Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/03772217)

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Decision Support

Improved bounds for the traveling umpire problem: A stronger formulation and a relax-and-fix heuristic $*$

Lucas de Oliveiraª, Cid C. de Souzaª, Tallys Yunes ^{b,}*

^a Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, Brazil ^b School of Business Administration, University of Miami, Coral Gables, FL, USA

article info

Article history: Received 29 August 2013 Accepted 11 December 2013 Available online 18 December 2013

Keywords: OR in sports Baseball **Heuristics** Integer programming Relax-and-fix Traveling umpire problem

ABSTRACT

Given a double round-robin tournament, the traveling umpire problem (TUP) consists of determining which games will be handled by each one of several umpire crews during the tournament. The objective is to minimize the total distance traveled by the umpires, while respecting constraints that include visiting every team at home, and not seeing a team or venue too often. We strengthen a known integer programming formulation for the TUP and use it to implement a relax-and-fix heuristic that improves the quality of 24 out of 25 best-known feasible solutions to instances in the TUP benchmark. We also improve all best-known lower bounds for those instances and, for the first time, provide lower bounds for instances with more than 16 teams.

- 2013 Elsevier B.V. All rights reserved.

1. Introduction

The assignment of officials (referees, umpires, judges, etc.) to the games of a competition is an important and difficult problem studied in the area of sports scheduling. The specific constraints and objectives vary according to the sport and type of competition, of course, but they typically aim to satisfy a given set of fairness criteria while minimizing costs (e.g. wages or travel). Existing research ranges over many different sports, including baseball ([Evans, Hebert, & Deckro, 1984; Evans, 1988; Trick & Yildiz,](#page-8-0) [2011; Trick & Yildiz, 2012; Trick, Yildiz, & Yunes, 2012\)](#page-8-0), cricket ([Wright, 1991\)](#page-8-0), football ([Yavuz,](#page-8-0) İnan, & Fığlalı, 2008), and tennis ([Farmer, Smith, & Miller, 2007](#page-8-0)). For more comprehensive surveys of sports-related problems, we refer to [Ernst, Jiang, Krishnamoor](#page-8-0)[thy, Owens, and Sier \(2004\) and Kendall, Knust, Ribeiro, and Urru](#page-8-0)[tia \(2010\)](#page-8-0).

We study the traveling umpire problem (TUP), which was first proposed by [Trick and Yildiz \(2007\)](#page-8-0) as an abstract version of the real-life umpire scheduling problem faced by Major League Baseball. Despite excluding many details present in the real problem, the TUP successfully captures the most important features that make the problem very challenging to solve. This is evidenced by the fact that many small instances remain unsolved in the official TUP benchmark: [Trick \(2013\).](#page-8-0)

Given a double round-robin tournament with 2n teams (each team plays against each other team twice, once at home and once on the road, over exactly $4n - 2$ rounds), the distances between the home venues of each pair of teams, and two integers $0 \le d_1 < n$ and $0 \leq d_2 < \lfloor \frac{n}{2} \rfloor$, a solution to the TUP is an assignment of n umpire crews (umpires, for short) that satisfies the following constraints:

- (i) In each round, each umpire is assigned to exactly one game and each game must be assigned to an umpire;
- (ii) Each umpire visits every team at home at least once;
- (iii) Each umpire visits any given venue at most once in any sequence of $n - d_1$ consecutive games;
- (iv) Each umpire sees any given team at most once in any sequence of $\lfloor \frac{n}{2} \rfloor - d_2$ consecutive games.

The objective is to find a feasible solution that minimizes the total distance traveled by the umpires over the entire tournament.

When $d_1 = d_2 = 0$, TUP instances tend to be more difficult to solve because constraints (iii) and (iv) become stricter. We refer to these instances as hard instances. To allow for a wider range in the degree of difficulty, the TUP benchmark also includes instances with $d_1 + d_2 > 0$, to which we refer as *relaxed instances*.

CrossMark

 $*$ This research was supported by Grant 01-P-01965-2012 from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazil) and Grants 142278/2013-0, 477692/2012-5 and 302804/2010-2 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil).

[⇑] Corresponding author. Address: School of Business Administration, University of Miami, 5250 University Drive, Room KE405, Coral Gables, FL 33146, USA. Tel.: +1 305 284 5107; fax: +1 305 284 2321.

E-mail addresses: lucas.oliveira@ic.unicamp.br (L. de Oliveira), cid@ic.unicamp.br (C.C. de Souza), tallys@miami.edu (T. Yunes).

Our main contributions are: (1) we strengthen a known integer programming formulation for the TUP and use it to implement a relax-and-fix heuristic that improves the quality of 24 out of 25 best-known feasible solutions to instances in the TUP benchmark; and (2) using our stronger formulation, we improve all best-known lower bounds for those instances and, for the first time, provide lower bounds for instances with more than 16 teams.

Before explaining our approach in detail, we review the existing exact and heuristic methods for solving the TUP.

2. Previous work

[Trick and Yildiz \(2007\)](#page-8-0) present exact integer programming (IP) and constraint programming (CP) models for the TUP and test them on benchmark instances ranging from 4 to 16 teams, as well as on a 30-team instance. These same models are also used in [Trick](#page-8-0) [and Yildiz \(2011\); Trick and Yildiz \(2012\); and Trick et al. \(2012\),](#page-8-0) but in [Trick and Yildiz \(2011\) and Trick and Yildiz \(2012\)](#page-8-0) the performance of the IP model is improved by a better choice of solver parameters (execution times were limited to three hours). Their IP model finds optimal solutions to all instances with at most 10 teams. The CP model finds optimal solutions to all instances with at most 8 teams, and also to one of the four 10-team instances. In addition, it manages to prove that the 12-team instance is infeasible; a conclusion that was not obtained by the IP model within the allowed computation time. When it comes to hard instances with 14 teams, both IP and CP find feasible solutions to all four instances, with the CP model beating the IP model in terms of solution quality in three of the four cases. Neither the IP nor the CP models managed to find any feasible solutions to hard instances with more than 14 teams. When run on relaxed instances, the CP model finds feasible solutions to all eight 14-team and all twelve 16-team instances. The IP model finds feasible solutions to 17 of these 20 instances (three 16-team instances had no solution after 3 hours), but all 17 solutions are better than their counterpart solutions found by the CP model. Neither method managed to find provably optimal solutions to any of the relaxed instances with more than 10 teams.

