to teams i
and j are adjacent in G . Otherwise, dij = 1.

Theorem 2. Let G be a graph with an even number of vertices k ≥ 4 and at least one universal vertex. G has a hamiltonian circuit if, 
and only if, the TUP instance I(G) of Definition 2 has an optimal solution with total travel distance equal to n(4n − 3) − 2k(k − 1), 
where n = 2k is the number of umpires.

Before proving Theorem 2 we need to define two auxiliary numerical sequences and establish some of their key proper-
ties.

Given a positive integer a and three non-negative integers b, c, and d, let Za,b,c,d be the sequence defined as

Za,b,c,d = d + (b mod a),d + (
(b + 1) mod a

)
, ...,d + (

(b + c − 1) mod a
)
. (11)

Note that Za,b,c,d has length c and its numbers belong to the interval [d, d + a − 1], with the starting number being affected 
by the value of b. The sequence consists of consecutive integers up until the point when its largest possible number is 
reached, after which the next number is the smallest in the sequence. Therefore, if c ≤ a, all numbers in Za,b,c,d are different. 
Sequences defined by (11) have the following additional property.

Lemma 3. Given two sequences Za,b,c,d and Za+1,b,c+1,d, if c ≤ a and c + b ≤ 2a, the i-th number in Za,b,c,d occurs exactly once in 
Za+1,b,c+1,d, being either the i-th or the (i + 1)-th number of the latter sequence.

Proof. Consider sequences Za,0,2a,d = d, d + 1, . . . , d + a − 1, d, d + 1, . . . , d + a − 1 and Za+1,0,2a+1,d = d, d + 1, . . . , d + a −
1, d +a, d, d +1, . . . , d +a −1. The i-th number in Za,0,2a,d is equal to the i-th or (i +1)-th number in Za+1,0,2a+1,d . Requiring 
that c + b ≤ 2a implies that sequences Za,b,c,d and Za+1,b,c+1,d are, respectively, subsequences of Za,0,2a,d and Za+1,0,2a+1,d
that start at the b-th number of these latter sequences. Therefore, the i-th number in Za,b,c,d is equal to either the i-th or 
the (i + 1)-th number in Za+1,b,c+1,d . In addition, because c + 1 ≤ a + 1, all numbers in Za+1,b,c+1,d are different, implying 
that the i-th number in Za,b,c,d occurs exactly once in Za+1,b,c+1,d . �
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Our second auxiliary numerical sequence Ya,b,c,d,e is defined by (12)–(14), where a ≥ 4 is an even positive integer, b, c, 
d, and e are non-negative integers, and 0 ≤ b ≤ a/2 − 1.

Ya,b,c,d,e = (c,d) ⊕ Za−1,a+b,a−2b−3,e, if b = 0, (12)

Ya,b,c,d,e = Za−1,a−b−1,2b,e ⊕ (c,d) ⊕ Za−1,a+b,a−2b−3,e, if 1 ≤ b ≤ a/2 − 2, (13)

Ya,b,c,d,e = Za−1,a−b−1,2b,e ⊕ (c), if b = a/2 − 1. (14)

The following two lemmas establish useful properties of Ya,b,c,d,e sequences.

Lemma 4. Let a ≥ 4 be an even integer, b, c, d, and e be non-negative integers, c �= d, and 0 ≤ b ≤ a/2 − 1. If c and d do not belong to 
the interval [e, e + a − 2], the numbers in Ya,b,c,d,e are all different.

Proof. Clearly, the permissible values for c and d do not appear in either Za−1,a−b−1,2b,e or Za−1,a+b,a−2b−3,e . Note 
that Za−1,a−b−1,a−2,e , whose numbers are all different since it has a − 2 elements, is equivalent to Za−1,a−b−1,2b,e ⊕
Za−1,a+b−1,1,e ⊕ Za−1,a+b,a−2b−3,e . Because Za−1,a−b−1,2b,e and Za−1,a+b,a−2b−3,e are subsequences of Za−1,a−b−1,a−2,e , they 
do not contain repeated numbers; neither within themselves nor between themselves. �
Lemma 5. Let a ≥ 4 be an even integer, and b, c, d, and e be non-negative integers. Given a non-negative integer i ≤ a − 2, the set 
consisting of the (i + 1)-th numbers in the Ya,b,c,d,e sequences obtained for each value of b ∈ {0, . . . , a/2 − 1} contains all of the 
numbers in the interval [e + ((i + a/2) mod (a − 1)), e + ((i + a − 2) mod (a − 1))]. This set also contains the number c when i is 
even, or the number d when i is odd. In addition, if neither c nor d belong to the interval [e, e + a − 2], the (i + 1)-th numbers in all of 
these Ya,b,c,d,e sequences are different.

