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Abstract

Given a double round-robin tournament, the Traveling Umpire Problem (TUP) seeks to assign umpires
to the games of the tournament while minimizing the total distance traveled by the umpires. The
assignment must satisfy constraints that prevent umpires from seeing teams and venues too often, while
making sure all games have umpires in every round, and all umpires visit all venues. We propose a
new integer programming model for the TUP that generalizes the two best existing models, introduce
new families of strong valid inequalities, and implement a branch-and-cut algorithm to solve instances
from the TUP benchmark. When compared against published state-of-the-art methods, our algorithm
significantly improves all best known lower bounds for large TUP instances (with 20 or more teams).
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1. Introduction

The field of sports scheduling is rich with interesting and difficult problems that arise from the
design of fair competitions. The assignment of officials (judges, referees, umpires, etc.) to the games of
a competition is a well-known and challenging problem in this field. Typically, a myriad of conditions
have to be imposed to guarantee the fairness of refereeing over the entire event, while minimizing some
measure of cost. Several studies have been published dealing with specific details of different sports,
such as: baseball [1, 2, 3, 4, 5, 6, 7, 8, 9], cricket [10], football [11], and tennis [12]. A variety of other
sports scheduling problems can be found in [13, 14, 15].

We focus on the Traveling Umpire Problem (TUP), which is an abstraction that incorporates the
main issues behind the assignment of umpire crews (umpires, henceforth for short) to the games of
Major League Baseball (MLB). This problem was first introduced in [16] and recently proved to be
NP-Complete (under certain conditions) in [17].

The TUP receives as input a double round-robin tournament with 2n teams and 4n — 2 rounds, the
distances between the home venues of each pair of teams, and two integers 0 < d; <nand 0 < dy < |5].
A feasible solution to the TUP is an assignment of n umpires to the games of the tournament that satisfies
the following constraints:
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(i) Each game is refereed by exactly one umpire;
(71) Each umpire is assigned to exactly one game per round;
(#i) Each umpire visits the home venue of each team at least once;
1) Each umpire visits any given venue at most once during any ¢; = n — d; consecutive rounds;
Vg g any

n

5] — dy consecutive rounds.

(v) Each umpire sees any given team at most once during any ¢ = |

The TUP’s objective function is to minimize the total distance traveled by the umpires throughout the
entire tournament.

Our main contributions are: (a) we present an integer programming model for the TUP that gener-
alizes the two best models in literature; (b) we introduce new families of strong valid inequalities for this
model; and (c) we improve the best known lower bounds for all large instances in the TUP benchmark
[18, 23] with 20 or more teams by solving our optimization model with a branch-and-cut algorithm.

The remainder of this paper is organized as follows. The next section presents a literature review
of the TUP, while Section 3 describes our optimization model and the new valid inequalities. Sec-
tion 4 details the separation routines used in our branch-and-cut algorithm, and Section 5 analyzes our
computational results. Finally, we conclude and discuss ideas for future work in Section 6.

2. Previous Work

It is evident from several years of computational experience with the TUP that it is a very difficult
problem to solve. Even finding feasible solutions without regard to quality can be quite a challenging
task. In this section we summarize some of the most successful approaches from the TUP literature.

In [3], the authors introduce a set of benchmark instances having between 4 and 32 teams. These
instances are available for download at [18, 23], and have become the standard benchmark set for all
published research on the TUP. Both an integer programming (IP) and a constraint programming (CP)
model for the TUP were proposed in [3]. Exact solvers were able to solve these models to optimality for
instances with up to 10 teams, but had difficulty finding feasible solutions to larger problems. Therefore,
also in [3], the authors proposed a greedy matching heuristic to generate good solutions. When this
heuristic gets stuck with an infeasible partial solution, a large neighborhood search guided by Benders
cuts takes place to fix it, allowing the heuristic to resume execution. This approach successfully found
many solutions that were better than those found by exact methods for instances with 14, 16, and 30
teams.

The real-life MLB umpire scheduling problem (MLB-USP) is described in [4], but the IP model
proposed therein cannot be solved due its large number of variables and constraints. Hence, the TUP
is highlighted an abstraction of MLB-USP that captures its most important features and ignores minor
details. A simulated annealing (SA) algorithm was proposed in [4] to obtain good solutions for both
MLB-USP and TUP, finding better schedules than those adopted by MLB. The solutions found by the
SA for the TUP, however, were inferior to those obtained by the heuristic proposed in [3]. Continuing
on the heuristic front, a genetic algorithm (GA) was proposed in [5] employing a sophisticated crossover
operator tailored to recombine two solutions in a way that the offspring is locally optimized by solving a
matching problem. Several new best solutions were found by this GA for instances with 14, 16, and 30
teams. Later on, a stronger IP model based on the one proposed in [3] was presented in [6]. This new
model was more compact with respect to the number of variables and constraints and also included new
constraints. It led to improvements in all known lower bounds for the benchmark instances and, for the
first time, provided lower bounds for instances with more than 16 teams. Additionally, [6] introduced
a relax-and-fix heuristic based on their IP model that managed to improve the quality of almost all
solutions known at the time.



An iterative deepening search (IDS) and an iterative local search (ILS) were proposed in [7]. These
methods are complementary in the sense that IDS found many improved solutions to medium-sized
instances (with 14 and 16 teams), whereas ILS obtained new better solutions to larger instances (with
26 or more teams). A decomposition approach to derive strong lower bounds for the TUP is also
proposed in [7]. This approach subdivides the tournament into smaller pieces, solving each one with a
modified version of the IP model from [6] that corresponds to a relaxed version of TUP. This method
improved all of the best lower bounds known at the time.

In [8], the authors introduce a set partitioning model whose variables represent an umpire’s complete
schedule, visiting a game in each one of the 4n — 2 rounds of the tournament. A branch-and-price (BP)
algorithm was developed to solve this model since it has an exponential number of variables. Its pricing
routine uses branch-and-bound to solve a constrained shortest path problem. Following a best-first
search strategy, this BP improved several lower bounds for instances with 14 and 16 teams and, using
a depth-first search strategy, it obtained some new best solutions to instances with 14 and 16 teams.

A network flow model and a set partitioning model that is equivalent to the one in [8] were presented
in [9]. The network flow model is optimized via a branch-and-bound (BB) algorithm which solves a
Lagrangian relaxation at every node of the search tree. This BB algorithm improved several lower
bounds for instances with more than 18 teams. Their set partitioning model is strengthened by the
addition of cutting planes and solved with a branch-and-price-and-cut (BPC) algorithm. The BPC
improved many lower bounds for instances with up to 18 teams, and was the first method to solve
instances with 14 teams to optimality.

A branch-and-bound algorithm combined with a parallel routine to generate strong lower bounds was
recently proposed in [19]. The branch-and-bound rapidly enumerates the nodes in the search tree and
uses the lower bounds calculated concurrently to prune as many nodes as possible. The lower bound
calculation comprises a bottom-up algorithm inspired by the decomposition scheme presented in [7].
This method solved to optimality all 14-team benchmark instances within a few minutes and was the
first to obtain provably optimal solutions for 16-team instances. Additionally, lower and upper bounds
were improved for the 16-team instances. Despite these remarkable results, this method does not appear
to scale well for instances with 18 or more teams.