On the heuristic side, we focus on hard and relaxed instances with at least 14 teams because none of them have known optimal solutions (29 instances in total; 25 with known feasible solutions). [Trick et al. \(2012\)](#page-8-0) describe a greedy matching heuristic (GMH) and a two-exchange local search that are combined to build a simulated annealing (SA) heuristic. The SA heuristic does reasonably well on the real-life Major League Baseball problem of 2006, but it does not perform so well on the TUP instances. [Trick and Yildiz](#page-8-0) [\(2011\)](#page-8-0) incorporate the GMH into a large neighborhood search guided by Benders cuts that help repair the solution being built when the heuristic gets stuck. This improved GMH, which they call GBNS, finds feasible solutions to 23 out of 25 instances with previously known solutions, with 16 of those solutions being improvements over the best results at the time. In a follow-up paper, [Trick](#page-8-0) [and Yildiz \(2012\)](#page-8-0) propose a genetic algorithm (GA) with a crossover operator that uses a matching scheme to recombine the individuals of a population. Their GA further improves the quality of 14 instances with respect to the GBNS results. As of August, 2013, the results published in [Trick \(2013\)](#page-8-0) indicate that the four best-known solutions to the 14-team hard instances were obtained by [Wauters](#page-8-0) [\(2013\).](#page-8-0) [Table 1](#page-2-0) shows how many of the 25 best-known solutions to date have been found by each of the most successful methods described above. The GA currently owns the majority of best-known solutions (13 out of 25), including the best solution to the 30-team instance.

The remainder of this paper is organized as follows. In Section 3, we present the IP formulation of [Trick and Yildiz \(2011\)](#page-8-0) and show how it can be strengthened. We describe our relax-and-fix heuristic in Section [4,](#page-3-0) and provide computational results in Section [5.](#page-4-0) We conclude the paper and discuss future research directions in Section [6](#page-8-0).

3. IP formulations

For simplicity, we use letters i and j to refer to teams i and j , as well as their respective home venues. In addition, we use letters u and s to refer to an umpire and a round in the tournament, respectively.

3.1. The original formulation

The IP formulation used by [Trick and Yildiz \(2011\); Trick and](#page-8-0) [Yildiz \(2012\); and Trick et al. \(2012\)](#page-8-0) starts with the following input data:

- Set of umpires $U = \{1, \ldots, n\}$;
- Set of teams $T = \{1, \ldots, 2n\}$;
- Set of rounds $S = \{1, ..., 4n 2\}$;
- OPP[s, i] $=$ $\begin{cases} j & \text{if } i \text{ plays against } j \text{ at vene } i \text{ in round } s; \\ -j & \text{if } i \text{ plays against } j \text{ at vene } j \text{ in round } s; \end{cases}$ -
- \bullet d_{ij} = distance in miles between venues *i* and *j*;
- $CV_s = \{s, \ldots, s + n d_1 1\}$ for any given round $s \in \{1, \ldots, s + n d_1 1\}$ $4n-2-(n-d_1-1)$;
- $CT_s = \{s, \ldots, s + \lfloor \frac{n}{2} \rfloor d_2 1\}$ for any given round $s \in \{1, \ldots, 4n - 2 - (\lfloor \frac{n}{2} \rfloor - d_2 - 1)\}.$

The decision variables are:

•
$$
x_{isu} = \begin{cases} 1 & \text{if the game at venue } i \text{ inround } s \text{ is assigned} \\ \text{tounpire } u & \text{if } i \text{ is a non-adjoint.} \end{cases}
$$

0 otherwise; :

• $z_{iisu} = \{1$ if umpire *u* is at venue *i* in round *s* and travels to venue *j* in round $s + 10$ otherwise.

We are now ready to state the formulation.

$$
\min \quad \sum_{i \in T} \sum_{j \in T} \sum_{u \in U} \sum_{s \in S : s < |S|} d_{ij} z_{ijsu} \tag{1}
$$

$$
\sum_{u \in U} x_{isu} = 1, \quad \forall \ i \in T, s \in S : OPP[s, i] > 0,
$$
 (2)

$$
\sum_{i\in T:OPP[s,i]>0}x_{isu}=1, \quad \forall s\in S, u\in U,
$$
\n(3)

$$
\sum_{s \in S: \text{OPP}[s, i] > 0} x_{isu} \geq 1, \quad \forall \ i \in T, u \in U,
$$
\n
$$
(4)
$$

$$
\sum_{c \in CV_s: OPP[c,i] > 0} \chi_{icu} \leq 1, \quad \begin{array}{l} \forall \ i \in T, u \in U, s \in S : \\ s \leq |S| - (n - d_1 - 1), \end{array} \tag{5}
$$

$$
\sum_{c \in CT_s} \left(x_{icu} + \sum_{j \in T: OPT[c,j]=i} x_{jcu}\right) \leqslant 1, \quad \begin{array}{l} \forall \ i \in T, u \in U, s \in S:\\ s \leqslant |S| - (\lfloor \frac{n}{2} \rfloor - d_2 - 1), \end{array} \tag{6}
$$

$$
x_{isu} + x_{j(s+1)u} - z_{ijsu} \leq 1, \quad \forall \ i, j \in T, u \in U, s \in S : s < |S|,
$$
 (7)

- $x_{isu} \in \{0, 1\}, \quad \forall i \in T, u \in U, s \in S,$ (8)
- $z_{iisu} \in \{0, 1\}, \quad \forall i, j \in T, u \in U, s \in S : s < |S|$ (9)

The objective function (1) minimizes the total distance traveled by the umpires. Constraints (2) and (3) state that each game is refereed by an umpire, and each umpire is assigned to a game, respectively. TUP constraints (ii), (iii), and (iv) from Section [1](#page-0-0) are modeled by (4) – (6) , respectively. Finally, (7) ensures that game (x) and travel (z) assignments are consistent.

[Trick and Yildiz \(2011\)](#page-8-0) improve the above formulation by including the following constraints:

Table 1

 $x_{isu} = 0, \quad \forall i \in T, u \in U, s \in S : \text{OPP}[s, i] < 0,$ (10)

$$
z_{ijsu} - x_{isu} \le 0, \quad \forall i, j \in T, u \in U, s \in S : s < |S|,
$$

\n
$$
z_{ijsu} - x_{i(s+1)u} \le 0, \quad \forall i, j \in T, u \in U, s \in S : s < |S|,
$$

\n(12)

$$
z_{ijsu} - x_{j(s+1)u} \le 0, \quad \forall i, j \in T, u \in U, s \in S : s < |S|, \sum_{i \in T} z_{jisu} - \sum_{i \in T} z_{ij(s+1)u} = 0, \quad \forall i \in T, u \in U, s \in S : s < |S| - 1,
$$
\n(13)

$$
\sum_{i\in T}^{j\in T} \sum_{j\in T} z_{ijsu} = 1, \quad \forall u \in U, s \in S : s < |S|.
$$
 (14)

Constraint (10) forbids the assignment of an umpire to a venue where no game is played in the given round. Constraints (11) and (12) allow an umpire to move from or to a venue in round s and $s + 1$, respectively, only if the umpire is assigned to the venue in those rounds. The flow conservation constraint (13) states that if umpire *u* is (is not) at venue *i* in round $s + 1$, his trip from round $s + 1$ to round $s + 2$ must (must not) start at venue *i*. Constraint (14) forces every umpire to move from one round to the next.

