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Given a double round-robin tournament, the traveling umpire problem (TUP) consists of determining
which games will be handled by each one of several umpire crews during the tournament. The objective
is to minimize the total distance traveled by the umpires, while respecting constraints that include vis-
iting every team at home, and not seeing a team or venue too often. We strengthen a known integer pro-
gramming formulation for the TUP and use it to implement a relax-and-fix heuristic that improves the
quality of 24 out of 25 best-known feasible solutions to instances in the TUP benchmark. We also improve
all best-known lower bounds for those instances and, for the first time, provide lower bounds for
instances with more than 16 teams.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The assignment of officials (referees, umpires, judges, etc.) to
the games of a competition is an important and difficult problem
studied in the area of sports scheduling. The specific constraints
and objectives vary according to the sport and type of competition,
of course, but they typically aim to satisfy a given set of fairness
criteria while minimizing costs (e.g. wages or travel). Existing re-
search ranges over many different sports, including baseball
(Evans, Hebert, & Deckro, 1984; Evans, 1988; Trick & Yildiz,
2011; Trick & Yildiz, 2012; Trick, Yildiz, & Yunes, 2012), cricket
(Wright, 1991), football (Yavuz, _Inan, & Fığlalı, 2008), and tennis
(Farmer, Smith, & Miller, 2007). For more comprehensive surveys
of sports-related problems, we refer to Ernst, Jiang, Krishnamoor-
thy, Owens, and Sier (2004) and Kendall, Knust, Ribeiro, and Urru-
tia (2010).

We study the traveling umpire problem (TUP), which was first
proposed by Trick and Yildiz (2007) as an abstract version of the
real-life umpire scheduling problem faced by Major League
Baseball. Despite excluding many details present in the real prob-
lem, the TUP successfully captures the most important features
that make the problem very challenging to solve. This is evidenced
by the fact that many small instances remain unsolved in the offi-
cial TUP benchmark: Trick (2013).

Given a double round-robin tournament with 2n teams (each
team plays against each other team twice, once at home and once
on the road, over exactly 4n� 2 rounds), the distances between the
home venues of each pair of teams, and two integers 0 6 d1 < n
and 0 6 d2 < bn2c, a solution to the TUP is an assignment of n
umpire crews (umpires, for short) that satisfies the following
constraints:

(i) In each round, each umpire is assigned to exactly one game
and each game must be assigned to an umpire;

(ii) Each umpire visits every team at home at least once;
(iii) Each umpire visits any given venue at most once in any

sequence of n� d1 consecutive games;
(iv) Each umpire sees any given team at most once in any

sequence of bn2c � d2 consecutive games.

The objective is to find a feasible solution that minimizes the to-
tal distance traveled by the umpires over the entire tournament.

When d1 ¼ d2 ¼ 0, TUP instances tend to be more difficult to
solve because constraints (iii) and (iv) become stricter. We refer
to these instances as hard instances. To allow for a wider range in
the degree of difficulty, the TUP benchmark also includes instances
with d1 þ d2 > 0, to which we refer as relaxed instances.
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Our main contributions are: (1) we strengthen a known integer
programming formulation for the TUP and use it to implement a
relax-and-fix heuristic that improves the quality of 24 out of 25
best-known feasible solutions to instances in the TUP benchmark;
and (2) using our stronger formulation, we improve all best-known
lower bounds for those instances and, for the first time, provide
lower bounds for instances with more than 16 teams.

Before explaining our approach in detail, we review the existing
exact and heuristic methods for solving the TUP.

2. Previous work

Trick and Yildiz (2007) present exact integer programming (IP)
and constraint programming (CP) models for the TUP and test
them on benchmark instances ranging from 4 to 16 teams, as well
as on a 30-team instance. These same models are also used in Trick
and Yildiz (2011); Trick and Yildiz (2012); and Trick et al. (2012),
but in Trick and Yildiz (2011) and Trick and Yildiz (2012) the per-
formance of the IP model is improved by a better choice of solver
parameters (execution times were limited to three hours). Their
IP model finds optimal solutions to all instances with at most 10
teams. The CP model finds optimal solutions to all instances with
at most 8 teams, and also to one of the four 10-team instances.
In addition, it manages to prove that the 12-team instance is infea-
sible; a conclusion that was not obtained by the IP model within
the allowed computation time. When it comes to hard instances
with 14 teams, both IP and CP find feasible solutions to all four in-
stances, with the CP model beating the IP model in terms of solu-
tion quality in three of the four cases. Neither the IP nor the CP
models managed to find any feasible solutions to hard instances
with more than 14 teams. When run on relaxed instances, the CP
model finds feasible solutions to all eight 14-team and all twelve
16-team instances. The IP model finds feasible solutions to 17 of
these 20 instances (three 16-team instances had no solution after
3 hours), but all 17 solutions are better than their counterpart solu-
tions found by the CP model. Neither method managed to find
provably optimal solutions to any of the relaxed instances with
more than 10 teams.

On the heuristic side, we focus on hard and relaxed instances
with at least 14 teams because none of them have known optimal
solutions (29 instances in total; 25 with known feasible solutions).
Trick et al. (2012) describe a greedy matching heuristic (GMH) and
a two-exchange local search that are combined to build a simu-
lated annealing (SA) heuristic. The SA heuristic does reasonably
well on the real-life Major League Baseball problem of 2006, but
it does not perform so well on the TUP instances. Trick and Yildiz
(2011) incorporate the GMH into a large neighborhood search
guided by Benders cuts that help repair the solution being built
when the heuristic gets stuck. This improved GMH, which they call
GBNS, finds feasible solutions to 23 out of 25 instances with previ-
ously known solutions, with 16 of those solutions being improve-
ments over the best results at the time. In a follow-up paper, Trick
and Yildiz (2012) propose a genetic algorithm (GA) with a cross-
over operator that uses a matching scheme to recombine the indi-
viduals of a population. Their GA further improves the quality of 14
instances with respect to the GBNS results. As of August, 2013, the
results published in Trick (2013) indicate that the four best-known
solutions to the 14-team hard instances were obtained by Wauters
(2013). Table 1 shows how many of the 25 best-known solutions to
date have been found by each of the most successful methods de-
scribed above. The GA currently owns the majority of best-known
solutions (13 out of 25), including the best solution to the 30-team
instance.