3. Optimization Model

We now present an integer programming (IP) model for the TUP that generalizes two existing models.
In [9], the authors describe a network-flow model (NFM) whose variables represent trips made by umpires
between consecutive rounds in the tournament. Its linear relaxation can be solved quickly and produces
good lower bounds. Still in [9], and also in [8], a stronger set-partitioning model (SPM) is used whose
variables represent an umpire’s entire sequence of trips through all 4n — 2 rounds of the tournament,
while satisfying constraints (iii)—(v). Although SPM’s linear relaxation produces significantly stronger
lower bounds than NFM’s linear relaxation, the time required to solve it increases quickly as the number
of teams increases, which makes it impractical to use SPM with more than 18 teams.

Here is how our model generalizes the previous ones. While NFM’s and SPM’s variables represent
umpires’ trip sequences with lengths of 2 and 4n — 2 rounds, respectively, the length of the trip sequences
our model’s variables represent is a parameter that can fall anywhere between 2 and 4n — 2. This
flexibility allows us to empirically study the trade-off between relaxation solution speed (an advantage
of NFM) and lower bound strength (an advantage of SPM).

Let 2 < w < 4n — 2 be the sequence-length parameter mentioned above. For a fixed value of w, we
create variables by dividing the input tournament 7" into sections indexed by S = {1,2,..., (4”’3”» as

w—1
follows. For any s € S, the s-th section of T', denoted T, consists of consecutive rounds (s—1)(w—1)+1




through min{s(w — 1) + 1,4n — 2}. Note that all sections have exactly w rounds, except for the last
one, which could be shorter. Figure 1 illustrates a tournament with four teams and six rounds being
subdivided into sections for w = 2, 3, 4, and 6.

w =2 w=3
Rounds Rounds

1 2 3 4 5 6 1 2 3 4 5 6
(1,3) (12) (L,4) (3,1) (21) (41) (1,3) (1.2) (14) (31 (21) (41)
(24) (34) (32) (42) (43) (23) (24) (34) (3.2) (42) (43) (23)

T T T T T

w=4 w =206
Rounds Rounds

1 2 3 4 5 6 1 2 3 4 5 6
(1,3) (12) (L,4) (3,1) (21) (41) (L,3) (12) (1,4) (3.1) (21) (4.1)
(24) (34) (3.2) (42) (43) (23) (24) (34) (3.2) (42) (43) (2.3

Figure 1: Sections of a 4-team, 6-round tournament for w = 2, 3, 4, and 6.

For each section s € S, our model contains variables to represent every trip sequence that visits all
of the rounds in 7T and satisfies TUP constraints (iv) and (v). Because only one section exists when
w = 4n — 2, trip sequences are also required to satisfy constraint (7ii) in this particular case. When
2 < w < 4n — 2, we cannot impose constraint (7ii). Note, however, that consecutive sections have one
round in common (Figure 1), which allows us to connect their trip sequences to create a longer sequence.
In the next section we introduce our mathematical model and detail the constraints that ensure trip
sequences get properly combined to create feasible travel schedules for the n umpires.

3.1. Initial Integer Programming Formulation

For a fixed w and any s € S, let P, be the set of trip sequences in Ty that visit all of its rounds
and satisfy constraints (iv) and (v). (When w = 4n — 2, we have only P, and require that its sequences
satisfy constraint (ii).) For each p € P = |J, 4 P, create a binary variable x,, that is equal to one when
p is part of the solution, and equal to zero otherwise. We denote the distance traveled by the trips in
p by d,. Let G be the set of games in 7}’s rounds, and let P,, be the set of all trip sequences in P
that contain a given game g € G5. From now on, we will use the term simple route to refer to any trip
sequence in P, and the term route to refer to an ordered sequence of simple routes 7y, ..., 7, such that
r; and ;11 come from consecutive sections, and the last game of r; is the same as the first game of r;,1,
for any i« = 1,...,m — 1. Given a route @, we denote by P(Q) the set of all simple routes in . A
complete route is a route that visits every round of the tournament, that is, it contains one simple route
from each section of T'. A route is said to be infeasible when it contains two or more games that violate
constraints (iv) or (v), or when it is a complete route and violates constraint (7ii). Finally, we denote
the set of all infeasible routes by U. We are now ready to present our mathematical model.

min Z dyx, (1)

peP
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Subject to:

Y x,=1, VseS,geq,, (2)
pEPsg
Y 3, <|PU) -1, YUEU, (3)
peP(U)
z, €{0,1}, VpeP. (4)

The objective function (1) minimizes the total distance traveled by the umpires, and (2) ensures
that all games in each section are visited by a simple route. Note that a game in a round shared
by two consecutive sections is visited by two simple routes; one ending and one starting at that game.
Constraints (2) and (4) together guarantee that a feasible solution consists of n complete routes satisfying
TUP constraints (i) and (7). TUP constraints (iii)—(v) are respected because of (3), which prevents
infeasible routes from being part of the solution by excluding at least one of their constituent simple

routes. From now on, let 7 denote the TUP polytope, that is, the convex hull of the feasible solutions
to (1)—(4).

3.2. Strong Valid Inequalities

The linear relaxation of (1)—(4) does not provide strong lower bounds, mostly because (3) turns out
to be a weak constraint. In [9], the authors propose to strengthen (3) via a lifting procedure from [20],
which we explain next. Let U = (uj,us,...) be an infeasible route, and let H*(U) = P(U) U {p €
P | (uy,us,...,u;p) is an infeasible route for some i = 1,...,|P(U)| — 1}. Then, (5) is a stronger
version of (3)

> 4, <|PU)-1, YVUEU. (5)

peHT(U)

The validity of (5) stems from the fact that, by construction, any |P(U)| simple routes in H*(U) that
satisfy (2) contain an infeasible route. Alternatively, validity proofs for similar inequalities for the vehicle
routing problem with time windows shown in [20] can also be applied to (5).

To obtain additional valid inequalities for 7, we exploit some of the TUP’s inherent symmetry.
As we reverse the order of rounds in a tournament, turning round r into round 4n — 1 — r, for all
1 <r <4n—2, we obtain a modified instance of the problem that is equivalent to the original instance.
The fundamental difference is that the umpires travel routes in the reverse direction. The sections of
the tournament are also reversed, that is section s’ = |S| —s+1 of the modified instance contains round
r" =4n —1—r if, and only if, section s of the original instance contains round r. Therefore, P, the set
of simple routes in section s’ of the modified instance, contains the reversed simple routes that belong
to P, in the original instance. As a consequence, variables in the formulation of the modified instance
are equivalent to the variables for the corresponding reversed route in the formulation of the original
instance. Applying this equivalence to the version of (5) for the modified instance, we obtain (6), which
is valid for 7 in the original instance.

Y 4, <|PU) -1, VUET, (6)

peH—(U)

where H=(U) = P(U)U{p € P | (p,us, Uiy1,-..,upw)) is an infeasible route for some i =2,... |P(U)|}.
Inequalities (5) and (6) are linearly independent, and hence not redundant together. In fact, the com-
putational results in Section 5 indicate that the addition of (6) significantly strengthens the linear
relaxation of (1)—(4).