Formulation (1) – (14) suffers from symmetry because, given a solution, n! equivalent solutions can be obtained by permuting the umpires. To overcome this problem, [Yildiz \(2008\)](#page-8-0) fixes the games refereed by each umpire in a given round k, which is chosen arbitrarily in the interval $[1, 4n-2]$. To accomplish that, we enforce (15) for a given set K of tuples that assign each umpire to a different venue where a game takes place in round k:

$$
x_{iku} = 1, \quad \forall (i, u) \in K. \tag{15}
$$

We refer to round k as the symmetry breaking round, and to for-mulation [\(1\)–\(15\)](#page-1-0) as \mathcal{F}_1 . The linear relaxation of \mathcal{F}_1 , in which we replace the integrality constraints 8-9 with $0 \le x_{\text{isu}} \le 1$ and $0\leqslant z_{ijsu}\leqslant 1$, is denoted by $\mathcal{F}_{1}^{R}.$

3.2. A stronger formulation

Based on \mathcal{F}_1 , we propose a stronger formulation for the TUP that includes the following valid identities:

$$
x_{i1u} = \sum_{j \in T} z_{ij1u} \quad \forall \ i \in T, u \in U,
$$
\n(16)

$$
x_{isu} = \sum_{j \in T} z_{ji(s-1)u} \quad \forall \ i \in T, u \in U, s \in S : s > 1.
$$
 (17)

Constraint (16) ensures that an umpire u is assigned to a venue i in the first round if, and only if, u travels away from *i* in this round. Analogously, (17) enforces that an umpire u is assigned to a venue i in round $s > 1$ if, and only if, u travels to i between rounds $s - 1$ and s .

Because (16) – (17) are equalities, variable x can be eliminated from \mathcal{F}_1 by replacing each of its occurrences with the proper summation over z. Let \mathcal{F}_2 be the formulation that results from \mathcal{F}_1 after both eliminating x and removing (3) , (7) , (11) , (12) , and (14) . We refer to the linear relaxation of ${\cal F}_2$ as ${\cal F}_2^{\cal R}.$

Proposition 1. F_2 is a valid IP formulation for the TUP.

Proof. It suffices to show that (3) , (7) , (11) , (12) , and (14) are implied by the conjunction of (16) and (17) with the remaining constraints of \mathcal{F}_1 . For simplicity, and without loss of generality, we will show the implications before eliminating x from the model.

First, by combining (13) and (16), (17) we obtain the following identity:

$$
x_{isu} = \sum_{j \in T} z_{ijsu}, \quad \forall i \in T, u \in U, s \in S : s < |S|.
$$
 (18)

To see that (18) implies (11), note that $\sum_{j\in T} z_{ijsu} \geq z_{ihsu}$ for any given $h \in T$. The proof that (17) implies (12) is analogous.

We now show that (3) and (14) are implied constraints. Because of (13), we can write

$$
\sum_{i\in T}\sum_{j\in T}z_{ij1u}=\ldots=\sum_{i\in T}\sum_{j\in T}z_{ijku}=\ldots=\sum_{i\in T}\sum_{j\in T}z_{ij(|S|-1)u},\quad\forall\ u\in U,
$$
\n(19)

and, by replacing the inner summations in (19) with the appropriate x variables according to (18) , we obtain the equivalent equalities in (20), except for the last one:

$$
\sum_{i\in T}x_{i1u}=\ldots=\sum_{i\in T}x_{iku}=\ldots=\sum_{i\in T}x_{i(|S|-1)u}=\sum_{i\in T}x_{i(|S|)u},\quad \forall\ u\in U.
$$
\n(20)

To obtain the last equality in (20) we replace the rightmost inner summation in (19) with the appropriate x variable according to (17) .

Because of (15), $\sum_{i \in T} x_{iku} = 1$. Thus, all the expressions in (19) and (20) are equal to 1. Since the summations in (19) and (20) are the same as those in (14) and (3) , respectively, the latter are satisfied.

Finally, we show that (7) is an implied constraint. For any $u \in U, s \in S, s < |S|$, we have seen that combining (15), (19), and (20) yields

$$
\sum_{i\in T}\sum_{j\in T}z_{ijsu}=1.
$$

Hence, for a given pair of venues i, j in the double-summation above, we have

$$
\sum_{h\in T:h\neq j}z_{ihsu}+\sum_{h\in T:h\neq i}z_{hjsu}+z_{ijsu}\leq 1,
$$

which is equivalent to

$$
\sum_{h\in T} z_{ihsu} + \sum_{h\in T} z_{hjsu} - z_{ijsu} \leqslant 1.
$$
 (21)

Because of (18), we can substitute x_{isu} for $\sum_{h \in T} z_{ihsu}$ in (21). Similarly, (17) allows us to substitute $x_{j(s+1)u}$ for $\sum_{h \in T} z_{hju}$ in (21), turning it into (7) . \Box

We are now ready to show that \mathcal{F}_2 is stronger than \mathcal{F}_1 .

Proposition 2. The lower bound provided by \mathcal{F}_2^R is greater than or equal to the lower bound provided by $\mathcal{F}^R_1.$ Moreover, the former bound can be strictly greater than the latter.

Proof. From the proof of Proposition 1, it is clear that the lower bound provided by \mathcal{F}_2^R cannot be worse than the lower bound provided by \mathcal{F}_1^R . Therefore, it suffices to show an example in which the former bound is strictly greater than the latter. Consider a TUP instance with four teams (represented by a table of games in each round) as shown in Fig. 1. The first team in each pair (game) is the home team. Suppose that teams 1, 2, and 3 have their venues close to each other (say, 1 mile away), and the venue of team 4 is further away from the others (say, 10 miles away). In this scenario, an optimal solution to \mathcal{F}_1^R with $d_1 = d_2 = 0, k = 1$, and $K = \{(1, 1), (3, 2)\}\$ corresponds to assigning value 1 to variables x_{111} and x_{312} , value 0 to variables x_{311} and x_{112} , value 0.5 to all other x_{isu} variables where $i \in T$, $s \in S$, $u \in U$, and OPP[i, s] > 0, value 0.5 to variables z of umpire 1 associated with the trips given by the simple solid and dashed lines in Fig. 1, and value 0.5 to variables z of umpire 2 associated with the trips given by the simple and double solid lines in Fig. 1. All remaining variables are equal to zero. The optimal value is 25, which is a very weak lower bound because the value of an optimal integer solution to this instance is 55.