The remainder of this paper is organized as follows. In Section 3,
we present the IP formulation of Trick and Yildiz (2011) and show
how it can be strengthened. We describe our relax-and-fix heuris-
tic in Section 4, and provide computational results in Section 5. We
conclude the paper and discuss future research directions in
Section 6.
3. IP formulations

For simplicity, we use letters i and j to refer to teams i and j, as
well as their respective home venues. In addition, we use letters u
and s to refer to an umpire and a round in the tournament,
respectively.
3.1. The original formulation

The IP formulation used by Trick and Yildiz (2011); Trick and
Yildiz (2012); and Trick et al. (2012) starts with the following input
data:

� Set of umpires U ¼ f1; . . . ;ng;
� Set of teams T ¼ f1; . . . ;2ng;
� Set of rounds S ¼ f1; . . . ;4n� 2g;

� OPP½s; i� ¼ j if i plays against j at venue i in round s
�j if i plays against j at venue j in round s;

�
� dij = distance in miles between venues i and j;
� CVs ¼ fs; . . . ; sþ n� d1 � 1g for any given round s 2 f1; . . . ;

4n� 2� ðn� d1 � 1Þg;
� CTs ¼ fs; . . . ; sþ bn2c � d2 � 1g for any given round

s 2 f1; . . . ;4n� 2� ðbn2c � d2 � 1Þg.

The decision variables are:

� xisu ¼
1 if the game at venue i inround s isassigned

toumpire u
0 otherwise;

8<
:

� zijsu ¼ 1 if umpire u is at venue i in round s and travelsf
to venue j in round sþ 10 otherwise:

We are now ready to state the formulation.

min
X
i2T

X
j2T

X
u2U

X
s2S:s<jSj

dijzijsu ð1Þ
X
u2U

xisu ¼ 1; 8 i 2 T; s 2 S : OPP½s; i� > 0; ð2Þ
X

i2T:OPP½s;i�>0

xisu ¼ 1; 8 s 2 S;u 2 U; ð3Þ
X

s2S:OPP½s;i�>0

xisu P 1; 8 i 2 T;u 2 U; ð4Þ

X
c2CVs :OPP½c;i�>0

xicu 6 1;
8 i 2 T;u 2 U; s 2 S :

s 6j S j �ðn� d1 � 1Þ;
ð5Þ

X
c2CTs

xicu þ
X

j2T:OPP½c;j�¼i

xjcu

 !
6 1;

8 i 2 T;u 2 U; s 2 S :

s 6j S j �ð n
2

� �
� d2 � 1Þ; ð6Þ

xisu þ xjðsþ1Þu � zijsu 6 1; 8 i; j 2 T;u 2 U; s 2 S : s <j S j; ð7Þ
xisu 2 f0;1g; 8 i 2 T;u 2 U; s 2 S; ð8Þ
zijsu 2 f0;1g; 8 i; j 2 T;u 2 U; s 2 S : s <j S j : ð9Þ

The objective function (1) minimizes the total distance traveled
by the umpires. Constraints (2) and (3) state that each game is ref-
ereed by an umpire, and each umpire is assigned to a game, respec-
tively. TUP constraints (ii), (iii), and (iv) from Section 1 are modeled
by (4)–(6), respectively. Finally, (7) ensures that game (x) and tra-
vel (z) assignments are consistent.

Trick and Yildiz (2011) improve the above formulation by
including the following constraints:



Table 1
Number of best-known solutions found by existing solution methods according to the TUP benchmark web site.

Solution method Instance type/# teams

d1 ¼ d2 ¼ 0 d1 þ d2 > 0

14 16 14 16

IP of Trick and Yildiz (2011) 1 2
GBNS of Trick and Yildiz (2011) 5
GA of Trick and Yildiz (2012) 7 6
Wauters (2013b) 4
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xisu ¼ 0; 8 i 2 T;u 2 U; s 2 S : OPP½s; i� < 0; ð10Þ
zijsu � xisu 6 0; 8 i; j 2 T;u 2 U; s 2 S : s <j S j; ð11Þ
zijsu � xjðsþ1Þu 6 0; 8 i; j 2 T;u 2 U; s 2 S : s <j S j; ð12ÞX
j2T

zjisu �
X
j2T

zijðsþ1Þu ¼ 0; 8 i 2 T;u 2 U; s 2 S : s <j S j �1; ð13Þ
X
i2T

X
j2T

zijsu ¼ 1; 8 u 2 U; s 2 S : s <j S j : ð14Þ

Constraint (10) forbids the assignment of an umpire to a venue
where no game is played in the given round. Constraints (11) and
(12) allow an umpire to move from or to a venue in round s and
sþ 1, respectively, only if the umpire is assigned to the venue in
those rounds. The flow conservation constraint (13) states that if
umpire u is (is not) at venue i in round sþ 1, his trip from round
sþ 1 to round sþ 2 must (must not) start at venue i. Constraint
(14) forces every umpire to move from one round to the next.

Formulation (1)–(14) suffers from symmetry because, given a
solution, n! equivalent solutions can be obtained by permuting
the umpires. To overcome this problem, Yildiz (2008) fixes the
games refereed by each umpire in a given round k, which is chosen
arbitrarily in the interval ½1;4n� 2�. To accomplish that, we enforce
(15) for a given set K of tuples that assign each umpire to a differ-
ent venue where a game takes place in round k:

xiku ¼ 1; 8 ði;uÞ 2 K: ð15Þ

We refer to round k as the symmetry breaking round, and to for-
mulation (1)–(15) as F 1. The linear relaxation of F 1, in which we
replace the integrality constraints 8–9 with 0 6 xisu 6 1 and
0 6 zijsu 6 1, is denoted by F R

1.

3.2. A stronger formulation

Based on F 1, we propose a stronger formulation for the TUP
that includes the following valid identities:

xi1u ¼
X
j2T

zij1u 8 i 2 T;u 2 U; ð16Þ

xisu ¼
X
j2T

zjiðs�1Þu 8 i 2 T;u 2 U; s 2 S : s > 1: ð17Þ

Constraint (16) ensures that an umpire u is assigned to a venue i in
the first round if, and only if, u travels away from i in this round. Anal-
ogously, (17) enforces that an umpire u is assigned to a venue i in
round s > 1 if, and only if, u travels to i between rounds s� 1 and s.

Because (16)–(17) are equalities, variable x can be eliminated
from F 1 by replacing each of its occurrences with the proper sum-
mation over z. Let F 2 be the formulation that results from F 1 after
both eliminating x and removing (3), (7), (11), (12), and (14). We
refer to the linear relaxation of F 2 as F R

2.