Next, we obtain two additional families of valid inequalities for 7 derived from cliques in conflict
graphs. Let s € S, s # |[S], g € Gs N G441, and define Ay, as the graph whose vertices correspond to
the simple routes in P, that end with game g, as well as the simple routes in P, that start with g.
We denote the vertex of A, that corresponds to a given simple route p by v;fq (p). Two vertices of A,
v;“g(pl) and vfg(pg) are adjacent if, and only if, p; and p, either belong to the same section, or constitute
an infeasible route when put together. If we denote the set of cliques in Ay, by Ay, (7) is clearly valid

for T.
Y 4,1, Vs€Ss#[S,9 €GN Gar, CE Ay (7)

p | v (p)eC

Similarly, let B, be a graph whose vertices correspond to the simple routes in P for a given s € S.
We denote the vertex of B, that corresponds to a given simple route p by vZ(p). Two vertices in B,
vB(p1) and vB(py), are adjacent if, and only if, p; and p, have a game in common. If we denote the set
of cliques in B, by B, (8) is valid for 7 because of (2).

> z,<1, VseS CeB, (8)

p|vB(p)eC

Constraints (5) and (6) are called path inequalities, whereas (7) and (8) are referred to as clique
inequalities.

4. Separation Routines for Path and Clique Inequalities

Because the number of path and clique inequalities grows exponentially with n, it is impractical to
add them all to the model. Instead, we develop separation routines to detect the violation of these
inequalities and use them as cutting planes. We start with a few auxiliary results that improve the
separation of path inequalities, and describe the two separation routines afterward.

4.1. Auziliary Results for Path Inequalities

We call an infeasible route right-minimal (left-minimal) if it becomes feasible once its rightmost
(leftmost) simple route is removed. An infeasible route is called minimal if it is both left- and right-
minimal.

Proposition 1. If U is not a right-minimal (left-minimal) infeasible route, its corresponding inequality
(5) (respectively, (6)) is redundant.

Proof. Let U be an infeasible route that is not right-minimal, and let Z be the minimal set of simple
routes in U whose removal would make it into a right-minimal route U’. If we sum together, for each
p € Z, equalities (2) with s being p’s section and g being p’s first game, and add the result to the
inequality (5) corresponding to U’, we end up with the inequality (5) corresponding to U. The proof for
the left-minimal case is analogous. O

Note that inequalities (5) corresponding to two right-minimal infeasible routes that differ only in
their last (rightmost) simple route, are identical. Likewise, two left-minimal infeasible routes that differ
only in their first (leftmost) simple route give rise to the same inequality (6). Therefore, we now
present modified versions of (5) and (6) that prevent our separation algorithm from generating repeated
inequalities. Let I be the set of feasible routes. Let F' = {F' = (fi, fo,...) € F | fipir) € Ps|} and
F" ={(f1, fa,...) € F| f1 ¢ Pi} be the sets of feasible routes that exclude simple routes from the last
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and first sections of 7', respectively. Consider F' = (f{, f5,...) € ', F”" = (f{, fY,...) € F”, and define
Kt(F') = P(FYu{p € P | (fi,f},-.., fl,p) is an infeasible route for some i = 1,...,|P(F"’)|} and
K=(F")=P(F")U{p e P|(p, [}, [{s1:- -, flpgeny) 18 an infeasible route for some ¢ = 1,...., [P(F”)[}.
Instead of using (5) and (6), we use (9) and (10), respectively.

Y. #,<|P(F)|, VFeF, (9)
pEKH(F)

Y =z, <|P(F)|, VFeF" (10)
pEK~(F)

Notice that (9) and (10) are respectively equivalent to (5) and (6), but the former are defined in terms
of feasible routes, whereas the later are defined in terms of infeasible routes. For instance, given a right-
minimal (resp. left-minimal) infeasible route U, inequality (5) (resp. (6)) for U is equal to (9) (resp.
(10)) for the feasible route obtained by removing the last (resp. first) game in U. In addition, inequality
(9) (resp. (10)) for a given F' eliminates only right-minimal (resp. left-minimal) infeasible routes (see
Proposition 1) and there is a one-to-one correspondence between an inequality (9) or (10) and a feasible
route F' from F’ or F” because K (F) and K~ (F) are uniquely determined from F'.

Although our separation routines look for violations of (9) and (10), these cuts can be dense, poten-
tially leading to decreased computational performance. Therefore, we add equivalent, sparser versions
of (9) and (10) to the formulation, which are given by (11) and (12), respectively.

> ap—zp >0, VF eF, (11)
pEKH(F")
1/ /!
Z zp—apm ., 20, VF'EF, (12)
pEK—(F")
where K (F') = {p € (P\P(F")) | (fi, f5,..., fl,p) is a feasible route for some i = 1,...,|P(F")|}, and

K=(F") ={p € (P\ P(F")) | (p, f{'s {1+ f{p@eny) is @ feasible route for some i = 1,..., [P(F”)[}.
Intuitively, (11)-(12) are sparser than (9)-(10) because the K+ and K~ sets used in the former contain
simple routes that yield feasibility, which tend to be less numerous than the infeasibility-inducing simple
routes of the K™ and K~ sets used in the latter. Given F’, we obtain (11) by multiplying (9) by —1
and adding to the result, for all i = 1,...,|P(F")|, equalities (2) with s =i+ 1 and g equal to the last
game in f/. Analogously, we can combine the negation of (10) with (2) to obtain (12).

4.2. Separation Routine for Path Inequalities

Algorithm 1 describes the separation routine for (9) for routes that violate TUP constraints (iv) or
(v). Given a solution z* (e.g. from the linear relaxation of the current branch-and-bound node), we
enumerate the routes in F’ looking for violations of (9) by calling the procedure SEP-FRWD-FREQ-REC
for each section s € S, except for the last one. SEP-FRWD-FREQ-REC recursively checks inequalities
(9) for routes that start in s, which could take exponential time. Hence, we strategically skip some
routes, as described next.

Typically, most x variables are either zero or very close to zero in the input solution x*, contributing
very little to a potential violation of (9). Hence, we disregard routes whose variables have values
below 0.001 by using the following sets inside SEP-FRWD-FREQ-REC: P = {p € P | x;, > 0.001},
Pr = P,nP*, and PJ, = P, N P. The steps in lines 8-16 of Algorithm 1 enumerate all feasible routes
obtained by adding simple routes from Pf (or P;f when F is empty) to the end of F' (creating F). If
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F’ violates (9) (line 17) by at least 0.009 (to promote reasonable progress in the lower bound value), the
corresponding inequality (11) is added to the formulation (line 18). In lines 20 and 21, routes derived
from F” are enumerated in a recursive fashion only when the next section is not the last (s + 1 < |S])
and when > e sy pr Ty > [P(F')| —1+40.009. If the previous inequality is not satisfied, routes that
extend F” cannot satisfy the condition in line 17. To see why, consider a route F” obtained by adding
¢ simple routes at the end of F’. The inequality in line 17 for F” will have a right-hand side equal
to |[P(F")| 4+ ¢ 4 0.009, and its left-hand side will have variables from the routes in K+ (F") N P™ plus
additional variables whose values in z* add up to no more than ¢ + 1, which results in the inequality
of line 20 after canceling ¢ on both sides. This check prevents the unnecessary enumeration of a large
number of routes. Summations calculated in lines 17 and 20 are available to subsequent recursive calls
to allow for incremental updates, saving additional computation time.