Now, observe that (17) is not satisfied by the previous solution because variables x_{441} , x_{442} , x_{461} , and x_{462} have value 0.5 and all the z variables arriving to or leaving from the venue of team 4 in rounds 4 and 6 have value 0. Hence, this fractional solution becomes infeasible once (17) is added to \mathcal{F}_1^R . In fact, the new optimal solution found after the inclusion of [\(16\) and \(17\)](#page-2-0) has value 52, which is much closer to the integer optimum. \Box

It is possible to strengthen \mathcal{F}_2^R further by fixing the following variables:

$$
z_{iisu} = 0, \quad \forall i \in T, u \in U, s \in S : s < |S|, \text{ if } d_1 < n - 1, \quad (22) \\
\forall i \neq j \in T, u \in U, s \in S : s < |S|, \text{ if } d_2 < \left\lfloor \frac{n}{2} \right\rfloor - 1 \text{ and}
$$

$$
z_{ijsu} = 0, \quad \text{either OPP}[s, i] = \text{OPP}[s + 1, j] \text{ or OPP}[s, i] = j \text{ or } \quad (23)
$$

OPP $[s + 1, j] = i.$

Note that (22) and (23) are valid because they forbid the assignment of positive values to z variables that would violate TUP constraints (iii) and (iv) (no umpire can stay at a venue, or follow a team) when d_1 and d_2 are strictly less than their maximum values. Let \mathcal{F}_{2+} and $\mathcal{F}_{2+}^{\mathsf{R}}$ be, respectively, the formulations obtained from \mathcal{F}_2 and \mathcal{F}_2^R after the inclusion of (22) and (23). In the example of Fig. 1, the optimal solution obtained by \mathcal{F}_1^R (see proof of [Proposition 2\)](#page-2-0) violates (22) multiple times. For example, it sets $z_{2221} = z_{2222} = z_{2231} = z_{2232} = z_{3351} = z_{3352} = 0.5$. Solving \mathcal{F}_{2+}^R for that example yields an integer (optimal) solution of value 55. Recall that the lower bounds produced by \mathcal{F}_1^R and \mathcal{F}_2^R for that example are 25 and 52, respectively.

4. A relax-and-fix heuristic

A relax-and-fix heuristic iteratively solves relaxations of an IP model and progressively fixes variables until a feasible solution is found ([Wolsey, 1998,](#page-8-0) Section 12.5). Our relax-and-fix heuristic is based on \mathcal{F}_{2+} . It receives as input a TUP instance and an integer $1 \leq b \leq 4n - 3$. The parameter *b* defines the size of a window of consecutive rounds whose variables will be binary in the relaxed model solved at each iteration of the algorithm. Starting with formulation \mathcal{F}_{2+} with the symmetry breaking round $k = 1$, we modify it so that only the variables in the first b rounds are binary. This relaxed model is solved and, if it is infeasible, the algorithm stops. Otherwise, the variables in the first round are fixed to their values in the best solution found within some stopping criteria. In the next iteration, variables in round $b + 1$ are also made binary and

Fig. 1. A TUP instance. Dashed, simple and double solid lines represent umpire trips. Fig. 2. Pseudocode of the relax-and-fix heuristic.

Fig. 2. Pseudocode of the relax-and-fix heuristic.

the resulting model is solved. As before, we stop in case of infeasibility, and fix the variables in the second round to their best values otherwise. These steps are repeated until either all variables are fixed, or the model becomes infeasible. The pseudocode in Fig. 2 includes more specific details, which we discuss next.

At iteration t, the heuristic solves a relaxed \mathcal{F}_{2+} model in which the *z* variables in rounds $s \leq t - 1, t \leq s < t + b$, and $s \geq t + b$ are fixed, binary, and continuous, respectively. If this model is feasible, the variables in round t are fixed to their values in the best solution found after exploring no more than a given number of search nodes (see Section [5.3](#page-7-0) for details). Because intermediate solutions found in line 8 of the pseudocode are not necessarily optimal for the last model solved, the heuristic may continue to execute until iteration $t = 4n - 3$, when all variables in the model are fixed.

To keep running times under control, we use two different strategies to solve the relaxations of \mathcal{F}_{2+} in each iteration of the relax-and-fix heuristic. For instances with at most 18 teams, we solve the models with all variables and constraints, as described above. For instances with more than 18 teams, in each iteration t of the heuristic we solve a relaxation of \mathcal{F}_{2+} that only includes the variables and constraints relative to rounds no greater than $\min(\frac{2}{5}(4n-2)] + t - 1, 4n - 2)$. (Recall that, in iteration t, all variables relative to the $t-1$ first rounds are fixed.) This is equivalent to redefining the set S at each iteration to be $S = \{1,...,\text{min}(\frac{2}{5}(4n-2)\} + t - 1, 4n-2)\}.$ The value $\frac{2}{5}(4n-2)$ was chosen experimentally with the goal of accelerating the heuristic, while still allowing the model to look at enough rounds ahead of round t to be able to find good solutions. To properly disregard future rounds while solving relaxations of \mathcal{F}_{2+} , it is necessary to deal with (4) in a different way. In early iterations, the number of rounds considered by the relaxed \mathcal{F}_{2+} models is insufficient to satisfy the constraint. If we disregard (4) entirely for many iterations, however, the variables that get fixed may make it impossible to satisfy (4) later on. Therefore, we introduce (4) gradually as follows. We disregard it during iterations $t \leq n$. In iterations $n+1, n+2, \ldots, 2n-1$ we enforce (4) only for umpires whose indices are less than or equal to $1, 2, \ldots, n-1$, respectively, and in iterations $t > 2n - 1$ we enforce (4) for all umpires.