Proposition 1. F 2 is a valid IP formulation for the TUP.
Proof. It suffices to show that (3), (7), (11), (12), and (14) are
implied by the conjunction of (16) and (17) with the remaining
constraints of F 1. For simplicity, and without loss of generality,
we will show the implications before eliminating x from the model.
First, by combining (13) and (16), (17) we obtain the following
identity:

xisu ¼
X
j2T

zijsu; 8 i 2 T;u 2 U; s 2 S : s <j S j : ð18Þ

To see that (18) implies (11), note that
P

j2T zijsu P zihsu for any given
h 2 T. The proof that (17) implies (12) is analogous.

We now show that (3) and (14) are implied constraints. Because
of (13), we can writeX
i2T

X
j2T

zij1u ¼ . . . ¼
X
i2T

X
j2T

zijku ¼ . . . ¼
X
i2T

X
j2T

zijðjSj�1Þu; 8 u 2 U;

ð19Þ

and, by replacing the inner summations in (19) with the appropri-
ate x variables according to (18), we obtain the equivalent equalities
in (20), except for the last one:X
i2T

xi1u ¼ . . . ¼
X
i2T

xiku ¼ . . . ¼
X
i2T

xiðjSj�1Þu ¼
X
i2T

xiðjSjÞu; 8 u 2 U:

ð20Þ

To obtain the last equality in (20) we replace the rightmost inner
summation in (19) with the appropriate x variable according to (17).

Because of (15),
P

i2T xiku ¼ 1. Thus, all the expressions in (19)
and (20) are equal to 1. Since the summations in (19) and (20) are
the same as those in (14) and (3), respectively, the latter are
satisfied.

Finally, we show that (7) is an implied constraint. For any
u 2 U; s 2 S; s < jSj, we have seen that combining (15), (19), and
(20) yieldsX
i2T

X
j2T

zijsu ¼ 1:

Hence, for a given pair of venues i; j in the double-summation
above, we haveX
h2T:h–j

zihsu þ
X

h2T:h–i

zhjsu þ zijsu 6 1;

which is equivalent toX
h2T

zihsu þ
X
h2T

zhjsu � zijsu 6 1: ð21Þ

Because of (18), we can substitute xisu for
P

h2T zihsu in (21). Sim-
ilarly, (17) allows us to substitute xjðsþ1Þu for

P
h2T zhjsu in (21), turn-

ing it into (7). h

We are now ready to show that F 2 is stronger than F 1.

Proposition 2. The lower bound provided by F R
2 is greater than or

equal to the lower bound provided by F R
1. Moreover, the former bound

can be strictly greater than the latter.

Proof. From the proof of Proposition 1, it is clear that the lower
bound provided by F R

2 cannot be worse than the lower bound pro-
vided by F R

1. Therefore, it suffices to show an example in which the
former bound is strictly greater than the latter. Consider a TUP
instance with four teams (represented by a table of games in each
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round) as shown in Fig. 1. The first team in each pair (game) is the
home team. Suppose that teams 1, 2, and 3 have their venues close
to each other (say, 1 mile away), and the venue of team 4 is
further away from the others (say, 10 miles away). In this
scenario, an optimal solution to F R

1 with d1 ¼ d2 ¼ 0; k ¼ 1, and
K ¼ fð1;1Þ; ð3;2Þg corresponds to assigning value 1 to variables
x111 and x312, value 0 to variables x311 and x112, value 0.5 to all other
xisu variables where i 2 T; s 2 S;u 2 U, and OPP½i; s� > 0, value 0.5 to
variables z of umpire 1 associated with the trips given by the sim-
ple solid and dashed lines in Fig. 1, and value 0.5 to variables z of
umpire 2 associated with the trips given by the simple and double
solid lines in Fig. 1. All remaining variables are equal to zero. The
optimal value is 25, which is a very weak lower bound because
the value of an optimal integer solution to this instance is 55.

Now, observe that (17) is not satisfied by the previous solution
because variables x441; x442; x461, and x462 have value 0.5 and all the
z variables arriving to or leaving from the venue of team 4 in
rounds 4 and 6 have value 0. Hence, this fractional solution
becomes infeasible once (17) is added to F R

1. In fact, the new
optimal solution found after the inclusion of (16) and (17) has
value 52, which is much closer to the integer optimum. h

It is possible to strengthen F R
2 further by fixing the following

variables:

ziisu ¼ 0; 8 i 2 T;u 2 U; s 2 S : s < jSj; if d1 < n� 1; ð22Þ

zijsu ¼ 0;
8 i – j 2 T;u 2 U; s 2 S : s < jSj; if d2 < bn2c � 1 and
either OPP½s; i� ¼ OPP½sþ 1; j� or OPP½s; i� ¼ j or
OPP½sþ 1; j� ¼ i:

ð23Þ

Note that (22) and (23) are valid because they forbid the assign-
ment of positive values to z variables that would violate TUP
constraints (iii) and (iv) (no umpire can stay at a venue, or follow
a team) when d1 and d2 are strictly less than their maximum
values. Let F 2þ and F R

2þ be, respectively, the formulations obtained
from F 2 and F R

2 after the inclusion of (22) and (23). In the example
of Fig. 1, the optimal solution obtained by F R

1 (see proof of
Proposition 2) violates (22) multiple times. For example, it sets
z2221 ¼ z2222 ¼ z2231 ¼ z2232 ¼ z3351 ¼ z3352 ¼ 0:5. Solving F R

2þ for that
example yields an integer (optimal) solution of value 55. Recall that
the lower bounds produced by F R

1 and F R
2 for that example are 25

and 52, respectively.

4. A relax-and-fix heuristic

A relax-and-fix heuristic iteratively solves relaxations of an IP
model and progressively fixes variables until a feasible solution is
found (Wolsey, 1998, Section 12.5). Our relax-and-fix heuristic is
based on F 2þ. It receives as input a TUP instance and an integer
1 6 b 6 4n� 3. The parameter b defines the size of a window of
consecutive rounds whose variables will be binary in the relaxed
model solved at each iteration of the algorithm. Starting with for-
mulation F 2þ with the symmetry breaking round k ¼ 1, we modify
it so that only the variables in the first b rounds are binary. This re-
laxed model is solved and, if it is infeasible, the algorithm stops.
Otherwise, the variables in the first round are fixed to their values
in the best solution found within some stopping criteria. In the
next iteration, variables in round bþ 1 are also made binary and
Fig. 1. A TUP instance. Dashed, simple and double solid lines represent umpire
trips.
the resulting model is solved. As before, we stop in case of infeasi-
bility, and fix the variables in the second round to their best values
otherwise. These steps are repeated until either all variables are
fixed, or the model becomes infeasible. The pseudocode in Fig. 2 in-
cludes more specific details, which we discuss next.