Algorithm 1 Separation routine for (9) for routes that violate TUP constraints (iv) or (v).
1: procedure SEP-FRWD-FREQ(solution z*)
2 for all s € S,s # |S| do

3 SEP-FRWD-FREQ-REC(z%, (), s);

4 end for

5: end procedure
6:
7
8
9

: procedure SEP-FRWD-FREQ-REC(solution x*, route F, section s)

if '= () then

Let F = P}
10: else
11: Let g be the last game in F;
12: Let E = PJ;
13: end if
14: for all p € F do
15: Let F' be I with p added to its end;
16: if F' is a feasible route then
17: if Y x> |P(F)[+0.009 then

pEK+(F)NP+
18: Add to the formulation inequality (11) for F;
19: end if
20: if s+1<[S|and > > |P(F')|—140.009 then
pEK+(F)NP+

21: SEP-FRWD-FREQ-REC(z*, F', s + 1);
22: end if
23: end if

24: end for
25: end procedure

We separate (10) for routes that violate TUP constraints (iv) or (v) with simple modifications to
SEP-FRWD-FREQ and SEP-FRWD-FREQ-REC, creating their respective counterparts SEP-BCWD-FREQ
and SEP-BCwWD-FREQ-REC. SEP-BCWD-FREQ calls SEP-BCWD-FREQ-REC for each section s € S,
except for the first. SEP-BCWD-FREQ-REC also enumerates routes, but considering sections in reverse
order, with the following modifications to the steps in Algorithm 1. Game g becomes the first game of
Fin line 11. Route p gets inserted at the beginning of F' in line 15. Inequalities in lines 17, 18, and

8



20 are modified to be consistent with (10) and (12). The first condition in line 20 becomes s — 1 > 1.
Finally, the third parameter of the recursive call in line 21 becomes s — 1.

Empirically, inequalities (9) and (10) that eliminate long infeasible routes are not worth sepa-
rating, when it comes to violations of (i) or (v), unless they are minimal (i.e. both left-minimal
and right-minimal). Let U = (i, @,...) be an infeasible route that only violates either (iv) or
(v). If its internal route (ds,---,Up(g) ) traverses at least gmax — 1 rounds, U cannot be min-
imal, where gm.x = max{qi, ¢}. Therefore, we define subsets of F' and F” for (9) and (10), re-
spectively, which exclude inequalities that only eliminate non-minimal routes violating (iv) or (v).
Given a route @ = (qi,q2,...), let I'(Q) and I"(Q) be the number of rounds visited by routes
(92,3, -, qp@)) and (q1, G2, - - -, qp(Q)-1), respectively. We define ' = {F € ' | I'(F) < ¢max — 1}
and I’ = {F € F" | I"(F) < Gmax — 1}, and implement separation routines SEP-FRWD-FREQ-MNL
and SEP-FRWD-FREQ-MNL-REC (resp. SEP-BCWD-FREQ-MNL and SEP-BCWD-FREQ-MNL-REC) to
separate inequalities (9) (resp. (10)) for routes in F' (resp. F”). Routine SEP-FRWD-FREQ-MNL-REC
is obtained by modifying SEP-FRWD-FREQ-REC, as follows. The extra condition I'(F’) + w < ¢uax — 1
is added to the “if” in line 20 and, of course, the recursive call in line 21 becomes SEP-FRWD-FREQ-
MNL-REC. Routine SEP-BCWD-FREQ-MNL-REC is similarly obtained from SEP-BCWD-FREQ-REC
by adding the condition I”(F’) + w < gmax — 1 before its recursive call. Routines SEP-FRWD-FREQ-
MNL and SEP-BCWD-FREQ-MNL are similar to SEP-FRWD-FREQ and SEP-BCWD-FREQ, but call
SEP-FRWD-FREQ-MNL-REC and SEP-BCWD-FREQ-MNL-REC, respectively.

We now turn our attention to violations of TUP constraint (7ii). The feasible routes in F’ (resp. F”)
corresponding to inequalities (9) (resp. (10)) that eliminate routes violating (7ii) are those that miss
the home venue of at least one team and include simple routes from each of the sections 1,2,...,|S| -1
(resp. 2,3,...,]5]). These inequalities can be separated by defining routine SEP-FRWD-VISIT-REC
(resp. SEP-BCWD-VISIT-REC) as a variation of SEP-FRWD-FREQ-REC (resp. SEP-BCWD-FREQ-
REC). Essentially, the violated inequality should only be added to the model when s = |S| — 1 (resp.
s = 2) and F’ excludes the home venue of at least one team. Empirically, however, the amount of
improvement to the lower bound obtained by separating (9) and (10) for routes that violate (iii) was
not worth the extra time required by the separation routines. Therefore, we decided to separate (13),
instead:

Yo wm <P, VF' =(f.f5...) €F, (13)

PEK'(F")

where K'(F') = P(F')U{p € P | (f{,fs,- ... f{pn,P) is an infeasible route}. Despite being weaker
than (9)—(10) (since K'(F') C KT (F") when |F'| > 2), (13) can be separated by enumerating a lot fewer
routes, which reduces computational effort considerably. Algorithm 2 describes the separation routine for
(13). It is similar to SEP-FRWD-VIsIT-REC, differing with respect to the summations calculated in lines
12 and 16 of Algorithm 2. Even though it looks for violations of (13), SEP-FRWD-VIsSIT-WEAK-REC
adds to the formulation the stronger inequality (11), as is done in Algorithm 1.



Algorithm 2 Separation routine for (13) for routes that violate TUP constraint (7).

1: procedure SEP-FRWD-VISIT-WEAK-REC(solution z*, route F', section s)
2. if F = () then
3 Let E = P+,
4: else
5: Let g be the last game in F;
6 Let E = PJ;
7 end if
8 for all p € ' do
9: Let I’ be I with p added to its end;
10: if I’ is a feasible route then
11: if s =S| — 1 and F’ does not visit a team at home then
12: if > 2 >[F|+0.009 then
p'eK’ (F))NP+
13: Add to the formulation inequality (11) for F”;
14: end if
15: end if
16: if s+1<[Sland Y ap>|F'|—140.009 then
p'eK'(F))NP+
17: SEP-FRWD-VISIT-WEAK-REC(2*, F’, s + 1);
18: end if
19: end if

20: end for
21: end procedure

Although the separation routines described so far are recursive, which makes them easier to under-
stand, they are implemented as non-recursive procedures to improve their running time.