Proof. By definition, the (i + 1)-th number in Ya,�i/2�,c,d,e is c when i is even, or d when i is odd. The (i + 1)-th number 
in each of the a/2 − 1 remaining Ya,b,c,d,e sequences (for b �= �i/2�) can be determined as follows. If i ≤ 1, the (i + 1)-th 
number in Ya,b,c,d,e for 1 ≤ b ≤ a/2 −1 is given by e +(((a −b −1) + i) mod (a −1)) because it is the (i +1)-th number in the 
Za−1,a−b−1,2b,e subsequence from (13) or (14). If i = a − 2, the (i + 1)-th number in Ya,b,c,d,e for 0 ≤ b ≤ a/2 − 2 is given by 
e + (((a + b) + i − (2b + 2)) mod (a − 1)) because it is the (i − (2b + 2) + 1)-th number in the Za−1,a+b,a−2b−3,e subsequence 
from (12) or (13). If 2 ≤ i ≤ a − 3, both of the previous cases can happen because the (i + 1)-th number in Ya,b,c,d,e , 
depending on the value of b, can be in the Za−1,a+b,a−2b−3,e subsequence from (12) or (13), or in the Za−1,a−b−1,2b,e
subsequence from (13) or (14). The (i + 1)-th number in Ya,b,c,d,e for 0 ≤ b ≤ �i/2� − 1 is given by e + (((a + b) + i − (2b +
2)) mod (a − 1)), whereas it is given by e + (((a − b − 1) + i) mod (a − 1)) for �i/2� + 1 ≤ b ≤ a/2 − 1. As we vary the value 
of b �= �i/2�, in decreasing order, for a fixed value of i as discussed above, we verify that the (i + 1)-th numbers obtained 
are all of the numbers in the interval [e + ((i +a/2) mod (a −1)), e + ((i +a −2) mod (a −1))]. Finally, note that this interval 
contains a/2 −1 distinct numbers which, from the statement of the lemma, include neither c nor d. Therefore, the (i +1)-th 
numbers from the a/2 sequences Ya,b,c,d,e are all different. �

We are now ready to prove Theorem 2.

Proof of Theorem 2. Because tournament T has 4n −2 rounds, any solution to I(G) has a total of n(4n −3) trips (n umpires, 
(4n − 3) trips each). From the definition of dij , trip distances are equal to either 0 or 1. For simplicity, we refer to them 
as 0-trips and 1-trips, respectively. Given the way the rounds of T are organized, 0-trips only occur between consecutive 
rounds in the intervals [2k − 1, 3k − 2] and [5k − 2, 6k − 3] because these are the only rounds that include games at the 
home venues of teams 0, . . . , k − 1. Because at most k 0-trips take place between consecutive rounds in each of those two 
intervals, there can be at most 2k(k − 1) 0-trips during the entire tournament. Therefore, any solution with a total distance 
of n(4n − 3) − 2k(k − 1) is optimal.

(⇐) By hypothesis, there exists a solution S to I(G) with total distance equal to n(4n − 3) − 2k(k − 1). This implies that 
k umpires in S go on 0-trips between each pair of consecutive rounds in the intervals [2k − 1, 3k − 2] and [5k − 2, 6k − 3]. 
Let u be the umpire who, in round 2k − 1, is at the home venue of a team associated with a universal vertex of G . If u does 
not go on a 0-trip from round 2k − 1 to round 2k, there cannot be k 0-trips between these rounds, since u is at one of the 
k venues where 0-trips can originate. As a consequence, in round 2k, u will again be at the home venue of a team in the 
interval [0, k − 1]. The previous argument can be re-applied as u travels from round 2k to round 2k + 1, and all the way to 
round 3k − 2: all of u’s trips are 0-trips from/to home venues of teams numbered between 0 and k − 1. Since d1 ≤ n/2, we 
have n −d1 ≥ n/2 = k. Because S is a feasible solution to the TUP, constraint (iii) implies that the k venues visited by u from 
round 2k − 1 to round 3k − 2 are all different. Therefore, the route traveled by u corresponds to a hamiltonian path in G . 
Moreover, because u’s starting venue in round 2k − 1 corresponds to a universal vertex, the endpoints of this hamiltonian 
path can be connected to form a hamiltonian circuit in G .