At iteration t, the heuristic solves a relaxed F 2þ model in which
the z variables in rounds s 6 t � 1; t 6 s < t þ b, and s P t þ b are
fixed, binary, and continuous, respectively. If this model is feasible,
the variables in round t are fixed to their values in the best solution
found after exploring no more than a given number of search nodes
(see Section 5.3 for details). Because intermediate solutions found
in line 8 of the pseudocode are not necessarily optimal for the last
model solved, the heuristic may continue to execute until iteration
t ¼ 4n� 3, when all variables in the model are fixed.

To keep running times under control, we use two different
strategies to solve the relaxations of F 2þ in each iteration of the re-
lax-and-fix heuristic. For instances with at most 18 teams, we solve
the models with all variables and constraints, as described above.
For instances with more than 18 teams, in each iteration t of the
heuristic we solve a relaxation of F 2þ that only includes the
variables and constraints relative to rounds no greater than
minð 2

5 ð4n� 2Þ
� �

þ t � 1;4n� 2Þ. (Recall that, in iteration t, all
variables relative to the t � 1 first rounds are fixed.) This is
equivalent to redefining the set S at each iteration to be
S¼f1; . . . ;minð 2

5ð4n�2Þ
� �

þ t�1;4n�2Þg. The value 2
5 ð4n� 2Þ
� �

was chosen experimentally with the goal of accelerating the heu-
ristic, while still allowing the model to look at enough rounds
ahead of round t to be able to find good solutions. To properly
disregard future rounds while solving relaxations of F 2þ, it is nec-
essary to deal with (4) in a different way. In early iterations, the
number of rounds considered by the relaxed F 2þ models is insuffi-
cient to satisfy the constraint. If we disregard (4) entirely for many
iterations, however, the variables that get fixed may make it
impossible to satisfy (4) later on. Therefore, we introduce (4) grad-
ually as follows. We disregard it during iterations t � n. In itera-
tions nþ 1;nþ 2; . . . ;2n� 1 we enforce (4) only for umpires
whose indices are less than or equal to 1;2; . . . ;n� 1, respectively,
and in iterations t > 2n� 1 we enforce (4) for all umpires.

Notice that our heuristic begins with a fixed assignment of um-
pires for the first round (k ¼ 1) and, at each iteration t, determines
the umpire trips between rounds t and t þ 1. This resembles the
GMH of Trick et al. (2012). The difference stems from the fact that
our relax-and-fix heuristic schedules the umpires in each round
while taking into account, in a relaxed way, the subsequent rounds
of the tournament. In addition, we deal with the trip distances di-
rectly, rather than using a modified cost function to schedule each
round. Finally, because our method is not guaranteed to find a
solution every time, we could use a backtracking scheme similar
to what is done with the GMH. In practice, however, we almost al-
ways find solutions to the instances that are known to be feasible.
Fig. 2. Pseudocode of the relax-and-fix heuristic.
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Therefore, to keep our implementation simple, we decided not to
use a backtracking step.

5. Computational results

In this section, we experimentally evaluate the IP models and
the relax-and-fix heuristic presented earlier. We consider instances
from the TUP benchmark (Trick, 2013) ranging from 4 to 32 teams.
Instance names start with the number of teams, optionally followed
by a letter indicating that the distance matrix is different, but the
underlying tournament is not. Experiments were performed on a
machine running Linux Ubuntu 12.04.1 and equipped with an
zi7-2600, 3.40 GHz processor, and 8 GB of RAM. Our code is written
in C++, and we use ILOG CPLEX’s callable library version 12.5.0.1 to
solve linear programming and integer programming models.

5.1. IP results on hard instances: Lower and upper bounds

Before solving the IP models, we analyze the strength of our
lower bounds. We focus first on hard instances (d1 ¼ d2 ¼ 0), and
fix the symmetry breaking round k ¼ 1. Table 2 shows the lower
bounds obtained by solving the linear relaxations of the original
IP model (F R

1) and of our stronger formulations (F R
2) and (F R

2þ).
We also include the solution time and the optimal distances for in-
stances with known optimal solutions. Note that, except for the
smallest instance (4 teams), F R

2 and F R
2þ always provide better low-

er bounds than F R
1. In particular, F R

2þ provides significantly better
bounds (up to 340% better) that are reasonably close to the known
optimal solutions, which attests the importance of (22) and (23). In
addition, F R

2 and F R
2þ solve between 2 and 8 times faster than F R

1

because they are more compact (fewer variables and constraints),
with F R

2þ having a slight advantage over F R
2.

Our experiments show that the choice of the symmetry break-
ing round k can significantly affect the value of the lower bound
Table 2
Lower bounds from the linear relaxations of different IP models of hard instances (d1 ¼ d

Instance Optimum Lower bound

F R
1 F R

2

4 5176 5176.0 5176.0
6 14,077 5874.3 7971.0
6A 15,457 7351.0 9228.0
6B 16,716 6541.0 9766.0
6C 14,396 5097.7 6717.3
8 34,311 11836.7 14787.3
8A 31,490 11659.4 13792.4
8B 32,731 11057.2 15408.7
8C 29,879 10717.6 12532.7
10 48,942 16781.1 20026.1
10A 46,551 13261.6 14991.3
10B 45,609 13832.1 17358.5
10C 43,149 14922.3 16594.7
12 26993.5 39722.3
14 43664.2 68706.4
14A 42484.1 67680.4
14B 41587.2 63116.8
14C 45634.8 68155.2
16 46133.6 65830.9
16A 51454.1 76574.5
16B 48635.1 86315.4
16C 36402.5 81699.4
18 49031.3 88031.7
20 47183.0 92467.9
22 55629.1 109778.0
24 56630.0 119211.0
26 59919.4 129532.0
28 72861.6 161630.0
30 83710.2 166316.0
32 97058.9 186105.0
provided by the linear relaxations. However, it is difficult to deter-
mine a priori what value of k leads to the best results for the inte-
ger models. Therefore, we solve the IP models with three different
values of k : 1 (first round), 2n� 1 (middle round), and the value k�

that produces the best lower bound. The models adjusted with
each chosen value of k are denoted as before but followed by the
suffixes ‘‘-F’’ (first-round k), ‘‘-M’’ (middle-round k) and ‘‘-BB’’
(best-bound k), respectively.