4.3. Separation Routine for Clique Inequalities

We separate (7) and (8) as follows. Given a solution z*, we start by building graphs Ay, and Bj
(see Section 3.2). After assigning weight z7 to each vertex vZ (p) and vZ(p), we look for a maximum-
weight clique in either graph. A violated inequality exists if, and only if, the maximum-weight clique
found has total weight greater than 1. Algorithms 3 and 4 describe the separation routines for (7) and
(8), respectively. We use the Cliquer solver [21] to look for maximum-weight cliques. Because this is
an NP-hard problem [22], we reduce the sizes of our two graphs by only creating vertices for simple

routes p with z7 > 0.01. The subgraphs of Ay, and B obtained this way are denoted by Ay, and

B,. Additionally, as Cliquer only works with integer weights, the weight of vertices vg(p) and vB(p)
is converted to \_10033“, and since finding the maximum-weight clique can be very time-consuming, we
stop running Cliquer as soon as a clique of weight greater than or equal to 101 is found. The strongest
inequalities (7) and (8) are those associated with maximal cliques in A,, and By, respectively. Therefore,
once a clique C' is found in one of the subgraphs, we scan the corresponding original graph looking for
vertices not in C' that happen to be adjacent to all vertices of C. If such a vertex exists, it is included in
C' and the procedure continues for the remaining unverified vertices and the updated C. After scanning
all vertices, the violated inequality is added to the formulation. (See lines 8-12 in Algorithm 3, and lines

7-11 in Algorithm 4.)
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Algorithm 3 Separation routine for (7).

1: procedure SEP-CLIQUE-ADJT-SECTION(solution z*)

2 for all s € S, s # |S| do

3 for all g € G;N G4,y do

4 Build graph flsg for routes p € Pyg U Ps41)y With z, > 0.01;

5: Assign weight |10027 ] to each vertex vZ}(p) of Ay

6 Run the Cliquer solver on the weighted graph flsg;

7 if a clique C with weight greater than or equal to 101 is found then
8 for all p € P,y U Plsy1), do

9: if vZ (p) ¢~C and v, (p) is adjacent, in A, to all vertices of C' then
10: Add vz (p) to C;
11: end if
12: end for
13: Add to the formulation inequality (7) for C;
14: end if
15: end for
16: end for

17: end procedure

Algorithm 4 Separation routine for (8).

1: procedure SEP-CLIQUE-SAME-SECTION(solution x*)

2 for all s € S do

3 Build graph B, for routes p € P, with x, > 0.01;

4 Assign weight LlO()x;J to each vertex vZ(p) of B,;

5: Run the Cliquer solver on the weighted graph B,;

6 if a clique C with weight greater than or equal to 101 is found then
7 for all p € P, do

8 if vB(p) ¢ C and vB(p) is adjacent, in By, to all vertices of C' then
9: Add vB(p) to C;
10: end if
11: end for
12: Add to the formulation inequality (8) for C'
13: end if

14: end for

15: end procedure

5. Computational Results

We perform computational experiments to show the relevance of the cuts from Section 3.2, to assess
the impact of parameter w (the length of umpire trip sequences) on the lower bounds produced by the
relaxation of our IP model, and to compare the performance of our branch-and-cut algorithm with other
methods in literature.

Our implementation is done in C++4 using ILOG CPLEX’s Callable Library version 12.6.1, with
GCC 4.6.3 as the compiler. All experiments are carried out on a machine equipped with an Intel Xeon
X3430 2.40GHz processor and 8GB of RAM, running Linux Ubuntu 12.04.3.
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The problem instances we use come from the TUP benchmark [18], also present in the recently
created automated benchmark [23|, which includes tournaments ranging from 4 to 32 teams. We do not
consider instances with fewer than 14 teams because they are easily solved by the current state-of-the-
art methods. Instance names start with the number of teams in the tournament, optionally followed
by a letter. The presence of a letter indicates a variation of the original instance (without the letter),
keeping the same tournament but changing the distance matrix. We consider the usual values of ¢; and
¢2 adopted in the TUP literature and, in addition, include ¢; = ¢o = 5 for the instances with 26, 28, 30,
and 32 teams, which are also studied in [7].

Before we proceed, two aspects are worth emphasizing. First, although the number of variables
in our formulation grows exponentially in w, we enumerate all of them a priori and add them to the
model from the beginning (see Algorithm 5), rather than resorting to on-the-fly variable generation (see
Appendix A for the number of variables in our test instances). The time spent with this enumeration is
already included in the solution times reported in this section and never exceeds 15 seconds.

Algorithm 5 Enumeration of the model’s variables.

1: procedure ENUM-VARS

2: for all s € S do

3: ENUM-VARS-REC(s, (), 0); > generates all trips in P

4: end for

5: end procedure

6:

7. procedure ENUM-VARS-REC(section s, simple route p, simple route length ¢);
8: > Append games to the simple route p of length ¢ until it reaches the size of section s
9: if {l=wors(w—1)+14+¢>4n— 2 then
10: Add variable z, to the formulation;
11: else
12: for all games g in round s(w — 1) + 1+ /¢ do
13: Let p’ be p with g appended to it;
14: if p’ is a feasible simple route then
15: ENUM-VARS-REC(s, p/, £ + 1);
16: end if
17: end for
18: end if
19: end procedure

A second relevant aspect refers to the way we compare our running times against those in [7, 8, 9],
as their experiments were conducted in computational environments different from ours. Rather than
trying to establish a reliable speed ratio between two distinct CPUs (a very difficult task), for the
purpose of assessing our results it suffices to know that the machine we used is slower than all of the
others, as can be verified, for example, on the following web site: www.cpubenchmark.net (accessed in
July, 2015). Therefore, when we say that “we found a better lower bound, and X times faster, than
the one in [citation]”, it actually means that the true speed-up is even greater than X. If the exact
CPU speed ratio was used in our comparisons, the conclusions could only become more favorable to our
method. With these observations in mind, we continue with the analysis of the results.
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5.1. The Impact of Our Valid Inequalities

We start by evaluating different combinations of the valid inequalities presented in Section 3.2 to
assess their impact on solution times and lower bound strength. We solve the linear relaxation of our
IP model six times for each instance, each time using a procedure consisting of distinct ordered subsets
of the separation routines from Section 4, chosen empirically, as follows:

Sepl: SEP-FRWD-FREQ, SEP-FRWD-VISIT-REC.

Sep2: SEP-FB-FREQ, SEP-FB-VisiT-REC.

Sep3: SEP-FB-FREQ-MNL, SEP-FB-VIsIT-REC.

Sep4: SEP-FB-FREQ-MNL, SEP-FRWD-VISIT-WEAK-REC.

Sep5: SEP-FB-FREQ-MNL, SEP-FRWD-VISIT-WEAK-REC, SEP-CLIQUE-ADJT-SECTION.

Sep6: SEP-FB-FREQ-MNL, SEP-FRWD-VISIT-WEAK-REC, SEP-CLIQUE-ADJT-SECTION,
SEP-CLIQUE-SAME-SECTION.

Routine SEP-FB-FREQ corresponds to the execution of SEP-FRWD-FREQ followed by SEP-BCWD-
FrEQ, SEP-FB-FREQ-MNL corresponds to SEP-FRWD-FREQ-MNL followed by SEP-BCWD-FREQ-
MNL, and SEP-FB-VIsSIT-REC corresponds to SEP-FRWD-VISIT-REC followed by SEP-BCWD-VISIT-
REC.

