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The scheduling needs of umpires and referees differ from the needs of sports teams. In some sports leagues,
such as Major League Baseball in the United States, umpires travel throughout the league’s territory; they do
not have a “home base.” For such leagues, balancing the need to minimize umpire travel and the objective that
an umpire should not handle the games of a particular team too frequently is important. We have used our
approach, which is based on network optimization and simulated annealing, to successfully schedule Major
League Baseball umpires. To develop this approach, we created the traveling umpire problem, which includes
the major umpire scheduling issues and also provides a test bed for alternative techniques.
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Major League Baseball (MLB) comprises 30 teams
that play 2,430 games in 780 series during a

six-month season each year; a series is defined as a
sequence of two to four games played consecutively
between two opponents. An umpire (referred to as
a referee in other sports) officiates at each game and
is responsible for the smooth running of the game,
including any necessary rule interpretations that arise.
Each umpire is part of an umpire crew, which con-
sists of a group of four umpires; an umpire crew stays
together as a team throughout the season. During the
season, the umpire’s job is full time, and the typical
umpire handles approximately 142 games (a player
plays 162 games during this period). Unlike players,
who have a home city in which they play half of their
games, umpires travel from city to city throughout the
season, because one of MLB’s objectives is to ensure
that an umpire does not handle the games of any team
too frequently in one season; assigning an umpire to a
home base would conflict with this goal. A secondary
reason is that baseball games are typically held in a
particular city only half the time. MLB would have to

almost double its number of umpire crews if it were
to assign one crew to each city in which it plays (the
30 teams play in 27 different cities).

Because umpires travel throughout the season,
minimizing their travel is important. However, the
requirement that a crew not handle the games of any
team too often forces each crew to travel after each
series of games. Crews must travel long distances
(i.e., up to 35,000 miles) during a season because of
(1) the requirement that each crew must visit each
MLB home city and (2) restrictions on a crew han-
dling consecutive series for any team. In addition,
the associated team schedules are not designed with
umpire travel as a consideration. In Figure 1, we
illustrate a “typical” umpire’s extensive travel dur-
ing one season. It consists of three paths, because
the umpire’s travel must be broken up by vacation
weeks (we do not show three shorter trips around
the all-star break and at the end of the season). In
the top-left path in this example, the umpire starts
in Oakland, California and travels to the following
locations: Los Angeles, California; Phoenix, Arizona;
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Figure 1: The graphic shows three sample paths traveled by one crew in one year (MLB teams in the United
States and Canada).

San Diego, California; Dallas, Texas; Kansas City,
Kansas; Pittsburgh, Pennsylvania; Tampa, Florida;
Baltimore, Maryland; St. Louis, Missouri; and finally
to Atlanta, Georgia. This 5,868-mile trip spans four
time zones; the umpire would travel it over 38 days
and would handle 35 games during this period.

The umpire scheduling problem is complex and dif-
ficult to solve because it consists of dozens of pages of
constraints, including idiosyncratic constraints such
as an umpire’s preferred vacation dates. The schedule,
which must satisfy league-imposed travel rules and
restrictions, aims to optimize many conflicting goals.
Prior to using our scheduling solution, one special-
ist, a former umpire, manually built MLB’s umpire
schedules using Microsoft Excel; this daunting task
took weeks of planning. As an alternative to this
approach, we worked with MLB to develop a heuris-
tic; MLB accepted the schedule generated using this
method in its 2006 season and used modifications of
the approach during its 2008, 2009, and 2010 seasons.

To develop this heuristic, we needed a test bed for
our experimentation. Because only one schedule is
generated per season, we have only one instance to
work with each year. This was insufficient to allow
us to determine appropriate, robust methods. For
example, we might design a wonderful approach to
the 2006 instance only to have it do poorly using
the 2007 data. We therefore developed the travel-
ing umpire problem (TUP). The TUP is similar to
the traveling tournament problem (TTP) for league
scheduling, which Easton et al. (2001) introduced,
and is based on the most important features of
MLB umpire scheduling. The TTP (http://mat.tepper
.cmu.edu/TOURN) has encouraged research on team
scheduling approaches; however, it does not get
mired in idiosyncratic league details. Using the TUP
allowed us to test alternative approaches to umpire
scheduling.

The literature contains many papers that address
the scheduling of sports leagues; examples include
Easton et al. (2004), Rasmussen and Trick (2008), and
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Briskorn (2008). However, few papers address the
scheduling of sports umpires. Duarte et al. (2007) con-
sider a general referee assignment problem. Farmer
et al. (2007) consider scheduling umpires in the US
Open; two papers (Wright 1991, 2004) deal with
scheduling umpires for cricket leagues. However, the
issues these papers discuss are somewhat different
than those that we address. In most of these papers,
the primary issue involves finding qualified refer-
ees to handle games; they put much less emphasis
on intergame travel and balancing travel to different
stadiums.

Some studies specifically relate to MLB umpire
scheduling. Evans (1988), Evans et al. (1984), and
Ordonez (1997) discuss scheduling issues and ap-
proaches during the 1980s and 1990s; their work
provides the basis for much of the material that we
discuss in this paper. However, MLB has made many
changes since that period. The most critical change
occurred in 2000, when two MLB leagues combined
their umpires, creating a common umpire pool. This
change roughly doubled the problem size and made
requirements on seeing every team much more diffi-
cult to meet.