(⇒) By hypothesis, G has a hamiltonian circuit C = v0, v1, . . . , vk−1, v0, where each vi (i = 0, . . . , k − 1) is the ID of the 
team corresponding to that particular vertex in the circuit. Starting from C , we will create a solution S to the TUP instance 
I(G) with total travel distance equal to n(4n − 3) − 2k(k − 1). (Recall that the (i + 1)-th venue visited by an umpire is 
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reached in round i of T because round numbers start at zero.) For each umpire u ∈ {0, . . . , 2k − 1} the sequence of home 
venues visited by u in S is given by

(Zk,u,k,3k 	 Yk,u,k−1,3k−1,0) ⊕ Zk,u,k,k ⊕ (Zk,u,k,3k 	 Zk−1,u,k−1,2k) ⊕ Wu ⊕ (Zk,u+(k/2),k,k 	 Zk,u,k,2k),

∀0 ≤ u ≤ k/2 − 1, (15)

(Zk,u′,k,2k 	 Yk,u′,2k−1,4k−1,k) ⊕ Wu′ ⊕ (Zk,u′,k,2k 	 Zk−1,u′,k−1,3k) ⊕ Zk,u′,k,k ⊕ (Zk,u′,k,3k 	 Zk,u,k,0),

∀k/2 ≤ u ≤ k − 1, (16)

(Zk,u′,k,3k 	 Yk,u−k,3k−1,k−1,2k) ⊕ Zk,u′,k,k ⊕ (Zk,2k−u−1,k,2k 	 Zk−1,u−k,k−1,0) ⊕ Zk,u′,k,k ⊕ (Zk,u′,k,3k 	 Zk,u−k,k,0),

∀k ≤ u ≤ 3k/2 − 1, (17)

(Zk,u−k,k,2k 	 Yk,u′′,4k−1,2k−1,3k) ⊕ Wu−k ⊕ (Zk,k−u′′−1,k,3k 	 Zk−1,u′′,k−1,k) ⊕ Wu−k ⊕ (Zk,u′′,k,k 	 Zk,u−k,k,2k),

∀3k/2 ≤ u ≤ 2k − 1, (18)

where u′ = u − k/2, u′′ = u − 3k/2, and Wa = v(a mod k), v((a+1) mod k), . . . , v((a+k−1) mod k) for 0 ≤ a ≤ k − 1. Fig. 4 illustrates 
S when k = 8 and C = 0, 1, 2, 3, 4, 5, 6, 7, 0, with each relevant subsequence from (15)–(18) specified above the venues 
visited by the corresponding umpires.

We now show that S is a feasible solution to instance I(G) with total travel distance equal to n(4n − 3) − 2k(k − 1). We 
do not need to worry about constraint (iv) because d2 = �n/2� − 1 implies that it is trivially satisfied.

Constraint (i) is satisfied by S if, for each round of T , the home venue of each game is assigned to a different umpire by 
(15)–(18). This requires that we match the home venues from the definition of T in (7)–(10) with the home venues from 
(15)–(18). To simplify this task, we create Table 1 in which the rounds of T are conveniently separated into groups. For 
each group, it shows the sub-tournaments in (7)–(10) that determine the venues where the games take place. Table 1 also 
presents the umpires assigned to each home venue, as well as the subsequences in (15)–(18) that define these assignments. 
In the ensuing discussion, we refer to Table 1 to demonstrate, based on the definitions of U , U , P , P , W , Y , and Z , that the 
assignments of umpires to home venues made by S agree with the games of T .

The home venues in the (i + 1)-th rounds of U k,b are b + ((i + k/2) mod (k − 1)), . . . , b + ((i + k − 2) mod (k − 1))

and b + k − 1, for 0 ≤ i ≤ k − 2. Lemma 5 guarantees that, for 0 ≤ b ≤ k/2 − 1, the (i + 1)-th home venues in Yk,b,c,d,e
are e + ((i + k/2) mod (k − 1)), . . . , e + ((i + k − 2) mod (k − 1)) and c, if i is even, or d otherwise. Based on these two 
observations we can see that, during rounds 1, 3, . . . , 2k − 3, the home venues in Uk,0 and Uk,2k are correctly assigned 
by Yk,u,k−1,3k−1,0 in (15) and by Yk,u−k,3k−1,k−1,2k in (17). Likewise, the home venues in Uk,k and Uk,3k are also properly 
assigned by Yk,u′,2k−1,4k−1,k in (16) and by Yk,u′′,4k−1,2k−1,3k in (18).