The above procedures (combinations of separation routines) are used in a cutting plane algorithm
as follows. We start by solving the linear programming (LP) relaxation of a model that only includes
(1) and (2). Then, given i € [1,6], procedure Sepi is applied to the optimal solution found, with its
separation routines executed in the order in which they appear above. When a routine inside Sep:
finishes its execution, the next routine is executed only if the previous one did not add any violated
inequalities to the model. Otherwise, Sepi terminates, the model is re-optimized (with the dual Simplex
method), and Sepi is called again. This process is repeated until no more violated inequalities are found.
Because SEP-FB-FREQ, SEP-FB-FREQ-MNL, and SEP-FB-VISIT-REC consist of two routines each,
they receive special treatment: their second routine is always executed, even when their first routine
adds inequalities to the model.

Given a w, for each i € [1,6] we denote by M? the IP model comprising (1), (2), (4), and all the
inequalities separated by Sepi. The linear relaxation of M’ , obtained by dropping (4), is denoted by
ME We solve each linear relaxation M with our cutting plane algorithm and report the lower bounds
and solution times (limited to 3 hours) in Table 1. In these experiments we use the same values for w
adopted in the branch-and-cut experiments (see Section 5.3 for explanations).

We now compare the different linear relaxations based on the results in Table 1. MZ! comprises (1),
(2) and (9), whereas M%2 is equal to M plus (10). Including (10) significantly improves the lower
bounds, increasing them by about 1300 to 5900 miles (0.9 to 3.2%) on instances with up to 16 teams,
and by about 5100 to 12600 miles (1.8 to 3%) on instances with more than 16 teams. On the other
hand, solution time increases up to 6.23 times on all but one 16-team instance, and up to 3.6 times on
the remaining instances. Instance 16 with ¢; = 8 and ¢, = 2 ends up taking 13.7 times longer to solve
once (10) is included. M3 differs from M2 only with respect to (9) and (10). In M3 we disregard
some inequalities in (9) and (10) that eliminate non-minimal paths violating (iv) or (v), as described
in Section 4. M solves up to twice as fast as ME? (1.37 times faster on average), whereas the lower
bounds given by the former are at most 174 miles less than those of the latter, which is negligible.
Because our heuristic separation routine disregards variables with value less than 0.001, MZ actually
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Inst. @1 @ w Lower bound Solution time (seconds)

val M{EZ MIIEJ MlILM Mfs MzIEG Mﬁ] M{EZ Mf? Mg4 MZIES vaﬁ
14 7 3 4 151371.3 153680.4  153621.9  153621.9  154863.3 155041.5 0.28 0.74 0.46 0.46 1.78 3.07
14 6 3 4 150721.9 152670.6  152670.5  152670.5  153927.7 154187.7 0.21 0.34 0.25 0.24 0.86 1.48
14 5 3 4 149963.0 151792.7  151792.7  151792.7  152928.3 153095.0 0.11 0.20 0.12 0.12 0.26 0.44
14A 7 3 4 145138.1  147900.5  147872.8  147872.8  148706.3 149081.4 0.24 0.51 0.31 0.30 1.00 2.62
14A 6 3 4 144470.1  147039.7  147036.9  147036.9  147937.8 148428.9 0.14 0.30 0.20 0.20 0.52 1.59
14A 5 3 4 143973.3  146259.4  146259.4  146259.4  147065.8 147421.0 0.09 0.18 0.10 0.09 0.21 0.57
14B 7 3 4 145404.2  147263.1  147203.7 1472019  148609.1 148776.4 0.23 0.77 0.46 0.42 1.57 2.49
14B 6 3 4 1447875  146422.8  146422.8  146422.0  147785.0 147959.1 0.17 0.42 0.27 0.25 0.84 1.42
14B 5 3 4 1441919 145529.6  145529.6  145529.6  146819.5 147138.0 0.09 0.20 0.10 0.10 0.27 0.55
14C 7 3 4 143650.8  146213.7  146039.7  146036.3  147415.5 147686.6 0.47 0.77 0.47 0.44 1.83 3.55
14C 6 3 4 142792.7  145005.7  145005.5  145005.5 ~ 146477.5 146644.6 0.15 0.37 0.26 0.26 1.05 2.02
14C 5 3 4 142150.3  144305.7  144305.8  144305.8  145776.0 145953.5 0.11 0.14 0.11 0.11 0.31 0.55
16 8 4 10 171712.1  176495.3  176495.7  176391.6  181095.3 182696.7 20.88 130.07 108.95 91.91 867.52  2877.17
16 8 2 8 147603.9  150068.3  150065.1  150055.5 152853.0 152853.0 106.53  1455.42  1184.43 978.76  10800.00 10800.00
16 7 3 4 148826.5 151856.2 151838.8  151838.8  157223.4 157377.2 0.86 2.44 1.37 1.35 10.26 13.34
16 7 2 4 1411764 1438727  143864.3  143864.3  147669.1 147853.3 0.65 1.64 1.22 1.20 7.84 10.14
16A 8 4 10 184979.7 188739.3  188739.9  188649.9  194032.1 195581.3 26.15 148.27 127.81 101.74  1389.07  3151.16
16A 8 2 8 157507.5  159312.5  159312.4  159311.4 164893.2 164893.2 151.92 626.02 515.39 501.40 10800.00 10800.00
16A 7 3 4 164939.1 167559.7  167539.7  167539.7  169767.1 169970.9 0.93 2.28 1.29 1.28 8.39 12.56
16A 7 2 4 155891.5  158068.2  158028.1  158028.1  160733.1 160905.6 0.60 1.32 0.92 0.91 6.57 9.73
16B 8 4 10 192098.3 197791.3  197790.3  197764.2  202768.2 203952.1 33.71 161.88 130.53 118.79  1262.69  2759.63
16B 8 2 8 160446.3 162696.2  162696.2  162696.2 167241.3 167241.3 139.06 282.94 253.69 253.35 10800.00 10800.00
16B 7 3 4 161769.3 1651757  165144.9  165144.9  169537.3 169617.5 0.87 2.02 1.25 1.25 10.78 12.85
16B 7 2 4 155095.8 1577749  157755.7  157755.7  162711.1 162936.6 0.81 1.82 1.25 1.24 7.70 12.24
16C 8 4 10 184697.1  190615.5  190615.7  190556.8  195863.7 197220.7 28.44 96.56 78.94 66.35 595.89  1511.01
16C 8 2 8 161294.0 164240.8  164241.2 164233.7 167196.7 167341.3 123.97 400.58 355.47 327.12  7996.15 10800.00
16C 7 3 4 164417.6 166988.9  166930.6  166930.6  169894.2 169967.0 0.96 2.57 1.54 1.53 10.13 12.91
16C 7 2 4 1574744 1597452  159733.8  159733.8  162813.5 162903.3 0.72 1.63 1.28 1.26 9.10 12.26
18 9 4 9 196674.4 201793.5 2017959  201772.9  205489.9 205743.8 359.99 1294.34  1168.20 1086.19  7949.31 10800.00
20 10 5 10 238778.9  245908.8 245960.6  245907.2  245907.2  245907.2 3582.13 10800.00 10800.00 9134.04 10800.00 10800.00
22 11 5 7 260340.7 266460.9 266423.7 266423.5  266423.5  266423.5 3413.92 10800.00 9790.81  9764.14 10800.00 10800.00
24 12 6 7 2921685 297586.7 297556.7  297556.7  297556.7  297556.7 10800.00  10800.00 10800.00 10800.00 10800.00 10800.00
26 13 6 6 327716.1 333517.8 333678.9 333678.9 333678.9 333678.9 8498.39 10800.00 10800.00 10800.00 10800.00 10800.00
26 5 5 4 3071304 313683.9 313683.7 313683.7 323346.4 323684.2 45.25 121.77 76.61 76.51 823.52  1140.39
28 14 7 5 364692.1 374601.6 374619.7 374619.7 374619.7 374619.7 6116.04 10800.00 10800.00 10800.00 10800.00 10800.00
28 5 5 4 348811.5  355275.6  355275.5 3552755  362132.7 362585.2 76.80 182.79 133.63 133.56  1140.83  1836.80
30 15 7 5 413149.5 421985.0 422012.1 422012.1 422012.1 422012.1 10119.78 10800.00 10800.00 10800.00 10800.00 10800.00
30 5 5 4 397669.4  404757.8  404757.8  404757.8  414403.9 414865.9 131.91 304.63 238.15 238.06  2305.95  3232.17
32 16 8 5 453106.0 462944.9 462944.9 462944.9 462944.9 462944.9 10800.00  10800.00 10800.00 10800.00 10800.00 10800.00
32 5 5 4 429802.6 4424189 4424189 4424189  455453.6 455885.7 266.27 675.47 532.11 531.13  5654.81  7369.47