Problem Description
In this section, we formally define the MLB umpire
scheduling problem (MLB-USP) and the TUP, which
extracts the most critical aspects of the MLB-USP, but
not its extraneous features.

The MLB Umpire Scheduling Problem
In MLB, each umpire crew comprises four trained
and licensed major league umpires. These crews are
assembled at the beginning of each season and work
as a crew all season long, with very limited excep-
tions. Umpire union rules require that each umpire
receives four week-long vacations during the base-
ball season, three as a crew and one individually.
Thus, MLB requires 17 umpire crews; each week,
2 crews are on vacation and 15 crews are available for
scheduling to series. The umpires are assigned to a
previously developed schedule of games to be played
by the teams. The umpire scheduler, whose main goal
is to minimize the miles that each crew travels, must
adhere to many rules; some are required because of

union rules or physical limitations; others attempt to
accommodate umpire preferences.

In principle, the objective function of an optimiza-
tion model for the MLB-USP is to minimize the total
number of miles that the 17 umpire crews travel.
However, when all the constraints are combined, the
problem becomes infeasible. Hence, we break the con-
straint set into two types, hard constraints and soft con-
straints; we summarize each below.

Hard Constraints. These constraints must always be
satisfied for a schedule to be considered acceptable.
Crews must not

• travel from the West Coast to the East Coast
without an intermediate day off;

• umpire consecutive series more than 1,700 miles
apart without an intermediate day off;

• travel more than 300 miles preceding a series
whose first game is a day game (i.e., before 4 pm).

Crews must
• take three one-week prescheduled vacations

(a crew cannot take its second vacation before all
other crews have had their first vacation); the fourth
week of vacation is taken individually and not as part
of the scheduling process.

Soft Constraints. These constraints may be violated
but at a penalty. Crews should not

• work more than 21 days without a day off (the
“21-day rule”);

• umpire more than one series played by any team
within any 18-day period (the “18-day rule”);

• umpire more than four series played by any team
during the entire season (the “four-series rule”).

Crews should
• travel to all cities at least once;
• see each team at home and on the road;
• have balanced schedules; they should travel a

similar number of miles, umpire approximately the
same number of games, and have the same number
of days off.

In practice, we handle the soft constraints by penal-
izing their violation in the objective function. For
example, for each umpire crew, we penalize the fol-
lowing measures:

• the number of times the umpire crew works
more than 21 days without a day off; we penalize sim-
ilarly for violations of the 18-day rule and the four-
series rule;
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• the difference between the total distance that an
umpire crew travels and the average distance that
all umpire crews travel; we penalize similarly for the
number of games umpired and number of days off;

• the number of teams that an umpire crew does
not see at home, away, or at all.

The MLB’s current scheduling method incorporates
“split” series (i.e., a series in which two crews cover
a single series). For example, one crew works the first
three games of a four-game series and then leaves for
a new assignment; a new crew comes to finish the
last game of the series. As another example, a crew
may stay on for the first game of the next series in
the stadium in which it is working and then move on
to another assignment. In our approach, we avoid the
use of split series whenever possible.

The concept of a slot is straightforward in the
context of the TUP (see The Traveling Umpire Prob-
lem subsection); however, its use in the MLB-USP
requires further explanation. Each series comprises
two, three, or four games between the same teams
in the same venue. Series are either weekday series
played between Monday and Thursday or weekend
series played between Friday and Sunday. There-
fore, we divide each week into two slots: one for
the weekdays and the other for the weekend. One
Monday–Thursday slot is then subdivided into two
slots because it consists of two sets of two-game
series (Monday–Tuesday and Wednesday–Thursday),
with an additional slot for the all-star break. Finally,
we divide the season into 53 slots of 15 simultane-
ous series each. Some series cross over the week-
day/weekend slot divisions. For example, a series
might start on Monday and end on Thursday or start
on Friday and end on Monday. We flag these series
as crossovers of type one or type two, respectively;
we then assign them to the slot that holds the major-
ity of the games, thus simplifying the coding of our
optimization algorithm. For each slot, we give each
crew one assignment; we also assign 15 crews to
one of the 15 series in the slot, and two crews to
vacation.

This description does not exhaust the set of rules,
requirements, and requests that comprises the MLB-
USP. However, it is clearly sufficient to create an
extremely difficult scheduling problem.

The Traveling Umpire Problem
To explore computational approaches to the MLB-
USP, we need a source of instances that mimic the
problem without getting mired in the details. In this
section, we introduce the TUP.

In contrast to the MLB-USP, the TUP limits the con-
straints to the key issues: an umpire crew should not
be assigned to a team too often in short succession,
and each umpire crew should be assigned to each
team at some time during a season. Given these con-
straints, the objective is to minimize the travel of the
umpire crews.

Given a double round robin tournament, in which
each team plays against each other team twice, on
2n teams (4n − 2 slots), we want to assign one of n

umpire crews to each game. Note that we do not have
any extra crews, as we have in the MLB-USP.

The following constraints must be satisfied.
(1) Each game has an umpire crew;
(2) each umpire crew works exactly one game

per slot;
(3) each umpire crew sees each team at least once

at the team’s home;
(4) no umpire crew is in a home site more than

once in any n− d1 consecutive slots;
(5) no umpire crew sees a team more than once in

any �n/2� − d2 consecutive slots.
We next describe the properties of the parameters in

the constraints; note that we do not arbitrarily select
the parameters for Constraints (4) and (5).