Analogously, the home venues in the (i + 1)-th rounds of Uk,b are b + (i mod (k − 1)), . . . , b + ((i +k/2 − 1) mod (k − 1)), 
for 0 ≤ i ≤ k − 2, whereas the (i + 1)-th venues in Zk−1,b,k−1,d are d + (i mod (k − 1)), . . . , d + ((i +k/2 − 1) mod (k − 1)), for 
0 ≤ b ≤ k/2 − 1. Therefore, during rounds 3k, 3k + 2, . . . , 5k − 4, the home venues in Uk,0, Uk,k , Uk,2k , and Uk,3k are correctly 
assigned by Zk−1,u−k,k−1,0, Zk−1,u′′,k−1,k , Zk−1,u,k−1,2k , and Zk−1,u′,k−1,3k , respectively. These latter sequences in turn being 
defined by (17), (18), (15), and (16), respectively.

To complete this part of the proof, we only need to verify the venue assignments for rounds defined by P and P . The 
home venues of any round in Pa,b and P a,b are, respectively, b, . . . , b + a − 1 and b + a, . . . , b + 2a − 1. The (i + 1)-th home 
venues in Wa , for 0 ≤ a, i ≤ k − 1, are 0, . . . , k − 1, whereas the (i + 1)-th home venues in Zk,b,k,d , for 0 ≤ b ≤ k − 1, are 
d + (i mod k), . . . , d + ((i + k − 1) mod k), which simplify to d, . . . , d + k − 1. These observations allow us to conclude that 
the venue assignments for the above rounds are correctly made by the W and Z sequences in Table 1. For example, during 
rounds 0, 2, . . . , 2k −2, whose games are defined by P 2k,0[0, k −1], the home venues 2k, . . . , 3k −1 are assigned by Zk,u′,k,2k
in (16), and by Zk,u−k,k,2k in (18), whereas venues 3k, . . . , 4k − 1 are assigned by Zk,u,k,3k in (15), and by Zk,u′,k,3k in (17). 
The assignments in the remaining rounds can be verified in a similar manner, which completes the argument that S satisfies 
constraint (i).

Sequences Zk,u,k,3k , Zk,u,k,k , Wu , and Zk,u,k,2k in (15), Zk,u′,k,2k , Wu′ , Zk,u′,k,k , and Zk,u′,k,3k in (16), Zk,u′,k,3k , Zk,u′,k,k , 
Zk,2k−u−1,k,2k , and Zk,u−k,k,0 in (17), Zk,u−k,k,2k , Wu−k , Zk,k−u′′−1,k,3k , and Zk,u′′,k,k in (18) guarantee that each umpire visits 
the home venue of every team in T at least once. Therefore, S also satisfies constraint (ii).

Constraint (iii) is satisfied if all venues visited by a given umpire during any n − d1 consecutive rounds are different. We 
will show that S satisfies (iii) for d1 = 0 because this implies that it satisfies (iii) for any 0 ≤ d1 ≤ n/2. In terms of k, this is 
equivalent to saying that no umpire visits a venue more than once in any stretch of 2k rounds.

Sequences W , Y (see Lemma 4), and Z in (15)–(18) individually consist of different venues and, therefore, respect (iii). 
If two sequences in (15)–(18) are separated by 2k − 1 rounds or more, no venue that appears in both of them can appear 
twice within a stretch of 2k consecutive rounds. Therefore, they clearly satisfy (iii). When two sequences are separated by 
fewer than 2k − 1 rounds but consist of venues that are all different from each other, they satisfy (iii) as well. Hence, we 
focus on the sequences in (15)–(18) that are separated by fewer than 2k − 1 rounds and have venues in common.