We now switch from root-node lower bounds to solving the IP
models, while still focusing on hard instances. We limit execution
times to 3 hours and limit the number of CPU threads to one.
Table 3 shows the optimal distances and execution times for hard
instances with 12 or fewer teams. In general, F 2þ exhibits better
performance than F 1. For a given formulation, breaking symmetry
in the middle round often speeds up the optimization, whereas
breaking symmetry in the first round tends be a bad idea. There-
fore, we disregard F 1-F and F 2þ-F in subsequent experiments.

Table 4 summarizes the results for hard instances with at least
14 teams, which have no known optimal solutions. Calculating k�

for F 1-BB on instances with at least 26 teams, and for F 2þ-BB on
instance 32 takes longer than 3 hours. In these cases, we report
the best lower bound found within 3 hours, which is marked with
an ‘‘⁄’’, and do not execute CPLEX’s branch-and-cut. The lower
bounds in Table 4 contain unexpected results for F 1. Although
F R

1 does not perform well in Table 2, it appears that the root-node
presolve and strengthening routines of CPLEX are able to improve
it, enabling F 1 to achieve competitive lower bounds in 3 hours. For
example, the best lower bounds for instances with 16 and 18 teams
are given by F 1-BB. On the other hand, this model yields very poor
lower bounds for instances with more than 24 teams within the
time limit. The F 2þ models achieve the best lower bounds on
instances with 14 teams, or with more than 18 teams, with the lat-
ter being significantly better than those provided by the F 1 mod-
els. Overall, F 2þ-BB obtains 8 out of the 16 best lower bounds,
2 ¼ 0) with k ¼ 1.

Time (seconds)

F R
2þ F R

1 F R
2 F R

2þ

5176.0 0.0 0.0 0.0
14077.0 0.0 0.0 0.0
13672.3 0.0 0.0 0.0
15786.3 0.0 0.0 0.0
14396.0 0.0 0.0 0.0
33723.2 0.1 0.0 0.0
30193.9 0.0 0.0 0.0
31724.4 0.0 0.0 0.0
27718.3 0.0 0.0 0.0
48040.1 0.2 0.1 0.1
44909.8 0.2 0.1 0.1
44238.7 0.2 0.1 0.1
39618.2 0.2 0.1 0.1
82753.4 0.6 0.3 0.3

140180.0 1.7 0.8 0.9
132063.0 1.7 0.9 0.8
129671.0 1.8 0.8 0.8
125719.0 2.0 0.9 0.8
131264.0 6.1 2.3 2.0
145901.0 5.5 2.3 2.0
143592.0 6.1 2.6 2.0
144402.0 4.8 2.1 1.9
152548.0 14.2 4.2 4.0
183820.0 40.4 9.3 8.0
209092.0 73.4 21.2 15.2
226090.0 136.9 35.2 28.9
266366.0 302.3 69.3 47.1
302138.0 463.9 100.3 85.9
338267.0 1169.8 170.7 143.6
371968.0 1786.5 322.0 227.8



Table 5
Best results for the IP models on relaxed instances with at least 14 teams (d1 þ d2 > 0). Execution times limited to 3 hour. Best values appear in bold.

Instance n� d1 bn2c � d2 Best lower bound after 3 hour Best solution after 3 hour

F 1-M F 1-BB F 2þ-M F 2þ-BB F 1-M F 1-BB F 2þ-M F 2þ-BB

14 6 3 149,422 150,041 149,883 149,904 167,931 167,800 164,169 165,975

14 5 3 149,446 150,270 149,541 150,194 160,069 160,591 161,905 159,511
14A 6 3 143,138 143,207 143,931 142,456 163,872 163,622 159,054 161,201

14A 5 3 142,230 142,321 143,504 142,600 158,604 158,878 154,840 159,703

14B 6 3 141,839 142,196 142,608 143,378 165,052 164,691 158,050 164,089

14B 5 3 142,117 142,237 143,706 143,147 157,907 157,174 154,739 157,724

14C 6 3 140,967 141,213 141,791 140,393 163,934 159,388 153,841 157,034

14C 5 3 141,717 141,299 141,558 141,801 154,944 156,541 152,046 153,178

16 8 2 142,005 143,420 142,019 143,840 185,505 183,167 206,299 186,108
16 7 3 143,780 144,265 144,325 145,987 207,226 188,486 190,281 195,551
16 7 2 138,027 137,443 139,888 141,440 177,925 167,697 170,288 163,193
16A 8 2 155,542 157,013 155,743 157,972 216,598 199,684 194,050 190,233
16A 7 3 156,544 159,146 157,393 160,314 210,267 205,345 209,604 215,136
16A 7 2 152,063 154,563 154,023 155,342 186,439 180,372 176,793 182,317
16B 8 2 152,675 157,356 153,734 158,035 206,044 212,300 240,845 208,859
16B 7 3 154,667 157,955 155,988 158,244 215,692 237,571 217,261
16B 7 2 151,406 155,173 152,218 155,403 203,491 192,062 191,213 184,991
16C 8 2 157,239 158,164 158,051 160,596 205,626 192,741 213,953 205,095

16C 7 3 159,916 160,438 159,970 161,838 211,880 206,505 222,039 223,262

16C 7 2 156,421 156,810 157,357 158,527 186,989 192,311 182,307 182,011
30 5 5 336,470 75,891⁄ 367,877 361,175

Table 4
Best results for the IP models on hard instances with at least 14 teams (d1 ¼ d2 ¼ 0). Execution times limited to 3 hour. Best values appear in bold.

Instance Best lower bound after 3 hour Best solution after 3 hour

F 1-M F 1-BB F 2þ-M F 2þ-BB F 1-M F 1-BB F 2þ-M F 2þ-BB

14 149,636 149,963 150,045 150,871 179,343 177,139 175,524 174,715
14A 142,394 142,759 143,517 141,308 166,712 172,367 165,968 171,961
14B 141,795 141,608 141,645 142,614 172,828 176,709 168,659 170,804
14C 141,196 141,148 141,268 138,601 168,037 168,787 164,512 167,898
16 148,059 151,748 147,906 150,523
16A 161,087 166,626 160,831 166,101
16B 158,322 162,251 159,324 161,882
16C 162,640 165,431 162,505 164,235
18 171,264 177,055 173,815 175,321
20 198,706 199,460 201,769 204,278
22 222,713 228,074 224,841 231,809
24 246,620 248,817 248,977 253,506
26 283,971 73,900⁄ 286,239 286,847
28 312,655 87,273⁄ 317,629 319,044
30 343,013 94,713⁄ 352,258 344,831
32 371,143 97,059⁄ 377,531 382,508⁄

Table 3
Optimal results obtained by IP formulations on hard instances with at most 12 teams (d1 ¼ d2 ¼ 0).