Let P represent the TUP and let P4R5 be a relaxation
of P with constraint set R, where R⊂ 81121314159.

Theorem 1. For P4112145, for any tournament and any
game, there exists a feasible schedule that covers that game
for a single crew. Moreover, Constraint (4) has the follow-
ing properties: (1) when n is even, n is an upper bound on
n− d1 for the existence of this feasibility, and (2) when n

is odd, n+ 1 is an upper bound on n−d1 for the existence
of this feasibility.

Theorem 2. For P4112155 and d2 = 0 for any tournament
and any game, there exists a feasible schedule that covers
that game for a single crew.

The proofs of both theorems are available in Yildiz
(2008). Theorem 1 implies that although we do not
want a crew to see the same team at home frequently,
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Slots 1 2 3 4 5 6

UmpireCrew1 41135 43145 41145 43115 44135 42135
UmpireCrew2 42145 41125 43125 44125 42115 44115

Table 1: This table illustrates a round robin tournament for four teams and
a corresponding feasible schedule for two crews.

a limit exists on the enforcement of this constraint—
even for the relaxation P4112145 of the TUP. This limit
is at most n consecutive games, in which case d1 = 0.
Theorem 2, on the other hand, does not imply any
restrictions on the number of consecutive slots during
which an umpire crew can see the same team more
than once. It only shows that the relaxation P4112155

of the TUP is always feasible when d2 = 0. In this
case, d1 and d2 are parameters that represent the level
of constraint required. Setting each to 0 leads to the
most constrained system; setting each to n and �n/2�,
respectively, “turns off” the corresponding constraint.

We present an example of a round robin tourna-
ment for four teams and a feasible umpire schedule
for d1 = d2 = 0 in Table 1. We represent a game as a
pair 4i1 j5 where i is the home team and j is the away
team. Rows correspond to crew schedules; columns
correspond to games that are played in the corre-
sponding time slots.

Using the TUP definition and the schedules from
the TTP, we can generate instances with far fewer
teams than MLB, allowing us to experiment with dif-
ferent approaches.

Exact Solution Approaches
The MLB-USP and TUP have many characteristics
in common with the vehicle routing problem with
time windows (VRPTW), which also emphasizes min-
imizing the total travel cost of multiple routes. If we
ignore TUP Constraints (3), (4), and (5), it becomes
a special case of the VRPTW. VRP and almost all its
variants, including VRPTW, are NP-hard (Lenstra and
Kan 1981), and exact solution approaches are ineffec-
tive in solving large instances. Because both the MLB-
USP and TUP have side constraints in addition to the
routing constraints, solving them is more challenging
than solving the VRP and its variants.

We tried various integer programming (IP) formu-
lations of the MLB-USP (see Appendix A); however,

Crews Slots Variables Constraints Nodes Optimality gap (%)

17 3 51878 10,028 1431216 0023
17 4 91607 14,646 461495 0029
17 5 121412 22,230 231454 1011
17 6 151513 26,294 41919 �

17 7 181575 34,945 21228 3083
17 8 211956 39,187 11301 10089
17 9 241525 46,734 350 23034
17 10 271353 50,466 131 �

Table 2: This table shows IP results for the MLB-USP. Instances ran for 20
CPU hours each.

we found all these formulations to be impractical for
even a few slots, let alone the MLB’s full 53 slots. In
Table 2, we report the number of variables and con-
straints after CPLEX’s preprocessing step, the num-
ber of search nodes explored in the branch-and-bound
tree, and the final optimality gap. An optimality gap
equal to “�” means that no feasible solution was
found within 20 hours.

Our experience with the MLB-USP carries over to
the TUP, suggesting that the TUP includes constraints
that cause the difficulty in solving the MLB-USP. We
formulated the TUP as an IP (see Appendix B) and as
a constraint program (CP) (see Appendix C). Table 3
shows the computational results for the IP and CP
models for seven instances with d1 = d2 = 0, which
means Constraints (4) and (5) are the most restric-
tive; the Heuristic Approach section gives more detail
on how we generated these instances. We allowed
a maximum of 24 CPU hours for each approach.
Although both approaches were able to solve the 4-,
6-, and 8-team instances to optimality very quickly,
only the IP approach could solve the 10-team instance

Time to prove OPT
BEST distance or find BEST

No. of
teams OPT distance IP CP IP CP

4 51176 51176 51176 0 0
6 141077 141077 141077 0 0
8 341311 341311 341311 2 secs 0

10 481942 481942 491400 72 secs 24 hrs

12 Infeasible — Infeasible 24 hrs 2 mins
14 Unknown 1871374 1761903 24 hrs 24 hrs
16 Unknown — — 24 hrs 24 hrs

Table 3: This table shows IP and CP results for TUP with d1 = d2 = 0.
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to optimality within 72 seconds; the CP approach
was unable to solve that instance to optimality within
24 hours. In only 25 seconds, the CP model showed
the 12-team instance to be infeasible, whereas the IP
model was unable to prove infeasibility in the allowed
24 hours. For the 14-team instance, no approach was
able to prove optimality. However, the CP model
found a much better solution for this instance much
faster. Finally, no model was able to find a feasible
solution for the 16-team instance.

Based on these results, finding optimal solutions
to either the MLB-USP or the TUP instances with
30 teams is clearly not practical; this forces us to rely
on a heuristic approach.