During rounds 0, 2, . . . , 2k − 2, umpires 0, . . . , k/2 − 1 travel through the venues of Zk,u,k,3k in (15), and umpires 
k/2, . . . , k − 1 travel through the venues of Zk,u′,k,2k in (16). Each of these umpires visits the same sequence of venues 
again during rounds 3k − 1, 3k + 1, . . . , 5k − 3. This means that a venue visited during rounds 0, 2, . . . , 2k − 2 will only 
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Umpire Rounds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(Z8,u,8,24 	 Y8,u,7,23,0) Z8,u,8,8

0 24 7 25 23 26 1 27 2 28 3 29 4 30 5 31 8 9 10 11 12 13 14 15
1 25 6 26 0 27 7 28 23 29 2 30 3 31 4 24 9 10 11 12 13 14 15 8
2 26 5 27 6 28 0 29 1 30 7 31 23 24 3 25 10 11 12 13 14 15 8 9
3 27 4 28 5 29 6 30 0 31 1 24 2 25 7 26 11 12 13 14 15 8 9 10

(Z8,u′,8,16 	 Y8,u′,15,31,8) Wu′

4 16 15 17 31 18 9 19 10 20 11 21 12 22 13 23 0 1 2 3 4 5 6 7
5 17 14 18 8 19 15 20 31 21 10 22 11 23 12 16 1 2 3 4 5 6 7 0
6 18 13 19 14 20 8 21 9 22 15 23 31 16 11 17 2 3 4 5 6 7 0 1
7 19 12 20 13 21 14 22 8 23 9 16 10 17 15 18 3 4 5 6 7 0 1 2

(Z8,u′,8,24 	 Y8,u−8,23,7,16) Z8,u′,8,8

8 28 23 29 7 30 17 31 18 24 19 25 20 26 21 27 12 13 14 15 8 9 10 11
9 29 22 30 16 31 23 24 7 25 18 26 19 27 20 28 13 14 15 8 9 10 11 12
10 30 21 31 22 24 16 25 17 26 23 27 7 28 19 29 14 15 8 9 10 11 12 13
11 31 20 24 21 25 22 26 16 27 17 28 18 29 23 30 15 8 9 10 11 12 13 14

(Z8,u−8,8,16 	 Y8,u′′,31,15,24) Wu−8

12 20 31 21 15 22 25 23 26 16 27 17 28 18 29 19 4 5 6 7 0 1 2 3
13 21 30 22 24 23 31 16 15 17 26 18 27 19 28 20 5 6 7 0 1 2 3 4
14 22 29 23 30 16 24 17 25 18 31 19 15 20 27 21 6 7 0 1 2 3 4 5
15 23 28 16 29 17 30 18 24 19 25 20 26 21 31 22 7 0 1 2 3 4 5 6

Umpire Rounds

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

(Z8,u,8,24 	 Z7,u,7,16)

0 24 16 25 17 26 18 27 19 28 20 29 21 30 22 31
1 25 17 26 18 27 19 28 20 29 21 30 22 31 16 24
2 26 18 27 19 28 20 29 21 30 22 31 16 24 17 25
3 27 19 28 20 29 21 30 22 31 16 24 17 25 18 26

(Z8,u′,8,16 	 Z7,u′,7,24)

4 16 24 17 25 18 26 19 27 20 28 21 29 22 30 23
5 17 25 18 26 19 27 20 28 21 29 22 30 23 24 16
6 18 26 19 27 20 28 21 29 22 30 23 24 16 25 17
7 19 27 20 28 21 29 22 30 23 24 16 25 17 26 18

(Z8,15−u,8,16 	 Z7,u−8,7,0)

8 23 0 16 1 17 2 18 3 19 4 20 5 21 6 22
9 22 1 23 2 16 3 17 4 18 5 19 6 20 0 21
10 21 2 22 3 23 4 16 5 17 6 18 0 19 1 20
11 20 3 21 4 22 5 23 6 16 0 17 1 18 2 19

(Z8,7−u′′,8,24 	 Z7,u′′,7,8)

12 31 8 24 9 25 10 26 11 27 12 28 13 29 14 30
13 30 9 31 10 24 11 25 12 26 13 27 14 28 8 29
14 29 10 30 11 31 12 24 13 25 14 26 8 27 9 28
15 28 11 29 12 30 13 31 14 24 8 25 9 26 10 27

Umpire Rounds

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Wu (Z8,u+4,8,8 	 Z8,u,8,16)

0 0 1 2 3 4 5 6 7 12 16 13 17 14 18 15 19 8 20 9 21 10 22 11 23
1 1 2 3 4 5 6 7 0 13 17 14 18 15 19 8 20 9 21 10 22 11 23 12 16
2 2 3 4 5 6 7 0 1 14 18 15 19 8 20 9 21 10 22 11 23 12 16 13 17
3 3 4 5 6 7 0 1 2 15 19 8 20 9 21 10 22 11 23 12 16 13 17 14 18