Notice that our heuristic begins with a fixed assignment of umpires for the first round ($k = 1$) and, at each iteration t, determines the umpire trips between rounds t and $t + 1$. This resembles the GMH of [Trick et al. \(2012\)](#page-8-0). The difference stems from the fact that our relax-and-fix heuristic schedules the umpires in each round while taking into account, in a relaxed way, the subsequent rounds of the tournament. In addition, we deal with the trip distances directly, rather than using a modified cost function to schedule each round. Finally, because our method is not guaranteed to find a solution every time, we could use a backtracking scheme similar to what is done with the GMH. In practice, however, we almost always find solutions to the instances that are known to be feasible.

```
1: procedure RELAX-AND-FIX(TUP instance I, b)
```

```
2:\mathcal{M} \leftarrow \mathcal{F}_{2+} model with k = 1 for instance I;
```

```
-3:t \leftarrow 1:
```

```
while t \leq 4n - 3 do
4:
```

```
For all i, j \in T, u \in U, s \in S, t \leq s < t + b, let z_{ijsu} \in \{0, 1\} in \mathcal{M};5:-6:
```

```
For all i, j \in T, u \in U, s \in S, s \ge t + b, let 0 \le z_{ijsu} \le 1 in \mathcal{M};Solve M:
```

```
if a solution \overline{z}_{ijsu} is found within the allowable # of search nodes then
```

```
9:Fix variables z_{ijsu}=\overline{z}_{ijsu} for all i,j\in T, u\in U, s=t;
```

```
10:t \leftarrow t + 1:
11:else
```
 $7:$

 $8:$

return no solution: $12:$

```
end if
13:
```
- end while $14:$
- return solution found; 15:

```
16: end procedure
```
Therefore, to keep our implementation simple, we decided not to use a backtracking step.

5. Computational results

In this section, we experimentally evaluate the IP models and the relax-and-fix heuristic presented earlier. We consider instances from the TUP benchmark [\(Trick, 2013](#page-8-0)) ranging from 4 to 32 teams. Instance names start with the number of teams, optionally followed by a letter indicating that the distance matrix is different, but the underlying tournament is not. Experiments were performed on a machine running Linux Ubuntu 12.04.1 and equipped with an zi7-2600, 3.40 GHz processor, and 8 GB of RAM. Our code is written in C++, and we use ILOG CPLEX's callable library version 12.5.0.1 to solve linear programming and integer programming models.

5.1. IP results on hard instances: Lower and upper bounds

Before solving the IP models, we analyze the strength of our lower bounds. We focus first on hard instances $(d_1 = d_2 = 0)$, and fix the symmetry breaking round $k = 1$. Table 2 shows the lower bounds obtained by solving the linear relaxations of the original IP model (\mathcal{F}_{1}^{R}) and of our stronger formulations (\mathcal{F}_{2}^{R}) and (\mathcal{F}_{2+}^{R}) . We also include the solution time and the optimal distances for instances with known optimal solutions. Note that, except for the smallest instance (4 teams), ${\cal F}_2^{\!R}$ and ${\cal F}_{2+}^{\!R}$ always provide better lower bounds than ${\cal F}_{1}^{\scriptsize R}.$ In particular, ${\cal F}_{2+}^{\scriptsize R}$ provides significantly better bounds (up to 340% better) that are reasonably close to the known optimal solutions, which attests the importance of [\(22\) and \(23\)](#page-3-0). In addition, ${\cal F}_2^R$ and ${\cal F}_{2+}^R$ solve between 2 and 8 times faster than ${\cal F}_1^R$ because they are more compact (fewer variables and constraints), with ${\cal F}_{2+}^{\!R}$ having a slight advantage over ${\cal F}_{2}^{\!R}.$

Our experiments show that the choice of the symmetry breaking round k can significantly affect the value of the lower bound provided by the linear relaxations. However, it is difficult to determine a priori what value of k leads to the best results for the integer models. Therefore, we solve the IP models with three different values of $k: 1$ (first round), $2n - 1$ (middle round), and the value k^* that produces the best lower bound. The models adjusted with each chosen value of k are denoted as before but followed by the suffixes "-F" (first-round k), "-M" (middle-round k) and "-BB" (best-bound k), respectively.

We now switch from root-node lower bounds to solving the IP models, while still focusing on hard instances. We limit execution times to 3 hours and limit the number of CPU threads to one. [Table 3](#page-5-0) shows the optimal distances and execution times for hard instances with 12 or fewer teams. In general, \mathcal{F}_{2+} exhibits better performance than \mathcal{F}_1 . For a given formulation, breaking symmetry in the middle round often speeds up the optimization, whereas breaking symmetry in the first round tends be a bad idea. Therefore, we disregard \mathcal{F}_1 -F and \mathcal{F}_2 -F in subsequent experiments.

[Table 4](#page-5-0) summarizes the results for hard instances with at least 14 teams, which have no known optimal solutions. Calculating k^* for \mathcal{F}_1 -BB on instances with at least 26 teams, and for \mathcal{F}_{2+} -BB on instance 32 takes longer than 3 hours. In these cases, we report the best lower bound found within 3 hours, which is marked with an "*", and do not execute CPLEX's branch-and-cut. The lower bounds in [Table 4](#page-5-0) contain unexpected results for \mathcal{F}_1 . Although \mathcal{F}_1^R does not perform well in Table 2, it appears that the root-node presolve and strengthening routines of CPLEX are able to improve it, enabling F_1 to achieve competitive lower bounds in 3 hours. For example, the best lower bounds for instances with 16 and 18 teams are given by F_1 -BB. On the other hand, this model yields very poor lower bounds for instances with more than 24 teams within the time limit. The \mathcal{F}_{2+} models achieve the best lower bounds on instances with 14 teams, or with more than 18 teams, with the latter being significantly better than those provided by the \mathcal{F}_1 models. Overall, \mathcal{F}_{2+} -BB obtains 8 out of the 16 best lower bounds,

Table 2

Instance	Optimum	Time (seconds)					
		F_1-F	\mathcal{F}_1 -M	\mathcal{F}_1 -BB	\mathcal{F}_{2+} -F	\mathcal{F}_{2+} -M	\mathcal{F}_{2+} -BB
4	5176	0.00	0.00	0.00	0.00	0.00	0.00
6	14,077	0.02	0.02	0.02	0.02	0.01	0.02
6A	15,457	0.05	0.02	0.03	0.02	0.01	0.01
6B	16,716	0.03	0.03	0.04	0.02	0.02	0.02
6C	14,396	0.02	0.02	0.03	0.01	0.01	0.02
8	34,311	0.53	0.06	0.15	0.38	0.03	0.03
8A	31.490	0.30	0.06	0.05	0.24	0.03	0.02
8B	32,731	0.30	0.06	0.06	0.12	0.02	0.02
8C	29,879	0.65	0.06	0.04	0.53	0.03	0.02
10	48,942	38.10	1.68	1.64	14.56	1.17	1.87
10A	46,551	52.05	4.77	5.48	21.25	1.00	4.27
10B	45,609	25.52	2.32	3.59	5.67	0.73	0.73
10C	43.149	335.33	9.19	13.54	34.49	2.78	1.92
12	Infeasible	3172.34	101.10	857.48	2556.69	71.47	627.42

Table 4

Best results for the IP models on hard instances with at least 14 teams ($d_1 = d_2 = 0$). Execution times limited to 3 hour. Best values appear in bold.