Heuristic Approach
Given the difficulties we face when trying to find opti-
mal USP solutions, we explore heuristic approaches
to find good solutions in a reasonable amount of time.
We begin with a simple greedy heuristic to generate
an initial solution, which we then improve by using
local search in a simulated annealing framework.

Greedy Matching Heuristic
The greedy matching heuristic is a constructive
heuristic that allows us to build the umpire sched-
ules starting from the first slot and ending at the last
slot. This approach is similar to that of Evans (1988)
and Evans et al. (1984), who scheduled the Ameri-
can League umpires for several years. (The American
League includes approximately half the MLB teams.)

For every slot t, the heuristic assigns umpire crews
to series. The best possible assignment minimizes
both the total umpire travel in slot t and the constraint
violations. To do that, the heuristic solves a perfect
matching problem on a bipartite graph in each slot t.
This bipartite graph shows the umpire crews on one
side of the partition and the series of slot t on the
other side. Let E4t5 represent the edges between the
two sides. Moreover, let u be an umpire crew and 4i1 j5

indicate a series played by teams i (at home) and j

(away). The cost of an edge 4u1 4i1 j55= distance4k1 i5−
incentive4u1 i5 + penalty ∗ violations4u1 i1 t5. In this
cost function, k is the location of crew u in slot
t − 1; distance4k1 i5 is the distance between city k and
team i’s home city; incentive4u1 i5 takes a positive
value if crew u has never visited team i’s home in

the previous slots; violations4u1 i1 t5 is the number of
constraint violations caused by assigning u to i at t,
and penalty is a large cost associated with a single
constraint violation. This cost structure guides the
greedy matching heuristic toward assigning umpire
crews to cities that they have not visited yet, while
violating the fewest number of constraints. In slot t,
if
∑

4u1 4i1 j55∈M4t5 violations4u1 i1 t5 > 0, where M4t5 is the
set of edges in the best matching solution at t, no fea-
sible matching is available at t. When this happens,
the greedy matching heuristic backtracks to the pre-
vious slot t − 1, picks the second-best matching, and
tries again. Backtracking is made at most once at each
slot. Thus, by using the greedy matching heuristic,
we might end up with an infeasible solution. When
that happens, we correct the infeasibility by using our
improvement heuristic, which we describe in the Local
Search and Simulated Annealing subsections.

Local Search
A neighborhood of a solution S is a set of solutions that
are close to S (i.e., they can be easily computed from S
or they share a significant amount of structure with S).
An algorithm that starts at some initial solution and
iteratively moves to solutions in the neighborhood of
the current solution is called a neighborhood search algo-
rithm or a local search algorithm.

The local search for the umpire scheduling prob-
lems discussed in this paper tries to improve the solu-
tion quality at each iteration as follows. Given an
umpire schedule S, we use a two-exchange move to
swap the umpire crews assigned to two series played
in the same slot. The neighborhood of S according
to this move is the set of all schedules that can be
obtained from S by performing a single two-exchange
move.

Simulated Annealing
The major disadvantage of a pure local search algo-
rithm is that it terminates in the first local optimum
it reaches, which may be far from any global opti-
mum, because the algorithm only executes moves
that generate a decrease in cost. Simulated anneal-
ing, a powerful stochastic local search method, alter-
natively attempts to avoid becoming trapped in a
local optimum by sometimes (with a nonzero proba-
bility that gradually decreases as the algorithm con-
tinues its execution) executing a move that generates



Trick, Yildiz, and Yunes: Scheduling MLB Umpires and the Traveling Umpire Problem
238 Interfaces 42(3), pp. 232–244, © 2012 INFORMS

an increase in cost; this can enable it to “climb out of”
the local minimums.

Simulated annealing has its origins in the fields
of materials science and physics (Pinedo and Chao
1999). Kirkpatrick et al. (1983) established an anal-
ogy between minimizing the cost function of a com-
binatorial optimization problem and the slow-cooling
process of a solid by using an optimization process.
This algorithm has proven to be a good technique for
many applications (Vidal 1993).

Algorithm 1 shows the pseudocode for the simu-
lated annealing algorithm that we used.

For the TUP, our cost function is the total distance
that the crews travel. However, our MLB-USP cost
function is more complicated. It consists of the total
mileage traveled by the 17 umpire crews plus penal-
ties related to the violation of the soft constraints
described in the MLB Umpire Scheduling Problem sec-
tion. All violations have their specific penalty weights
(coefficients in the cost function), which we adjust
empirically. For example, each traveled mile might
have a weight of 1, and each violation of the 21-day
rule might have a weight of 1,000; this would (approx-
imately) mean that we would be willing to increase
the total mileage by 1,000 in exchange for one fewer
violation of the 21-day rule.

We empirically tested the parameters for the simu-
lated annealing algorithm; in our tests, we used the
values shown in Table 4.

Algorithm 1 (Simulated annealing).

1: while time limit and iteration limit not exceeded
do

2: S = initial solution with prob. p or incumbent
solution with prob. 41 − p5

3: t = t0

Parameter Value

t0 21000
TEMP_LIMIT 500
ITER 21500
ALPHA 0.95
p (for MLB-USP) 0.1
p (for TUP) 0.2

Table 4: This table contains the parameters for the simulated annealing
algorithm.