Z8,u′,8,8 (Z8,u′,8,24 	 Z8,u,8,0)

4 8 9 10 11 12 13 14 15 24 4 25 5 26 6 27 7 28 0 29 1 30 2 31 3
5 9 10 11 12 13 14 15 8 25 5 26 6 27 7 28 0 29 1 30 2 31 3 24 4
6 10 11 12 13 14 15 8 9 26 6 27 7 28 0 29 1 30 2 31 3 24 4 25 5
7 11 12 13 14 15 8 9 10 27 7 28 0 29 1 30 2 31 3 24 4 25 5 26 6

Z8,u′,8,8 (Z8,u′,8,24 	 Z8,u−8,8,0)

8 12 13 14 15 8 9 10 11 28 0 29 1 30 2 31 3 24 4 25 5 26 6 27 7
9 13 14 15 8 9 10 11 12 29 1 30 2 31 3 24 4 25 5 26 6 27 7 28 0
10 14 15 8 9 10 11 12 13 30 2 31 3 24 4 25 5 26 6 27 7 28 0 29 1
11 15 8 9 10 11 12 13 14 31 3 24 4 25 5 26 6 27 7 28 0 29 1 30 2

Wu−8 (Z8,u′′,8,8 	 Z8,u−8,8,16)

12 4 5 6 7 0 1 2 3 8 20 9 21 10 22 11 23 12 16 13 17 14 18 15 19
13 5 6 7 0 1 2 3 4 9 21 10 22 11 23 12 16 13 17 14 18 15 19 8 20
14 6 7 0 1 2 3 4 5 10 22 11 23 12 16 13 17 14 18 15 19 8 20 9 21
15 7 0 1 2 3 4 5 6 11 23 12 16 13 17 14 18 15 19 8 20 9 21 10 22

Fig. 4. Solution S when k = 8 and C = 0,1,2,3,4,5,6,7,0. Total distance traveled = 864.
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Table 1
Assignment of home venues in T to the umpires in S .

Rounds Home venues in T Umpires Subsequence in S

0,2, . . . ,2k − 2 P 2k,0[0,k − 1] 0 . . .k/2 − 1 Zk,u,k,3k

k/2 . . .k − 1 Zk,u′,k,2k

k . . . 3k/2 − 1 Zk,u′,k,3k

3k/2 . . . 2k − 1 Zk,u−k,k,2k

1,3, . . . ,2k − 3 Uk,0 0 . . .k/2 − 1 Yk,u,k−1,3k−1,0

Uk,k k/2 . . .k − 1 Yk,u′,2k−1,4k−1,k

Uk,2k k . . . 3k/2 − 1 Yk,u−k,3k−1,k−1,2k

Uk,3k 3k/2 . . . 2k − 1 Yk,u′′,4k−1,2k−1,3k

2k − 1,2k, . . . ,3k − 2 P2k,0[0,k − 1] 0 . . .k/2 − 1 Zk,u,k,k

k/2 . . .k − 1 Wu′
k . . . 3k/2 − 1 Zk,u′,k,k

3k/2 . . . 2k − 1 Wu−k

3k − 1,3k + 1, . . . ,5k − 3 P 2k,0[k,2k − 1] 0 . . .k/2 − 1 Zk,u,k,3k

k/2 . . .k − 1 Zk,u′,k,2k

k . . . 3k/2 − 1 Zk,2k−u−1,k,2k

3k/2 . . . 2k − 1 Zk,k−u′′−1,k,3k

3k,3k + 2, . . . ,5k − 4 Uk,0 k . . . 3k/2 − 1 Zk−1,u−k,k−1,0
Uk,k 3k/2 . . . 2k − 1 Zk−1,u′′,k−1,k

Uk,2k 0 . . .k/2 − 1 Zk−1,u,k−1,2k

Uk,3k k/2 . . .k − 1 Zk−1,u′,k−1,3k

5k − 2,5k − 1, . . . ,6k − 3 P2k,0[k,2k − 1] 0 . . .k/2 − 1 Wu

k/2 . . .k − 1 Zk,u′,k,k

k . . . 3k/2 − 1 Zk,u′,k,k

3k/2 . . . 2k − 1 Wu−k

6k − 2,6k, . . . ,8k − 4 Pk,0 0 . . .k/2 − 1 Zk,u+k/2,k,k

3k/2 . . . 2k − 1 Zk,u′′,k,k

Pk,2k k/2 . . .k − 1 Zk,u′,k,3k

k . . . 3k/2 − 1 Zk,u′,k,3k

6k − 1,6k + 1, . . . ,8k − 3 Pk,0 k/2 . . .k − 1 Zk,u,k,0
k . . . 3k/2 − 1 Zk,u−k,k,0