Instance Optimum Time (seconds)

F 1-F F 1-M F 1-BB F 2þ-F F 2þ-M F 2þ-BB

4 5176 0.00 0.00 0.00 0.00 0.00 0.00
6 14,077 0.02 0.02 0.02 0.02 0.01 0.02
6A 15,457 0.05 0.02 0.03 0.02 0.01 0.01
6B 16,716 0.03 0.03 0.04 0.02 0.02 0.02
6C 14,396 0.02 0.02 0.03 0.01 0.01 0.02
8 34,311 0.53 0.06 0.15 0.38 0.03 0.03
8A 31,490 0.30 0.06 0.05 0.24 0.03 0.02
8B 32,731 0.30 0.06 0.06 0.12 0.02 0.02
8C 29,879 0.65 0.06 0.04 0.53 0.03 0.02
10 48,942 38.10 1.68 1.64 14.56 1.17 1.87
10A 46,551 52.05 4.77 5.48 21.25 1.00 4.27
10B 45,609 25.52 2.32 3.59 5.67 0.73 0.73
10C 43,149 335.33 9.19 13.54 34.49 2.78 1.92
12 Infeasible 3172.34 101.10 857.48 2556.69 71.47 627.42
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Table 7
Execution times (seconds) for the relax-and-fix heuristic on relaxed instances with at least 14 teams.

Instance n� d1 bn2c � d2 Width of shifting window of binary variables (parameter b)

1 2 3 4 5 6 7 8 9 10 4, 6, 7 1–10

14 7 3 157 254 339 501 716 947 1099 1238 1528 1815 2547 8594
14 6 3 147 262 302 599 721 953 1106 1181 1424 1336 2657 8031
14 5 3 125 192 278 493 725 810 989 944 1053 1112 2291 6721
14A 7 3 179 383 511 722 775 1132 1376 1647 1703 1743 3231 10,171
14A 6 3 159 348 485 578 898 1053 1356 1374 1404 1546 2988 9201
14A 5 3 150 254 397 640 802 931 1099 1227 1316 1319 2670 8134
14B 7 3 170 331 504 497 785 901 1232 1405 1386 1641 2631 8852
14B 6 3 170 303 524 677 925 1172 1290 1453 1552 1579 3139 9645
14B 5 3 150 272 434 680 917 1096 1170 1170 1251 1331 2946 8472
14C 7 3 151 334 608 681 889 1062 1342 1346 1578 1674 3085 9665
14C 6 3 151 271 476 539 736 1068 1244 1371 1433 1434 2851 8723
14C 5 3 137 227 384 588 775 995 1045 1198 1241 1223 2629 7813
16 8 2 701 1398 1596 1711 2022 2287 2529 2968 3079 3077 6528 21,369
16 7 3 722 1577 1876 2231 3264 4073 4417 5199 5710 6073 10,721 35,143
16 7 2 771 1293 1620 2169 2572 2800 2901 3239 3628 3584 7869 24,577
16A 8 2 848 1333 1676 1729 2200 2259 2351 2818 3045 2954 6339 21,213
16A 7 3 954 1690 1952 2718 3311 3537 4473 4830 5591 6506 10,728 35,560
16A 7 2 821 1110 1984 2099 2272 2379 3089 3191 3469 3819 7567 24,232
16B 8 2 927 1633 1861 1985 2325 2577 2934 2968 3305 3396 7495 23,911
16B 7 3 935 1464 1939 2536 2981 4265 4296 4519 5534 5832 11,097 34,301
16B 7 2 872 1316 1950 2128 2499 2948 2996 3525 3438 4112 8072 25,784
16C 8 2 844 1326 1563 1892 1842 2211 2671 2791 3187 3557 6774 21,884
16C 7 3 764 1188 1812 2433 2721 3235 3991 4615 1122 4836 9659 26,717
16C 7 2 834 1151 1558 1780 1948 2437 2729 2893 3012 3200 6947 21,543
30 5 5 16,352 13,817 11,825 10,821 8397 14,917 5208 4841 5033 6455 30,946 97,666

Table 6
Solutions obtained by the relax-and-fix heuristic on relaxed instances with at least 14 teams. Best values appear in bold.

Instance n� d1 bn2c � d2 Width of shifting window of binary variables (parameter b)

1 2 3 4 5 6 7 8 9 10

14 7 3 No sol. 178,226 174,652 168,408 170,629 169,981 168,408 165,573 166,942 170,250
14 6 3 165,529 165,764 159,522 163,818 159,622 162,377 160,907 159,601 164,450 163,573
14 5 3 160,913 158,103 156,442 158,054 158,293 156,456 157,942 157,404 155,439 155,958
14A 7 3 168,422 171,938 166,357 164,136 160,830 163,471 163,860 164,784 160,046 163,433
14A 6 3 No sol. 156,183 157,219 162,614 158,619 156,437 158,237 157,034 158,133 154,628
14A 5 3 153,955 154,251 154,218 154,891 152,588 154,441 149,331 149,956 152,855 152,490
14B 7 3 No sol. 173,698 162,952 162,634 160,242 163,629 157,884 162,305 157,884 163,329
14B 6 3 162,891 163,161 158,818 157,927 157,222 153,611 158,291 155,358 158,382 158,735
14B 5 3 156,321 155,125 153,724 150,268 150,865 151,251 150,933 150,760 150,954 153,202
14C 7 3 176,479 174,595 166,559 163,227 160,262 160,274 163,720 159,518 164,778 161,049
14C 6 3 164,223 155,523 158,304 152,158 154,954 154,026 155,025 155,435 154,366 155,200
14C 5 3 153,697 151,914 149,662 150,415 149,727 150,346 151,048 150,678 150,471 151,426
16 8 2 168,647 168,094 166,688 160,705 161,771 167,482 163,733 164,187 165,098 167,015
16 7 3 No sol. 181,556 177,557 169,994 174,009 170,487 172,549 179,940 173,088 177,242
16 7 2 163,438 157,184 153,996 158,043 157,379 155,796 155,766 154,153 158,130 153,978
16A 8 2 183,344 174,841 178,320 173,956 175,092 176,821 173,950 176,664 176,266 174,546
16A 7 3 186,667 193,983 185,198 188,957 183,192 192,059 182,889 181,119 188,879 188,475
16A 7 2 177,235 165,675 168,224 167,010 168,058 164,620 168,032 170,486 167,538 168,810
16B 8 2 187,840 186,326 187,514 185,223 186,853 185,541 182,673 184,750 183,238 185,253
16B 7 3 207,308 194,064 189,257 191,234 188,064 191,026 187,488 188,198 189,596 187,007
16B 7 2 183,841 172,083 171,962 172,704 172,336 172,688 170,194 172,169 172,274 173,143
16C 8 2 193,358 184,873 181,205 180,221 182,568 184,103 182,706 187,598 185,487 184,753
16C 7 3 189,776 No sol. 188,855 191,021 187,649 185,528 189,251 189,367 No sol. 194,055
16C 7 2 174,744 174,401 172,033 171,802 170,909 169,184 170,267 171,046 172,319 170,854
30 5 5 466,765 484,447 479,056 475,572 487,552 471,724 No sol. No sol. No sol. No sol.
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and gets reasonably close in the remaining cases, except for in-
stance 30. The best lower bounds shown in Table 4 are better than
the best known bounds reported in the TUP benchmark, for all in-
stance sizes. In particular, the benchmark reports no lower bounds
for instances with more than 16 teams.