4: while t > TEMP_LIMIT do
5: for all ITER iterations do
6: Pick one feasible exchange E at random
7: d = impact of E in objective function
8: if d < 0 then
9: Execute E

10: if new solution better than incumbent
then

11: Update incumbent
12: end if
13: else
14: x = random number in 60117
15: if x < exp4−d/t5 then
16: Execute E

17: end if
18: end if
19: end for
20: t = t ∗ ALPHA
21: end while
22: end while

Computational Results
In this section, we report the computational results of
testing our solution approach on the 2006 MLB sched-
ule and on a set of TUP instances.

TUP Instance Description
An instance of the TUP has two matrices: the dis-
tance matrix, which stores the pairwise distances
between cities, and the opponents matrix, which
stores the tournament information. We used instances
with a number of teams ranging from 4 to 16. The
instances with 14 teams or fewer use the TTP Tourna-
ments as Trick (2009) discusses. The 16-team instance
uses the distance matrix for the National Football
League (Trick 2009); the game schedule is generated
using a constraint program (Trick 2003) that creates
a round robin tournament. The instances we used in
this study (and additional instances) are available at
http://mat.tepper.cmu.edu/TUP.

Depending on the choice of d1 and d2, the difficulty
of the problem changes. Assigning a positive value to
either parameter creates a relaxation of the original
problem; therefore, as we increase the values of these
two parameters, the problem becomes easier to solve.
For example, choosing d1 = n − 1, which makes n −

d1 = 1, or d2 = �n/2� − 1, which makes �n/2� - d2 = 1,
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2005 2006a 2006b 2008 2009 2010

Total mileage 4301795 4651175 4631452 4451932 4581258 4551642
Max − min mileage 91078 41540 41426 31842 61868 41257
21-day rule violations 2 4231275 0 0 3 2 0
18-day rule violations 16 1 0 0 0 0
Max − min no. of games 6 3 4 3 1 1
Missed at home 26 18 11 28 9 14
Missed on the road 79 76 59 69 44 70
Missed completely 0 0 3 415 0 1 0

Table 5: This table contains the results for the MLB-USP obtained with simulated annealing.

simply means that Constraint (4) or Constraint (5),
respectively, is not in effect.

Summary of Results
We used the methodology described in this paper to
provide MLB schedules during the 2006 and 2008–
2010 seasons. In this section, we describe the results
for the 2006 schedule.

We coded the greedy matching heuristic using
Visual Basic within Microsoft Excel, and the simulated
annealing heuristic using C. Both algorithms are run
on a Linux PC with Pentium 4 3.7 GHz processor. We
obtained the best solutions using a sequence of runs
with different penalty weights; the longest single run
took approximately four days (approximately two bil-
lion iterations). Table 5 summarizes the results.

Column “2005” shows the characteristics of the
2005 MLB umpire schedule, which we constructed
manually. Columns “2006a” and “2006b” show two
of the best schedules we were able to obtain for the
2006 season. In summary, the schedules we obtained
improve almost every measure of quality in exchange
for higher total mileage (approximately 2,000 addi-
tional miles per crew over the entire season). In
keeping with MLB’s standard reporting, the mileage
shown is for travel through the end of August
(approximately 85 percent of the schedule), while the
other statistics represent the full season. Schedules
2006a and 2006b show no violations of the 21-day
rule, and schedule 2006a has only one violation of the
18-day rule. In 2005, two crews worked for 23 and 27
days without a day off, and, in 16 instances, a crew
saw the same team more than once within an 18-day
period. Our schedules are also more balanced, both
in terms of the number of miles traveled and num-
ber of games umpired by the crews. Finally, we also

reduced the number of times that the umpire crews
fail to see the different teams at home and on the road.
The entry in the last row of schedule 2006b means
that there are three umpire crews that fail to see one
of the 30 teams.

MLB used our scheduling method for its 2006 sea-
son; it used another method for its 2007 season, and
returned to using our scheduling method in 2008.
We also provided the schedules MLB used for its
2009 and 2010 seasons. Our methods consistently pro-
vide high-quality schedules, even as the underlying
team schedule changes and the scheduling require-
ments vary. Note that, over time, the MLB trade-offs
have changed; for example, during the 2009 and 2010
seasons, it strongly emphasized equal game counts
among the crews, and ensuring that each crew sees as
many teams at home as possible. Our methods gen-
erate schedules that meet each year’s unique objec-
tives and requirements, thus providing MLB with
flexibility.

In summary, MLB benefited from this study; its
umpire schedules are more balanced and have fewer
rule violations, and its umpires miss fewer at-home
and on-the-road teams. In addition, generating the
schedules requires less time and manual effort.

To solve the TUP instances, we implemented the
greedy matching heuristic and the simulated anneal-
ing algorithm using the script language in ILOG OPL
Studio 3.7. We ran the algorithms on a Linux server
with an Intel(R) Xeon(TM) 3.2 GHz processor. How-
ever, as the problem size increased, even finding a
feasible solution to the TUP became difficult. Table 6
summarizes the results using the heuristic approach
on the smallest seven instances with d1 = d2 = 0,
which means that Constraints (4) and (5) are the most
restricting. Although the heuristic was able to solve
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No. of teams OPT distance Distance Time (secs)

4 51176 51176 0
6 141077 141077 0
8 341311 341311 60

10 481942 501196 228

12 Infeasible — —
14 Unknown — —
16 Unknown — —

Table 6: This table shows the simulated annealing results for the TUP with
d1 = d2 = 0.

the 4-, 6-, and 8-team instances to optimality fast, it
was unable to solve the 10-team instance to optimal-
ity. However, it was able to find a quality solution
fast. As we stated above, the 12-team instance proved
to be infeasible, and we were unable to find a feasible
solution for the 14- and 16-team instances using the
heuristic approach.