Pk,2k 0 . . .k/2 − 1 Zk,u,k,2k

3k/2 . . . 2k − 1 Zk,u−k,k,2k

be visited again by the same umpire after 3k − 1 rounds. Analogously, the venues visited by all of the umpires in rounds 
3k, 3k + 2, . . . , 5k − 4 (sequences Zk−1,u,k−1,2k , Zk−1,u′,k−1,3k , Zk−1,u−k,k−1,0, and Zk−1,u′′,k−1,k in (15)–(18)) are visited again 
by umpires 0, . . . , k/2 − 1 and k − 1, . . . , 3k/2 in rounds 6k − 1, 6k + 1, . . . , 8k − 3 (sequences Zk,u,k,2k and Zk,u−k,k,0 in 
(15) and (17)), and by umpires k/2, . . . , k − 1 and 3k/2, . . . , 2k − 1 in rounds 6k − 2, 6k, . . . , 8k − 4 (sequences Zk,u′,k,3k and 
Zk,u′′,k,k in (16) and (18)). By Lemma 3, the i-th venue in the sequences visited by an umpire in rounds 3k, 3k +2, . . . , 5k −4
appears exactly once in the sequence visited by the same umpire in rounds 6k −2, 6k, . . . , 8k −4 or 6k −1, 6k +1, . . . , 8k −3, 
being the i-th or (i + 1)-th venue of the latter two sequences. Hence, the venues visited in rounds 3k, 3k + 2, . . . , 5k − 4 are 
only visited again by the same umpire after no fewer than 3k − 2 rounds.

We now look at sequences Yk,u−k,3k−1,k−1,2k and Zk,2k−u−1,k,2k in (17), which are traversed by umpires k, . . . , 3k/2 − 1
in rounds 1, 3, . . . , 2k − 3 and 3k − 1, 3k + 1, . . . , 5k − 3, respectively. Using (12)–(14) to generate Yk,u−k,3k−1,k−1,2k yields

Yk,u−k,3k−1,k−1,2k = (3k − 1,k − 1) ⊕ Zk−1,u,3k−2u−3,2k, if u = k, (19)

Yk,u−k,3k−1,k−1,2k = Zk−1,2k−u−1,2u−2k,2k ⊕ (3k − 1,k − 1) ⊕ Zk−1,u,3k−2u−3,2k, if k + 1 ≤ u ≤ 3k/2 − 2, (20)

Yk,u−k,3k−1,k−1,2k = Zk−1,2k−u−1,2u−2k,2k ⊕ (3k − 1), if u = 3k/2 − 1. (21)

First, note that venue k − 1 in Yk,u−k,3k−1,k−1,2k does not appear in Zk,2k−u−1,k,2k . Venue 3k − 1 appears in the (2(u − k) +
1)-th position in the Yk,u−k,3k−1,k−1,2k sequence assigned to umpire u. Therefore, u visits this venue in round 4(u − k) + 1. 
Given the definition of Zk,2k−u−1,k,2k , consider the equation 2k + ((2k − u − 1 + i) mod k) = 3k − 1 for 0 ≤ i ≤ k − 1. Since 
0 ≤ 2k − u − 1 ≤ k − 1 when k ≤ u ≤ 3k/2 − 1, this equation simplifies to (2k − u − 1 + i) = k − 1. Hence, we know that 
venue 3k − 1 occupies the ((u − k) + 1)-th position in the Zk,2k−u−1,k,2k sequence assigned to umpire u, which implies that 
u visits 3k − 1 in round 3k − 1 + 2(u − k) = 2u + k − 1. This implies that venue 3k − 1 is visited again by the same umpire 
u after 2u + k − 1 − (4(u − k) + 1) = 5k − 2u − 2 ≥ 2k rounds when 4 ≤ k ≤ u ≤ 3k/2 − 1.