When it comes to quality of feasible solutions, no formulation
finds solutions to hard instances with more than 14 teams (no such
solutions are known, to the best of our knowledge). Formulation
F 2þ-M finds three out of the four best 14-team solutions, all of
which are better than the best known solutions found by exact
methods reported in Trick and Yildiz (2012).
5.2. IP results on relaxed instances: Lower and upper bounds

Table 5 summarizes the performance of our IP models on re-
laxed instances (d1 þ d2 > 0) with at least 14 teams. Because calcu-
lating k� for the 30-team instance with F 1-BB takes too long, we
report the best lower bound found within 3 hours and mark it with
an ‘‘⁄’’. Except for the first two 14-team instances, the lower
bounds provided by F 2þ models are always better than those pro-
vided by F 1 models. The F 2þ-BB model is responsible for 14 out of
the 21 best lower bounds, and its solution is reasonably close to the
best bound in the remaining cases. Formulation F 2þ-M does well



Table 8
Comparison between the best results obtained by our exact and heuristic approaches and the best results from literature on hard and relaxed instances with at least 14 teams.

Instance n� d1 bn2c � d2 Lower bounds Solution values

Lit. Best F R
2þ-BB F 2þ-BB F Best Lit. Best F Best RF Worst RF 4,6,7 RF Best

14 7 3 141,253 143,089 150,871 150,871 166,964 174,715 178,226 168,408 165,573
14 6 3 141,064 142,716 149,904 150,041 173,681 164,169 165,764 160,907 159,522
14 5 3 141,134 142,478 150,194 150,270 165,558 159,511 160,913 156,456 155,439
14A 7 3 133,279 135,149 141,308 143,517 160,407 165,968 171,938 163,471 160,046
14A 6 3 133,194 134,971 142,456 143,931 164,857 159,054 162,614 156,437 154,628
14A 5 3 133,023 134,884 142,600 143,504 162,380 154,840 154,891 149,331 149,331
14B 7 3 131,373 131,684 142,614 142,614 161,129 168,659 173,698 157,884 157,884
14B 6 3 130,799 131,542 143,378 143,378 168,476 158,050 163,161 153,611 153,611
14B 5 3 130,628 131,301 143,147 143,706 160,443 154,739 156,321 150,268 150,268
14C 7 3 126,843 131,163 138,601 141,268 159,461 164,512 176,479 160,274 159,518
14C 6 3 126,613 130,921 140,393 141,791 166,395 153,841 164,223 152,158 152,158
14C 5 3 126,427 130,556 141,801 141,801 163,662 152,046 153,697 150,346 149,662
16 8 4 134,471 134,151 150,523 151,748
16 8 2 134,347 132,563 143,840 143,840 178,775 183,167 168,647 160,705 160,705
16 7 3 121,933 127,593 145,987 145,987 185,966 188,486 181,556 169,994 169,994
16 7 2 121,670 126,946 141,440 141,440 166,114 163,193 163,438 155,766 153,978
16A 8 4 148,377 147,551 166,101 166,626
16A 8 2 146,992 145,595 157,972 157,972 188,432 190,233 183,344 173,950 173,950
16A 7 3 137,178 142,945 160,314 160,314 199,016 205,345 193,983 182,889 181,119
16A 7 2 137,806 142,056 155,342 155,342 172,728 176,793 177,235 164,620 164,620
16B 8 4 146,646 146,805 161,882 162,251
16B 8 2 145,058 145,383 158,035 158,035 201,039 206,044 187,840 182,673 182,673
16B 7 3 139,833 141,838 158,244 158,244 202,395 215,692 207,308 187,488⁄ 187,007
16B 7 2 139,742 141,552 155,403 155,403 184,923 184,991 183,841 170,194 170,194
16C 8 4 145,012 152,698 164,235 165,431
16C 8 2 144,398 150,451 160,596 160,596 202,023 192,741 193,358 180,221 180,221
16C 7 3 142,467 148,932 161,838 161,838 213,157 206,505 194,055 185,528 185,528
16C 7 2 142,399 148,481 158,527 158,527 181,013 182,011 174,744 169,184 169,184
30 5 5 336,124 361,175 367,877 483,224 487,552 471,724⁄ 466,765
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with 14-team instances, finding 4 out of the 8 best lower bounds,
and it also finds the best bound for the 30-team instance. When
it comes to feasible solutions, F 2þ-M manages to find 8 out of
the 21 best solutions.

The best lower bounds shown in Table 5 are better than the best
known bounds reported in the TUP benchmark, for all instance
sizes. In addition, 18 out of the 20 best solutions shown in Table 5
are better than the best solutions found by exact methods reported
in Trick and Yildiz (2012). More importantly, 11 of these solutions
(underlined numbers) are better than the best known solution
found by any method, according to the TUP benchmark. In Sec-
tion 5.3, we show that our heuristic can do even better than that.