Based on the results we obtained using the three
different techniques, it is obvious that the 14- and
16-team instances are very difficult instances to solve
when d1 = d2 = 00 To further investigate the heuristic
approach’s performance on the TUP, we solved the
relaxations of these two instances by increasing the
values of d1 and d2 (see Table 7). We also solved
these instances using the IP formulation. We ran the
IPs for 24 hours, whereas we ran the heuristic for
three hours. For the 14-team instances, we see that the
simulated annealing approach obtained as good or
better results than the IP approach in a shorter time.
For the 16-team instance, neither method was able
to find a feasible solution, except for the relaxation
with n− d1 = 7 and �n/2� − d2 = 2. For that instance,
we were able to find a solution using the simulated
annealing method.

Integer program Simulated annealing
No. of
teams n− d1 �n/2� − d2 Distance Time (hrs) Distance Time (hrs)

14 6 3 182,531 24 180,697 3
14 5 3 169,012 24 169,173 3
16 8 2 — 24 — 3
16 7 3 — 24 — 3
16 7 2 — 24 176,527 3

Table 7: This table shows IP and simulated annealing results for TUP on
the relaxations of 14- and 16-team instances, with d1 + d2 > 0.

IP CP SA
No. of
teams n− d1 �n/2� − d2 Dist. Time (hrs) Dist. Time Dist. Time

30 5 5 — out of — 24 hrs 581,363 5 hrs
memory

Table 8: This table shows IP, CP, and simulated annealing (SA) results for
TUP on the MLB’s 2006 game schedule with 30 teams.

As we stated when we defined it, the TUP is an
abstraction of the MLB-USP, which is defined on a
30-team league and game schedule. To reconcile the
TUP and MLB-USP, we created an instance of the
TUP on this set of teams and the 2006 game sched-
ule. To mimic the “18-day rule,” we set �n/2�−d2 = 5
and tried to solve this instance using the IP, CP, and
heuristic approaches (see Table 8). We see that the
heuristic approach outperformed both the IP and CP
approaches on this instance.

Conclusion
In this paper, we present the method we have used
to schedule the MLB umpires in 2006 and 2008–2010.
We formally define the MLB-USP, introduce a new
approach to developing umpire schedules, and define
the TUP.

This project started in the spring of 2005 as an
elective course for MBA students in the operations
research track of Tepper School of Business. The
research team held periodic meetings with a for-
mer MLB umpire who had been responsible for con-
structing the umpire schedules, which he manually
built in a few weeks. Based on what they learned in
these meetings, the research team members were able
to understand what an acceptable schedule should
look like. At the end of the spring semester, the
team produced a few schedules; however, they were
unsuitable for actual implementation because they
underemphasized the prohibition on repeating visits
in too short of a time. Early in 2006, we developed the
approach described in this paper; we generated the
actual schedules for the 2006 season in February 2006.

We show that umpire scheduling, although sim-
pler than game scheduling, is a challenging problem.
We also show that conventional optimization meth-
ods are ineffective in solving the MLB-USP and large
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instances of the TUP, and even find it difficult to find
feasible solutions. This experience led us to believe
that metaheuristics provide better solutions than exact
solution methods.

We demonstrate that the heuristic approach based
on simulated annealing is simple to implement and
provides good results. However, our method needs
fine-tuning. One improvement to our MLB software
could be the use of IP large neighborhood search. For
example, we could unassign a piece of the schedule,
reassign it in an “optimal” way, and repeat the process
for other pieces.

The algorithm we describe in this paper is specific
to MLB umpire scheduling, particularly because of
the objective function and the slot structure. The high-
level technique (greedy matching heuristic followed
by simulated annealing) could also be reused to solve
other umpire scheduling problems.

Appendix A. IP Formulation for the MLB-USP

A.1. Problem Data

Constants That Appear in the Constraints
• S, T , C = sets of all series, teams, and crews, respec-

tively;
• Hk, Rk = sets of all series in which team k plays at

home or on the road, respectively;
• V = set of pairs of series 4i1 j5 that form a valid tran-

sition (i.e., they are in consecutive slots and do not violate
any hard travel restrictions);

• M = set of pairs of series 4i1 j5 that, if assigned to the
same crew, will cause a violation of the 18-day rule;

• U = set of pairs of series 4i1 j5 that can never be
assigned to the same crew for a reason (e.g., they constitute
an unacceptable transition; they violate the 18-day rule by
too much, etc.);

• gi = number of games in series i.

Objective Function Coefficients
• dij = travel miles for all 4i1 j5 ∈ V ;
• mij = penalty for assigning series i and j to the same

crew for all 4i1 j5 ∈M (the smaller the separation, the larger
the m value);

• ph1 pr1 pa = penalties for not seeing a team at home, on
the road, and at all, respectively;

• pf = penalty for seeing a team more than four times;
• pg1 pm = penalties for deviating too much in number

of games and mileage, respectively;
• po = penalty for not having a day off in a 22-day

period.