Instance		Best lower bound after 3 hour			Best solution after 3 hour				
	\mathcal{F}_1 -M	\mathcal{F}_1 -BB	\mathcal{F}_{2+} -M	\mathcal{F}_{2+} -BB	\mathcal{F}_1 -M	\mathcal{F}_1 -BB	\mathcal{F}_{2+} -M	\mathcal{F}_{2+} -BB	
14	149,636	149,963	150,045	150,871	179,343	177,139	175,524	174,715	
14A	142,394	142,759	143,517	141,308	166,712	172,367	165,968	171,961	
14B	141.795	141,608	141.645	142.614	172,828	176.709	168,659	170,804	
14C	141,196	141,148	141,268	138,601	168,037	168,787	164,512	167,898	
16	148,059	151,748	147,906	150,523					
16A	161,087	166,626	160,831	166,101					
16B	158,322	162,251	159,324	161,882					
16C	162.640	165,431	162,505	164.235					
18	171,264	177,055	173,815	175,321					
20	198,706	199,460	201,769	204,278					
22	222,713	228,074	224,841	231,809					
24	246,620	248,817	248,977	253,506					
26	283,971	73,900*	286,239	286,847					
28	312,655	87,273*	317,629	319,044					
30	343,013	94,713*	352,258	344,831					
32	371,143	97,059*	377,531	382,508*					

Table 5

Best results for the IP models on relaxed instances with at least 14 teams $(d_1 + d_2 > 0)$. Execution times limited to 3 hour. Best values appear in bold.

Instance	$n - d_1$	$\lfloor \frac{n}{2} \rfloor - d_2$	Best lower bound after 3 hour				Best solution after 3 hour				
			F_1 -M	F_1 -BB	\mathcal{F}_{2+} -M	\mathcal{F}_{2+} -BB	\mathcal{F}_1 -M	F_1 -BB	\mathcal{F}_{2+} -M	\mathcal{F}_{2+} -BB	
14	6	3	149,422	150,041	149,883	149,904	167,931	167,800	164,169	165,975	
14	5	3	149,446	150,270	149,541	150,194	160,069	160,591	161,905	159.511	
14A	6	3	143,138	143,207	143,931	142,456	163,872	163,622	159,054	161,201	
14A	5	3	142,230	142,321	143,504	142,600	158,604	158,878	154,840	159,703	
14B	6	3	141,839	142,196	142,608	143,378	165,052	164,691	158,050	164,089	
14B	5	3	142,117	142,237	143,706	143,147	157,907	157,174	154.739	157,724	
14C	6	3	140,967	141,213	141,791	140,393	163,934	159,388	153,841	157,034	
14C	5	3	141,717	141,299	141,558	141,801	154,944	156,541	152,046	153,178	
16	8	$\overline{2}$	142,005	143,420	142,019	143,840	185,505	183,167	206,299	186,108	
16		3	143,780	144,265	144,325	145,987	207,226	188,486	190,281	195,551	
16		2	138,027	137,443	139,888	141,440	177,925	167,697	170,288	163,193	
16A	8	2	155,542	157,013	155,743	157,972	216,598	199,684	194,050	190,233	
16A		3	156,544	159,146	157,393	160,314	210,267	205,345	209,604	215,136	
16A			152,063	154,563	154,023	155,342	186,439	180,372	176,793	182,317	
16B	8	$\overline{2}$	152,675	157,356	153,734	158,035	206,044	212,300	240,845	208,859	
16B		3	154,667	157,955	155,988	158,244	215,692	237,571		217,261	
16B	7	$\overline{2}$	151,406	155,173	152,218	155,403	203,491	192,062	191,213	184,991	
16C	8	2	157,239	158,164	158,051	160,596	205,626	192,741	213,953	205,095	
16C	7	3	159,916	160,438	159,970	161,838	211,880	206.505	222,039	223,262	
16C	7	2	156,421	156,810	157,357	158,527	186,989	192,311	182,307	182,011	
30	5	5	336,470	75,891*	367,877	361,175					

Table 6

Solutions obtained by the relax-and-fix heuristic on relaxed instances with at least 14 teams. Best values appear in bold.

Instance	$n - d_1$	$\lfloor \frac{n}{2} \rfloor$ $-d_2$	Width of shifting window of binary variables (parameter b)									
				$\overline{2}$	3	4	5	6	7	8	9	10
14	7	3	No sol.	178,226	174,652	168,408	170,629	169,981	168,408	165,573	166,942	170,250
14	6	3	165,529	165,764	159,522	163,818	159,622	162,377	160,907	159,601	164,450	163,573
14	5	3	160,913	158.103	156,442	158,054	158,293	156,456	157,942	157,404	155,439	155,958
14A	7	3	168,422	171,938	166,357	164,136	160,830	163,471	163,860	164,784	160,046	163,433
14A	6	3	No sol.	156,183	157,219	162,614	158,619	156,437	158,237	157,034	158,133	154,628
14A	5	3	153,955	154,251	154,218	154,891	152,588	154,441	149,331	149,956	152,855	152,490
14B	7	3	No sol.	173,698	162,952	162,634	160,242	163,629	157,884	162,305	157,884	163,329
14B	6	3	162,891	163,161	158,818	157,927	157,222	153,611	158,291	155,358	158,382	158,735
14B	5	3	156,321	155,125	153,724	150,268	150,865	151,251	150,933	150,760	150,954	153,202
14C	7	3	176,479	174,595	166,559	163,227	160,262	160,274	163,720	159,518	164,778	161,049
14C	6	3	164,223	155,523	158,304	152,158	154,954	154,026	155,025	155,435	154,366	155,200
14C	5	3	153.697	151.914	149.662	150.415	149.727	150,346	151,048	150,678	150,471	151,426
16	8	2	168.647	168.094	166.688	160.705	161.771	167.482	163.733	164.187	165.098	167,015
16	7	3	No sol.	181,556	177,557	169,994	174,009	170,487	172,549	179,940	173,088	177,242
16	7	2	163,438	157,184	153,996	158,043	157,379	155,796	155,766	154,153	158,130	153,978
16A	8	2	183.344	174.841	178.320	173,956	175,092	176,821	173,950	176,664	176,266	174,546
16A	$\overline{7}$	3	186,667	193,983	185,198	188,957	183,192	192,059	182,889	181,119	188,879	188,475
16A	7	2	177.235	165.675	168,224	167.010	168,058	164,620	168,032	170,486	167,538	168,810
16B	8	2	187.840	186.326	187.514	185.223	186,853	185,541	182,673	184.750	183.238	185,253
16B	7	3	207.308	194.064	189.257	191.234	188.064	191.026	187.488	188,198	189,596	187,007
16B	7	$\overline{2}$	183,841	172,083	171,962	172,704	172,336	172,688	170,194	172,169	172,274	173,143
16C	8	2	193,358	184,873	181,205	180,221	182,568	184,103	182,706	187,598	185,487	184,753
16C	7	3	189.776	No sol.	188,855	191,021	187.649	185,528	189,251	189,367	No sol.	194,055
16C	7	$\overline{2}$	174,744	174,401	172,033	171,802	170,909	169,184	170,267	171,046	172,319	170,854
30	5	5	466,765	484.447	479,056	475,572	487,552	471,724	No sol.	No sol.	No sol.	No sol.