5.3. Heuristic results

We use CPLEX to solve the optimization models inside the relax-
and-fix heuristic (see Table A.9 in A for the parameter settings we
used). We apply the relax-and-fix heuristic with b ¼ 1;2; . . . ;10 to
the instances used in our previous experiments. The heuristic finds
an optimal solution to all but one of the hard instances with at most
10 teams. (The best solution obtained by the heuristic for instance
10C is 43,193, which is close to the optimal distance of 43,149.) The
total time spent to obtain these solutions for all values of b is at
most 1 second for instances with 4 and 6 teams, at most 10 seconds
for instances with 8 teams, at most 2 minutes for instances 10, 10A,
and 10B, and around 3 minutes for instance 10C. Tables 6 and 7
present, respectively, the solution values and execution times for
hard and relaxed instances with at least 14 teams. Unfortunately,
similarly to previous attempts reported in the literature, the
relax-and-fix heuristic does not manage to find feasible solutions
to hard instances with more than 14 teams. For the instances to
which it manages to find a feasible solution, the heuristic appears
to be reliable, obtaining solutions in 240 out of 250 runs (25 in-
stances, 10 values of b). Most of the best solutions (14 out of 25)
are found with b ¼ 4;6, or 7. Finally, we also include in Table 7
the total cumulative time to find the solutions for b 2 f4;6;7g (col-
umn ‘‘4,6,7’’) and for b 2 f1;2; . . . ;10g (column ‘‘1–10’’).

5.4. Best results

We now compare the best results obtained by our approaches
(exact and heuristic) with the best results from the literature,
which are published in Trick and Yildiz (2011); Trick and Yildiz
(2012); Trick et al. (2012); and Trick (2013). The most relevant
comparison for hard instances with no more than 10 teams are
the times required to reach optimality. Table 3 indicates that our
strengthened formulation F 2þ does better than F 1 on these small
instances, and that a good choice of k (e.g. middle-round) pays off.

The main improvements we achieve are on instances with at
least 14 teams, which have no known optimal solutions. Table 8
summarizes the best results for these instances (an ‘‘⁄’’ indicates
that the time limit was exceeded; see Table 7). The best lower
bounds and solutions from the literature were obtained within
3 hours of computation for instances with 14 and 16 teams, and
within 5 hours for the relaxed 30-team instance (solution only;
no lower bound is reported). The lower bounds provided by F R

2þ-
BB are already better than the best ones in the literature on 25
out of 29 instances. They can be calculated in less than 1 minute
for instances with at most 16 teams, and in approximately 2 hours
for the instance with 30 teams. Within 3 hours of computation, the
best lower bounds found during branch-and-cut with F 2þ-BB beat
all known lower bounds by margins ranging between 8 and 24
thousand miles. The ‘‘F Best’’ column under ‘‘Lower bounds’’
shows the best bounds we managed to find over the entire range
of models we considered. These bounds are better than the F 2þ-
BB bounds on 13 out of 29 instances.

On the right half of Table 8 we compare the quality of the best
known solutions in the literature with those obtained by our IP
models and by the relax-and-fix heuristic. All of our best solutions
are obtained by some configuration of the relax-and-fix heuristic



Table A.9
CPLEX branch-and-cut parameters used to solve the models inside the relax-and-fix
heuristic.

Parameter 618 Teams >18 Teams

Number of parallel threads 1 1
MIP node limit 100 100
MIP repeat presolve Off Off
MIP heuristic frequency 2
RINS heuristic frequency 20
Feasibility pump heuristic On
SubMIP node limit 10
MIP probing level Very aggressive
MIP dive strategy Probing dive
MIP integer solution limit 1
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(column ‘‘RF Best’’). The only instance whose solution we do not
manage to improve is 14C-7-3 (by a mere 57 miles). For the
remaining 24 instances with known feasible solutions, our best
solutions are between 0.36 and 27.6 thousand miles shorter. When
compared with the best solutions obtained by the IP models (col-
umn ‘‘F Best’’), the best relax-and-fix solutions are between 1.68
and 28.6 thousand miles shorter. However, except for instances
with 14 teams, this comparison is unfair because finding the best
relax-and-fix solution over all values of b 2 f1;2; . . . ;10g takes
much more time than the limits of 3 and 5 hours (see Table 7).
Therefore, we include column ‘‘RF 4,6,7’’ which has the best solu-
tion obtained over three runs of relax-and-fix with b ¼ 4;6, and
7. These three runs obtain most of our best results (14 out of 25)
and, in total, stay within the time limits with two exceptions: in-
stance 16B-7-3 (3-hour limit exceeded by 5 minutes), and instance
30. When compared to the best known solutions in the literature,
solutions under ‘‘RF 4,6,7’’ have less mileage in 22 out of 25 cases.
The worst solutions obtained by the relax-and-fix heuristic (col-
umn ‘‘RF Worst’’) are better than the best known solutions in 18
out of 25 cases. Finally, for the relaxed instance with 30 teams, 4
out of the 6 solutions found by the relax-and-fix heuristic are bet-
ter than the best one in the literature, with the greatest improve-
ment being equal to 16,459 miles.

6. Conclusions and future work

By strengthening an existing IP formulation for the traveling
umpire problem (TUP), we obtain an optimization model that not
only solves more quickly than its original version, but also provides
better lower and upper bounds for instances in the TUP bench-
mark. This new formulation plays a crucial role in our implemen-
tation of a relax-and-fix heuristic for the problem, because each
iteration of the heuristic cannot dedicate too much time to solving
its intermediate IP models. As a result, we improve all known low-
er bounds for instances in the benchmark, as well as 24 of the 25
best known upper bounds. Moreover, we are the first to provide
strong lower bounds for instances with more than 16 teams.

The TUP remains a very difficult problem, with many small in-
stances lacking feasible solutions. We believe that a combination of
exact and heuristic methods is a promising research direction. The
TUP formulations deserve a deeper polyhedral study, and our re-
lax-and-fix heuristic can be modified in several ways. For example,
the sliding windows of binary variables can take different shapes,
focus first on problematic areas of the schedule (a bottleneck ap-
proach), and/or use randomization. Finally, not much attention
has been given to improving the CP model of Trick and Yildiz
(2011), and a more effective version of that model (e.g. with fancier
search routines) could become part of a relax-and-fix heuristic as
well.

We hope that the improvements in solution quality presented
in this paper will spark the interest of other researchers in tackling
this challenging problem.
Appendix A

See Table A.9.
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