A.2. Variables
• xic = 1 if series i ∈ S is assigned to crew c ∈C (binary);
• xijc = 1 if crew c umpires series j immediately after

series i, for all 4i1 j5 ∈ V (binary);
• yij = 1 if both series i and j are assigned to the same

crew, for all 4i1 j5 ∈M (binary);
• hck = 1 if crew c does not see team k ∈ T at home (con-

tinuous, ≥ 0);
• rck = 1 if crew c does not see team k on the road (con-

tinuous, ≥ 0);
• ack = 1 if crew c does not see team k at all (continuous,

≥ 0);
• fck = number of times crew c sees team k in excess of

meet_tol times (continuous, ≥ 0);
• �g , �m = difference between maximum and minimum

number of games and mileage, respectively, over all crews
(continuous, ≥ 0). These values are positive only if they
are larger than gamedev_tol and mileagedev_tol, respec-
tively;

• owc = 1 if crew c does not have a day off during the
22-day window w (continuous, ≥ 0).

A.3. The IP Model

Minimize
∑

4i1 j5∈V

∑

c∈C

dijxijc +
∑

4i1 j5∈M

mijyij + ph
∑

k∈T

∑

c∈C

hck

+ pr
∑

k∈T

∑

c∈C

rck + pa
∑

k∈T

∑

c∈C

ack + pf
∑

k∈T

∑

c∈C

fck

+ pg�g + pm�m + po
∑

all 22-day
windows w

∑

c∈C

owc

subject to

∑

c∈C

xic = 11 ∀ i ∈ S (A1)

∑

i∈l

xic ≤ 11 ∀ slot l1 c ∈C (A2)

xic + xjc − xijc ≤ 11 xijc ≤ xic1 xijc ≤ xjc1

∀ 4i1 j5 ∈ V 1 c ∈C (A3)

xic + xjc − yij ≤ 11 ∀ 4i1 j5 ∈M1 c ∈C (A4)

xic + xjc ≤ 11 ∀ 4i1 j5 ∈U1 c ∈C (A5)

1 −
∑

i∈Hk

xic ≤ hck1 ∀k ∈ T 1 c ∈C (A6)

1 −
∑

i∈Rk

xic ≤ rck1 ∀k ∈ T 1 c ∈C (A7)

hck + rck − ack ≤ 11 ∀k ∈ T 1 c ∈C (A8)
∑

i∈Hk∪Rk

xic −meet_tol≤ fck1 ∀k ∈ T 1 c ∈C (A9)
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∑

i’s off day ∈w

xic +
∑

4i1j5∈V

4i1 j5’s off day ∈w

xijc + owc ≥ 11

∀22-day window w1 c ∈C (A10)
∑

i’s off day ∈w

xic +
∑

4i1 j5∈V

4i1 j5’s off day ∈w

xijc ≥ 11

∀ 4max_work+ 15-day window w1 c ∈C (A11)
∑

i∈S

gixic1
−
∑

i∈S

gixic2
−gamedev_tol≤ �g1

∀ordered pairs of crews c11 c2 (A12)
∑

4i1 j5∈V

mijxijc1
−

∑

4i1 j5∈V

mijxijc2
−mileagedev_tol≤ �m1

∀ordered pairs of crews c11 c2 (A13)

xic = 01 if i 6= 0 is in a slot where c is off (A14)

xic = 01 if c is off in slot l and i is in slot l− 1

or l+ 1 and crosses over0 (A15)

Brief descriptions of the constraints follow. Constraint
(A1): Each series must be assigned to a single crew; Con-
straint (A2): for each slot and crew, at most one series is
played; Constraint (A3): if xic = xjc = 1 for a given crew,
then xijc = 1, and if either xic = 0 or xjc = 0, then xijc =

0; Constraint (A4): if xic = xjc = 1 for a given crew, then
yij = 1; Constraint (A5): do not allow unacceptable con-
straint violations; Constraints (A6)–(A8): define variables
that indicate whether or not a crew sees a given team at
home, on the road, and at all, respectively; Constraint (A9):
make fck equal to the number of times above meet_tol
(which was chosen to be equal to 4) that a crew sees
a team during the season; Constraint (A10): define vari-
ables that indicate whether a crew has at least one day
off inside a given 22-day window; Constraint (A11): pro-
hibit a crew from working more than max_work+1 days
without a day off (this is the hard limit on the 21-day
rule); Constraints (A12)–(A13): define variables that mea-
sure the maximum difference in miles traveled and number
of games played, respectively, across all crews. These dif-
ferences only become meaningful once they are above the
values of mileagedev_tol and gamedev_tol, respectively;
Constraint (A14): assign prescheduled vacations; Constraint
(A15): prohibit crossover series around vacation slots.

We also studied the effect of adding cutting planes to the
above formulation and decided to extend the model using
the following cuts.
∑

c∈C

∑

j � 4i1j5∈V

xijc = 11 ∀ i ∈ S1 i is neither in the last slot
nor possibly followed by a vacation3

∑

c∈C

∑

i � 4i1 j5∈V

xijc = 11 ∀ j ∈ S1 j is neither in first slot nor
possibly preceded by a vacation0

(A16)

Appendix B. IP Formulation for the TUP

B.1. Problem Data
• S1T 1C = sets of all slots, teams, and crews (umpires),

respectively;

• OPP6t1 i7=



















j1 if team i plays against team j
at venue i in slot t3

−j1 if team i plays against team j
at venue j in slot t3

• dij = travel miles between venues i and j .
The following constants are defined to have a more read-

able model.
• n1 = n− d1 − 1;
• n2 = �n/2� − d2 − 1;
• N1 = 801 0 0 0 1n19;
• N2 = 801 0 0 0 1n29.