Table 1: Lower bounds and solution times for the linear relaxations M for i € [1,6] (best lower bounds in bold).

yields greater lower bounds than MZ? on some instances (e.g. 16C with ¢; = 8 and ¢o = 2, and instance
18). M includes all the constraints in MZ3 except for those inequalities in (9) and (10) that eliminate
paths violating (i), which are replaced by the inequalities in (11) that induce the satisfaction of (13).
M solves slightly faster than M (1.05 times on average), while the lower bounds produced by the
former are at most 105 miles shorter than those by the latter, which is negligible. M is equal to M
plus (7). Adding (7) leads to significant improvements to the lower bounds, increasing them by about
800 to 5500 miles (0.6 to 3.5%) on the instances with at most 16 teams, and by about 3700 to 13000
miles (1.8 to 3%) on the instances with more than 16 teams, with some exceptions: instances with 20 or
more teams and ¢; = n, whose lower bounds remain the same because no inequalities (7) are found to
be violated within the 3-hour time limit. In terms of solution time, however, M5 solves up to 4.2 times
slower than M on 14-team instances, from 11 to 42.6 times slower on 16-team instances with q; = 8
and ¢ = 2, and 13.7 times slower on the remaining instances. M includes all the inequalities in M
plus (8). Almost all of our best lower bounds come from M except when its execution reaches the
time limit, where it performs as well as M2 or M5 or slightly better/worse than M2 or M3 since
the latter include different sets of inequalities from (9) and (10). Compared with ME5 M5 lower
bounds are up to 1600 miles (0.9%) greater on 16-team instances with ¢; = 8 and ¢, = 4, and up to 490
miles (0.3%) greater on the remaining instances. At first sight, since MEC solves up to 3.32 times slower
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than M and yields small lower-bound improvements, there seems to be no reason to advocate using
(8). Nevertheless, preliminary experiments with the branch-and-cut presented in Section 5.3 indicate
that (8) contributes to a significant reduction in the size of the search tree. As a consequence, we decide
to focus on M in our subsequent experiments.

5.2. The Impact of Parameter w

Tables 2 and 3 present, respectively, the lower bounds and solution times for M as w varies
between 2 and 10. We only solve LP models with up to 5 million variables and set a time limit of 3
hours. (The number of variables in the model for each instance and value of w tested can be found in
Appendix A.) Tables 2 and 3 also include, on the right-hand side, the lower bounds and solution times
for the relaxations of the best IP models published at the time of this writing: the dual ascent method
in [9] that solves a Lagrangian relaxation of a network flow model (RNFM), the column generation
method in [9] and [8] that solves the linear relaxation of a set partitioning model (RSPM), and the
column generation method in [9] that solves the same set partitioning relaxation, but with additional
cutting planes (RSPCM). Although the lower bounds reported in [9] and [8] for the RSPM are the
same, the corresponding solution times are different and appear, respectively, in columns RSPM[9] and

RSPM|8] of Table 3.

Inst. ¢ @ MES MEE MBS MES MES MES MEs MES MES RNFM  RSPM RSPCM
14 73 15250967 153805.9 155041.5 1560292  156644.5 156728.2 156799.3  156718.5 156751.4 1509345 156439.3 157016.3
14 6 3 1524235 153401.3  154187.7 1547153  154851.6  154925.8 1549252 154975.5  154924.1  150909.7 154439.9 155252.6
14 5 3 151916.2 152707.7 1530950 153173.7  153210.3  153196.0 153250.3 153230.9 1532160  150621.1 152941.3 153486.5
14A 7 3 146776.2 147937.8  149081.4  149982.8  150408.5 150548.7  150469.7  150443.3  150471.1  145049.6 149992.7 150707.9
14A 6 3 146685.9 1473456 1484289 1486552  148977.7 149096.8  148980.4  148962.8  149054.9  145018.1 148168.7 149283.7
14A 5 3 146362.1 146727.2  147421.0  147528.0  147704.9 147728.1  147592.5  147616.4  147622.2  144884.9 147097.5 147999.3
14B 7 3 146648.9 147822.9 148776.4 1497069  150163.7  150390.9  150296.3 150533.7 150488.5  144053.6 149767.0 150699.7
14B 6 3 146531.2 147337.4  147959.1  148733.0  148842.6  148938.8  148880.3  148964.4 149070.3  144054.1 148243.9 149240.8
4B 5 3 146136.8 146801.8 147138.0  147369.5  147455.9 147366.1 147617.9  147463.4  147598.1  143866.8 146846.2 147784.8
14C 7 3 145208.9 146438.2 147686.6  148550.6  148934.8  149106.3  149076.5 149179.0 149138.1 1432764 148613.2 149489.7
14C 6 3 145150.2 145900.2  146644.6 1470753  147140.5 1471379 147186.3 147250.3 147236.6  143233.8 146774.6 147644.9
14C 5 3 144847.6 145536.4  145953.5  146105.9  146161.2  146210.1 146230.1 1462124 1461452  143149.5 1457944 146597.9
16 8 4 157573.8 163238.6 167294.2  174986.5  178375.3  179509.2 1814029  181063.4 182696.7  152507.6 184187.6 185056.8
16 8 2 1442244 1465854  148506.6 1507172  152104.1  152027.0 152853.0  149662.8 142134.8 155045.2 1557125
16 7 3 153900.5 155923.5  157377.2  158188.3  158460.0  158466.9 158635.7  158626.9  158222.0  150532.2 158257.4 158883.4
16 72 1441769 1464758  147853.3  148369.0  148534.3  148574.7 148629.7  147865.3 1421452 148341.8  148980.7
16A 8 4 170424.0 176358.3 179870.1  187519.0  190972.0  192643.0  194233.8  194015.0 195581.3 1649459 198969.7 200007.6
16A 8 2 157765.9 159929.7 161300.4  164116.1  164511.7 164512.8 164893.2  163339.0 155641.5 166575.5 167360.0
16A 7 3 166719.6 168505.7 169970.9  170615.1  170880.4  171103.7 171251.7 171205.0 170763.1  162700.0 170575.1 171426.6
16A 7 2 157682.6 159756.9 160905.6 1615255  161617.4 1617150 161731.9  160634.4 155963.5 161571.2 161975.1
16B 8 4 170001.6 177606.1  182450.8 1927744  196594.2  198726.5 201609.1  202655.0 203952.1  165008.4 207505.4 208496.8
16B 8 2 157967.4 161411.3 163379.5 166207.6  166892.4  166880.7 167241.3  165511.6 156402.2 169363.4 170040.3
16B 7 3 165010.3 167814.3 169617.5 1703512  170837.9  170993.9 171110.0 171083.2 170860.4  162073.7 170632.5 171280.6
16B 7 2 1579369 161267.6 162936.6 163536.6 163812.7 1638149 163894.9  162738.2 156442.1 163539.7 164160.9
16C 8 4 171801.3 176480.1 180684.9 1872829  191314.0  192331.8  195932.0  195866.4 197220.7  167256.9 200682.6 201107.5
16C 8 2 160069.3 161761.6 163307.9 165357.6  166335.5 166488.9 167341.3  165813.3 158947.2 168783.6 169270.9
16C 7 3 166754.7 1681945 169967.0 170841.1  171373.7 171366.7 171596.4 1714545 1712254  164380.8 171216.0 171827.6
16C 7 2 160006.2 161596.2 162903.3  163393.5 163858.2 163907.0  163771.9  163122.1 158906.2 163850.8 164182.8
18 9 4 1871324 192865.6 196085.7  200213.7  201992.9  203102.9 203813.8 205743.8 204027.0  181430.7 212121.6 212793.6
20 10 5 220179.1 229339.6  234897.0  237819.0  243686.7  244967.0  242752.5  244388.4 245907.2  213513.3