Table 7

and gets reasonably close in the remaining cases, except for instance 30. The best lower bounds shown in [Table 4](#page-5-0) are better than the best known bounds reported in the TUP benchmark, for all instance sizes. In particular, the benchmark reports no lower bounds for instances with more than 16 teams.

When it comes to quality of feasible solutions, no formulation finds solutions to hard instances with more than 14 teams (no such solutions are known, to the best of our knowledge). Formulation \mathcal{F}_{2+} -M finds three out of the four best 14-team solutions, all of which are better than the best known solutions found by exact methods reported in [Trick and Yildiz \(2012\).](#page-8-0)

5.2. IP results on relaxed instances: Lower and upper bounds

[Table 5](#page-5-0) summarizes the performance of our IP models on relaxed instances $(d_1 + d_2 > 0)$ with at least 14 teams. Because calculating k^* for the 30-team instance with \mathcal{F}_1 -BB takes too long, we report the best lower bound found within 3 hours and mark it with an "*". Except for the first two 14-team instances, the lower bounds provided by \mathcal{F}_{2+} models are always better than those provided by \mathcal{F}_1 models. The \mathcal{F}_{2+} -BB model is responsible for 14 out of the 21 best lower bounds, and its solution is reasonably close to the best bound in the remaining cases. Formulation \mathcal{F}_{2+} -M does well

Comparison between the best results obtained by our exact and heuristic approaches and the best results from literature on hard and relaxed instances with at least 14 teams.

with 14-team instances, finding 4 out of the 8 best lower bounds, and it also finds the best bound for the 30-team instance. When it comes to feasible solutions, F_{2+} -M manages to find 8 out of the 21 best solutions.

The best lower bounds shown in [Table 5](#page-5-0) are better than the best known bounds reported in the TUP benchmark, for all instance sizes. In addition, 18 out of the 20 best solutions shown in [Table 5](#page-5-0) are better than the best solutions found by exact methods reported in [Trick and Yildiz \(2012\).](#page-8-0) More importantly, 11 of these solutions (underlined numbers) are better than the best known solution found by any method, according to the TUP benchmark. In Section 5.3, we show that our heuristic can do even better than that.

5.3. Heuristic results

Table 8

We use CPLEX to solve the optimization models inside the relax-and-fix heuristic (see [Table A.9](#page-8-0) in Λ for the parameter settings we used). We apply the relax-and-fix heuristic with $b = 1, 2, \ldots, 10$ to the instances used in our previous experiments. The heuristic finds an optimal solution to all but one of the hard instances with at most 10 teams. (The best solution obtained by the heuristic for instance 10C is 43,193, which is close to the optimal distance of 43,149.) The total time spent to obtain these solutions for all values of b is at most 1 second for instances with 4 and 6 teams, at most 10 seconds for instances with 8 teams, at most 2 minutes for instances 10, 10A, and 10B, and around 3 minutes for instance 10C. [Tables 6 and 7](#page-6-0) present, respectively, the solution values and execution times for hard and relaxed instances with at least 14 teams. Unfortunately, similarly to previous attempts reported in the literature, the relax-and-fix heuristic does not manage to find feasible solutions to hard instances with more than 14 teams. For the instances to which it manages to find a feasible solution, the heuristic appears to be reliable, obtaining solutions in 240 out of 250 runs (25 instances, 10 values of b). Most of the best solutions (14 out of 25) are found with $b = 4, 6$, or 7. Finally, we also include in [Table 7](#page-6-0)

the total cumulative time to find the solutions for $b \in \{4, 6, 7\}$ (column "4,6,7") and for $b \in \{1, 2, ..., 10\}$ (column "1–10").

5.4. Best results

We now compare the best results obtained by our approaches (exact and heuristic) with the best results from the literature, which are published in [Trick and Yildiz \(2011\); Trick and Yildiz](#page-8-0) [\(2012\); Trick et al. \(2012\); and Trick \(2013\).](#page-8-0) The most relevant comparison for hard instances with no more than 10 teams are the times required to reach optimality. [Table 3](#page-5-0) indicates that our strengthened formulation \mathcal{F}_{2+} does better than \mathcal{F}_1 on these small instances, and that a good choice of k (e.g. middle-round) pays off.

The main improvements we achieve are on instances with at least 14 teams, which have no known optimal solutions. Table 8 summarizes the best results for these instances (an "*" indicates that the time limit was exceeded; see [Table 7](#page-6-0)). The best lower bounds and solutions from the literature were obtained within 3 hours of computation for instances with 14 and 16 teams, and within 5 hours for the relaxed 30-team instance (solution only; no lower bound is reported). The lower bounds provided by \mathcal{F}_{2+}^R -BB are already better than the best ones in the literature on 25 out of 29 instances. They can be calculated in less than 1 minute for instances with at most 16 teams, and in approximately 2 hours for the instance with 30 teams. Within 3 hours of computation, the best lower bounds found during branch-and-cut with \mathcal{F}_{2+} -BB beat all known lower bounds by margins ranging between 8 and 24 thousand miles. The " F Best" column under "Lower bounds" shows the best bounds we managed to find over the entire range of models we considered. These bounds are better than the \mathcal{F}_{2+} -BB bounds on 13 out of 29 instances.