Next, note that Zk,2k−u−1,k,2k = Zk,2k−u−1,2u−2k+1,2k ⊕ Zk,u,3k−2u−2,2k ⊕ Zk,3k−u−2,1,2k . Umpires k ≤ u ≤ 3k/2 − 2 visit the 
venues of Zk−1,u,3k−2u−3,2k in (19) and (20) during rounds 4(u −k) + 5, 4(u −k) + 7, . . . , 2k − 3, and visit these venues again 
in Zk,u,3k−2u−2,2k (a subsequence of Zk,2k−u−1,k,2k) during rounds 3k − 1 + 2(2u − 2k + 1) = 4u −k + 1, 4u −k + 3, . . . , 5k − 5. 
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Umpires k + 1 ≤ u ≤ 3k/2 − 1 visit the venues of Zk−1,2k−u−1,2u−2k,2k in (20) and (21) during rounds 1, 3, . . . , 4(u − k) − 1, 
and visit these venues again in Zk,2k−u−1,2u−2k+1,2k (a subsequence of Zk,2k−u−1,k,2k) during rounds 3k − 1, 3k + 1, . . . , 4u −
k − 1. Applying Lemma 3 to the two cases above, and considering sequences Zk−1,u,3k−2u−3,2k and Zk,u,3k−2u−2,2k , as well as 
Zk−1,2k−u−1,2u−2k,2k and Zk,2k−u−1,2u−2k+1,2k , we conclude that these umpires only return to the venues visited in rounds 
1, 3, . . . , 2k − 3 after at least 3k − 4 rounds.

The reasoning from the previous paragraph can be applied to sequences Yk,u′′,4k−1,2k−1,3k and Zk,k−u′′−1,k,3k in (18), be-
cause they are equivalent to Yk,u−k,3k−1,k−1,2k and Zk,2k−u−1,k,2k , respectively, with the venue IDs increased by k. Therefore, 
we conclude that all sequences in (15)–(18) that can have venues in common and are separated by fewer than 2k −1 rounds 
satisfy (iii), which implies that S is feasible.

All of the venues in W sequences have IDs in the interval [0, k − 1], and they appear in the same order that they do 
in the hamiltonian circuit C . Therefore, any two consecutive venues in a W sequence correspond to two adjacent vertices 
in G . As a consequence, the umpires that traverse these sequences go on k − 1 0-trips. In S , umpires k/2, . . . , k − 1 and 
3k/2, . . . , 2k −1 traverse sequences W u′ and Wu−k , respectively, in rounds 2k −1, . . . , 3k −2, whereas umpires 0, . . . , k/2 −1
and 3k/2, . . . , 2k − 1 traverse sequences W u and Wu−k , respectively, in rounds 5k − 2, . . . , 6k − 3. Hence, these umpires go 
on exactly 2k(k − 1) 0-trips. Because all of the remaining trips are 1-trips, the total distance traveled by the 2k umpires in S
is equal to n(4n − 3) − 2k(k − 1). �

Finding a feasible solution with a well-defined structure becomes very difficult when constraint (iv) is enforced with 
d2 < �n/2� − 1. Therefore, in the proof of NP-completeness (Theorem 2, (⇒) direction), we turn off constraint (iv) by 
setting d2 = �n/2� − 1 for the solution defined by (15)–(18) to be feasible. To see why, consider Figs. 3 and 4 together. The 
sequences of venues corresponding to the hamiltonian circuit C defined with W in (15), (16), and (18) do not always result 
in a solution satisfying (iv) if d2 < �n/2� − 1.

Corollary 1. The decision version of the TUP with d1 ≤ n/2 and d2 = �n/2� − 1 is an NP-complete problem.

Proof. This decision version of the TUP is clearly in NP . Instance I(G) of Definition 2 can be created in O (k2) time, and 
Theorems 1 and 2 show that the polynomial-time reduction of an NP-complete problem to this decision version of the 
TUP is correct. �
4. Conclusions and future work

Before this work, the complexity of the TUP was still open. We provide a formal proof that the decision version of 
the TUP is a computationally difficult problem. This result is not surprising given all the empirical evidence gathered from 
several papers that have attempted to tackle increasingly larger instances of this problem since it was first introduced 
in [2]. We hope this work will motivate other researchers to further advance the theory surrounding this and other sports 
scheduling problems, as well as encourage the development of new computational approaches to deal with them.

As future work, we intend to investigate an extension of the proof presented in this paper to show that the TUP remains 
NP-complete even when d1 = d2 = 0. We believe this to be true, but expect the proof to be significantly more elaborate. 
We also suspect that the problem of deciding whether or not a given TUP instance is feasible is NP -complete, as practical 
experience suggests. This is another research direction we are currently pursuing.
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