B.2. Variables
• xisc = 1 if series, which is played at venue i ∈ T in slot

s ∈ S, is assigned to crew c ∈C (binary);
• zijsc = 1 if crew c umpires series, which is played at

venue i in slot t, then umpires series played at venue j in
slot t + 1 (binary).

B.3. The IP Model

Minimize
∑

i∈T

∑

j∈T

∑

c∈C

∑

s∈S2 s<�S�

dijzijsc

subject to
∑

c∈C

xisc = 11 ∀ i ∈ T 1 s ∈ S2 OPP6s1 i7 > 0 (B1)

∑

i∈T 2OPP6s1i7>0

xisc = 11 ∀ s ∈ S1 c ∈C (B2)

∑

s∈S2OPP6s1i7>0

xisc ≥ 11 ∀ i ∈ T 1 c ∈C (B3)

∑

s1∈N1

xi4s+s15c
≤11 ∀i∈T 1c∈C1s∈S2 s≤�S�−n1 (B4)

∑

s2∈N2

(

xi4s+s25c
+

∑

k∈T 2OPP6s+s21 k7=i

xk4s+s25c

)

≤ 11

∀ i ∈ T 1 c ∈C1 s ∈ S2 s ≤ �S� −n2 (B5)

xisc + xj4s+15c − zijsc ≤ 11

∀ i1 j ∈ T 1 c ∈C1 s ∈ S2 s ≤ �S�0 (B6)

We strengthened the formulation with the following
additional valid inequalities.

xisc = 01 ∀ i ∈ T 1 c ∈C1 s ∈ S2 OPP6s1 i7 < 0 (B7)

zijsc − xisc ≤ 01 ∀ i1 j ∈ T 1 c ∈C1 s ∈ S2 s < �S� (B8)

zijsc−xj4s+15c ≤01 ∀ i1j ∈T 1 c∈C1 s∈S2 s< �S� (B9)
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∑

i∈T

zijsc −
∑

i∈T

zji4s+15c = 01

∀ j ∈ T 1 c ∈C1 s ∈ S2 s < �S� − 1 (B10)
∑

i∈T

∑

j∈T

zijsc = 11 ∀ c ∈C1 s ∈ S2 s < �S�0 (B11)

Brief descriptions of the constraints follow. Constraint
(B1): Each series must be assigned to a single crew; Con-
straint (B2): each crew is assigned to exactly one series per
slot; Constraint (B3): each crew sees each team at least once
at the team’s home; Constraint (B4): no crew should visit a
venue more than once in any n−d1 consecutive slots; Con-
straint (B5): no crew should see a team twice in any �n/2�−

d2 consecutive slots; Constraint (B6): if crew c is assigned
to a series at venue i in slot s and to a series at venue j
in slot s + 1, then the crew should move from i to j in slot
s; Constraint (B7): if team i plays away in slot t, no crew
can be assigned to the series at venue i; Constraint (B8): if
crew c moves from venue i to venue j in slot t, it must be
assigned to a series at venue i in t; Constraint (B9): if crew c
moves from venue i to venue j in slot t, it must be assigned
to a series at venue i in t + 1; Constraint (B10): number of
crews moving to venue j at slot t should be equal to the
number of crews moving from venue j at t + 1; Constraint
(B11): each crew must move in each slot.

Appendix C. CP Formulation for TUP in OPL

Model Parameters

T = 811 0 0 0 12n9 is the set of teams;
S = 811 0 0 0 14n− 29 is the set of slots;
U = 811 0 0 0 1n9 is the set of umpire crews;

opponents6t1 i7=



















j1 if team i plays against
team j at venue i in slot t3

−j1 if team i plays against
team j at venue j in slot t3

dist6i1 j7= distance between venues i and j .

Decision Variables

team_assigned6u1 t107= the home team that umpire crew u
sees in slot t.

team_assigned6u1 t117= the away team that umpire crew u
sees in slot t.

The formulation in the OPL language is as follows:

minimize with linear relaxation
sum (u in U, t in S: t < 4*n-2)

dist[team_assigned[u,t,0],
team_assigned[u,t+1,0]]

subject to {
forall(u in U, t in S)

team_assigned[u,t,1]
= opponents[t,team_assigned[u,t,0]];

//Constraints (1)&(2)
forall(t in S) {

distribute( all(i in G) 1,
all(j in T: opponents[t,j] < 0)
-1*opponents[t,j],

all(u in U) team_assigned[u,t,0]); };

//Constraint (3)
forall(u in U)

atleast(all(i in T) 1, all(i in T) i,
all(t in S) team_assigned[u,t,0]);

//Constraint (4)
forall(u in U, t in S: t<= (4*n-2)-(n-d1-1) )

alldifferent(all(r in [0..n-d1-1])
team_assigned[u,t+r,0]);

//Constraint (5)
forall(u in U, t in S: t<= (4*n-2)

-(floor(n/2)-d2-1) )
alldifferent(all(r in [0..floor(n/2)-d2-1],
y in [0..1]) team_assigned[u,t+r,y]);

search {
forall(t in S)

forall(u in U)
tryall (i in T: opponents[t,i] > 0)

team_assigned[u,t,0] = i; };
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Thomas E. Lepperd, Director, Umpire Administration,
writes: “This is to confirm that Major League Baseball used
assignment schedules for our umpires for the 2006, 2008,
and 2009 playing seasons that were created by a team led
by Michael Trick. We have found their process to be sig-
nificantly easier, more efficient, and able to produce much
better results than our prior process.”