On the right half of Table 8 we compare the quality of the best known solutions in the literature with those obtained by our IP models and by the relax-and-fix heuristic. All of our best solutions are obtained by some configuration of the relax-and-fix heuristic

(column ''RF Best''). The only instance whose solution we do not manage to improve is 14C-7-3 (by a mere 57 miles). For the remaining 24 instances with known feasible solutions, our best solutions are between 0.36 and 27.6 thousand miles shorter. When compared with the best solutions obtained by the IP models (column " F Best"), the best relax-and-fix solutions are between 1.68 and 28.6 thousand miles shorter. However, except for instances with 14 teams, this comparison is unfair because finding the best relax-and-fix solution over all values of $b \in \{1, 2, \ldots, 10\}$ takes much more time than the limits of 3 and 5 hours (see [Table 7\)](#page-6-0). Therefore, we include column "RF 4,6,7" which has the best solution obtained over three runs of relax-and-fix with $b = 4, 6$, and 7. These three runs obtain most of our best results (14 out of 25) and, in total, stay within the time limits with two exceptions: instance 16B-7-3 (3-hour limit exceeded by 5 minutes), and instance 30. When compared to the best known solutions in the literature, solutions under ''RF 4,6,7'' have less mileage in 22 out of 25 cases. The worst solutions obtained by the relax-and-fix heuristic (column ''RF Worst'') are better than the best known solutions in 18 out of 25 cases. Finally, for the relaxed instance with 30 teams, 4 out of the 6 solutions found by the relax-and-fix heuristic are better than the best one in the literature, with the greatest improvement being equal to 16,459 miles.

6. Conclusions and future work

By strengthening an existing IP formulation for the traveling umpire problem (TUP), we obtain an optimization model that not only solves more quickly than its original version, but also provides better lower and upper bounds for instances in the TUP benchmark. This new formulation plays a crucial role in our implementation of a relax-and-fix heuristic for the problem, because each iteration of the heuristic cannot dedicate too much time to solving its intermediate IP models. As a result, we improve all known lower bounds for instances in the benchmark, as well as 24 of the 25 best known upper bounds. Moreover, we are the first to provide strong lower bounds for instances with more than 16 teams.

The TUP remains a very difficult problem, with many small instances lacking feasible solutions. We believe that a combination of exact and heuristic methods is a promising research direction. The TUP formulations deserve a deeper polyhedral study, and our relax-and-fix heuristic can be modified in several ways. For example, the sliding windows of binary variables can take different shapes, focus first on problematic areas of the schedule (a bottleneck approach), and/or use randomization. Finally, not much attention has been given to improving the CP model of Trick and Yildiz (2011), and a more effective version of that model (e.g. with fancier search routines) could become part of a relax-and-fix heuristic as well.

We hope that the improvements in solution quality presented in this paper will spark the interest of other researchers in tackling this challenging problem.

Table A.9

CPLEX branch-and-cut parameters used to solve the models inside the relax-and-fix heuristic.

Appendix A

See Table A.9.

References

- [Ernst, A., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. \(2004\). An annotated](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0025) [bibliography of personnel scheduling and rostering.](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0025) Annals of Operations [Research, 127](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0025), 21–144.
- [Evans, J. R. \(1988\). A microcomputer-based decision support system for scheduling](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0030) [umpires in the american baseball league.](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0030) Interfaces, 18, 42–51.
- [Evans, J. R., Hebert, J. E., & Deckro, R. F. \(1984\). Play ball The scheduling of sports](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0035) officials. [Perspectives in Computing, 4](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0035), 18–29.
- [Farmer, A., Smith, J. S., & Miller, L. T. \(2007\). Scheduling umpire crews for](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0040) [professional tennis tournaments.](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0040) Interfaces, 37, 187–196.
- [Kendall, G., Knust, S., Ribeiro, C. C., & Urrutia, S. \(2010\). Scheduling in sports: An](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0045) annotated bibliography. [Computers & Operations Research, 37](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0045), 1-19.
- Trick, M. A. (2013). Traveling umpire problem: Data sets and results. [<http://](http://mat.tepper.cmu.edu/TUP) [mat.tepper.cmu.edu/TUP>](http://mat.tepper.cmu.edu/TUP) (Last accessed: 07.08.13).
- [Trick, M. A., & Yildiz, H. \(2007\). Benders' cuts guided large neighborhood search for](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0050) [the traveling umpire problem. In P. Van Hentenryck & L. Wolsey \(Eds.\),](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0050) [Proceedings of the fourth conference on integration of AI and OR techniques in](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0050) [constraint programming for combinatorial optimization problems \(CP–AI–OR\)](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0050). Lecture notes in computer science [\(Vol. 4510, pp. 332–345\). Springer-Verlag.](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0050)
- [Trick, M. A., & Yildiz, H. \(2011\). Benders' cuts guided large neighborhood search for](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0055) [the traveling umpire problem.](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0055) Naval Research Logistics, 58, 771–781.
- [Trick, M. A., & Yildiz, H. \(2012\). Locally optimized crossover for the traveling umpire](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0060) problem. [European Journal of Operational Research, 216](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0060), 286–292.
- [Trick, M. A., Yildiz, H., & Yunes, T. \(2012\). Scheduling major league baseball umpires](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0065) [and the traveling umpire problem.](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0065) Interfaces, 42, 232–244.
- Wauters, T. (2013a). Een nieuwe (meta)heuristiek voor het Traveling Umpire Problem. <[www.kuleuven-kulak.be/nl/onderzoek/Wetenschappen/Informatica/](http://www.kuleuven-kulak.be/nl/onderzoek/Wetenschappen/Informatica/travelingumpireproblem) [travelingumpireproblem](http://www.kuleuven-kulak.be/nl/onderzoek/Wetenschappen/Informatica/travelingumpireproblem)> Katholieke Universiteit Leuven, Belgium. Bachelor's Thesis Proposal (abstract in Dutch; see [<www.kuleuven-kulak.be/nl/onderzoek/](http://www.kuleuven-kulak.be/nl/onderzoek/Wetenschappen/Informatica/bachelorthesis) [Wetenschappen/Informatica/bachelorthesis>](http://www.kuleuven-kulak.be/nl/onderzoek/Wetenschappen/Informatica/bachelorthesis)).
- Wauters, T., (2013b). Solution posted on the traveling umpire problem benchmark web site as of August 2013.
- [Wolsey, L. A. \(1998\).](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0070) Integer programming. Wiley-Interscience.
- [Wright, M. B. \(1991\). Scheduling english cricket umpires.](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0075) Journal of the Operational [Research Society, 42](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0075), 447–452.
- [Yavuz, M.,](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0080) İnan, U. H., & Fığlalı, A. (2008). Fair referee assignments for professional football leagues. [Computers & Operations Research, 35](http://refhub.elsevier.com/S0377-2217(13)01003-5/h0080), 2937-2951.
- Yildiz, H. (2008). Methodologies and applications for scheduling, routing & related problems. Ph.D. thesis Tepper School of Business. Carnegie Mellon University.