22 11 5 248369.7 257481.4  261951.9  263768.8  264970.6 266423.5  265699.9 241909.2

24 12 6 277716.5 286579.0  293662.7 295812.5  295828.3 297556.7 270662.0

26 13 6 317247.7 325892.7 331844.8 3314564 333678.9 310366.9

26 5 5 314581.9 3213054  323684.2 323843.5  323070.6

28 14 7 355413.1 366501.5 371985.2 374619.7 348059.2

28 5 5 352797.1 360574.9 362585.2 3625710

30 15 7 406137.0 417363.9  420846.9 422012.1 396222.1

30 5 5 404198.1 4121334 414865.9  413756.4

32 16 8 439408.5 460082.6 4591924 462944.9 427436.2

32 5 5 435769.2 452052.4 455885.7  450956.9

Table 2: Lower bounds obtained with MZ6 for w € [2,10] (best values in bold), and with the best models from literature
(RNFM, RSPM, and RSPCM).

15



Inst. ¢ ¢ ME M MES MES MES MES MES Mo MG RNFM  RSPM[9] RSPM[8] RSPCM
14 7 3 014 0.51 3.07 10.42 24.54 43.15 87.16  258.95  630.87 059  526.56 4210 742.86
14 6 3 007 0.29 1.48 3.28 11.65 31.77 90.46  551.20  1741.88 0.54  108.70 40.80  443.61
14 5 3 005 0.16 0.44 1.05 3.74 17.80 57.12  587.51  1998.03 0.52 40.50 50.30  216.54
4A 7 3 012 0.63 2.62 11.13 27.78 53.05 9142  273.05 88175 0.58  107.57 40.70  638.13
14A 6 3 0.08 0.40 1.59 4.27 11.18 47.92 11357 527.70  2090.22 0.55 77.54 45.50  450.26
14A 5 3 0.06 0.26 0.57 1.97 6.80 2870  134.03  792.61  4513.95 0.54 42.13 47.80  220.36
4B 7 3 014 0.68 2.49 8.73 22.14 58.06 84.32  364.78  879.30 0.60  377.83 43.50  842.78
4B 6 3 012 0.45 1.42 4.36 11.67 35.78  126.73  401.60  1939.73 0.54 52.16 49.60  462.99
4B 5 3 007 0.29 0.55 1.78 6.82 2942 160.98 1035.51  5777.11 0.53 31.68 55.70  480.79
14C 7 3 013 0.72 3.55 11.52 22.21 63.564  103.36  297.25  879.67 0.56  442.33 44.60  806.03
14C 6 3 012 0.30 2.02 3.72 9.11 27.48 72.84  370.68  1534.01 0.56  326.59 4770 796.43
14C 5 3 0.09 0.18 0.55 1.39 4.49 28.97  111.04  818.00 5163.33 0.52 54.40 49.50  396.86
16 8 4 081  14.29 42.07  201.03  343.69  431.65 1032.18 2385.00  2877.17 0.86  457.10  172.00  771.61
16 8 2 018 1.73 14.24 27294 184358  4820.36 10800.00 10800.00 0.60 50247.89  7092.00 59186.31
16 7 3 034 2.48 13.34 59.54  154.72 40281  691.82  3445.89 10800.00 0.71  2207.89 10500.00  2959.44
16 72 015 1.58 10.14 11491 51594 1902.23  6051.61 10800.00 0.69  2598.89 10102.00 5113.53
16A 8 4 120 1551 3232 198.92 38643  551.95  781.06 1816.88  3151.16 0.81  373.20  172.00  923.43
6A 8 2 015 1.58 1242 352.65 1400.26  4330.80 10800.00 10800.00 0.58 14548.00  5403.00 17380.10
16A 7 3 044 2.91 12.56 61.85  172.06  491.18 1381.38 5342.18 10800.00 0.58  3266.34  371.00  4303.05
6A 7 2 013 1.21 9.73 9321 34810 141513  5790.52 10800.00 0.56  3918.92  7476.00  6044.11
6B 8 4 101 1128 30.69 17943  349.11  467.83  782.94 244949  2759.63 0.81 34227  202.00  771.07
6B 8 2 0.16 1.67 15.07  287.66  1459.32  4453.18 10800.00 10800.00 0.74 42129.13  5162.00 53974.07
6B 7 3 038 2.38 12.85 58.67 14148  380.96 1051.29  4142.73 10800.00 0.73  3236.07  880.00 4053.36
6B 7 2 015 1.33 12.24 11003 51578 1699.03  7627.61 10800.00 0.72  3077.02 902120 5781.35
16C 8 4 099  10.14 40.07  142.23  236.83  246.88  663.24 1037.80  1511.01 0.86  201.13 23400  586.44
16C 8 2 019 1.76 14.95  161.89  1003.26  2501.33 10800.00 10800.00 0.74 13634.98  7380.00 22101.70
16C 7 3 033 2.76 12.91 61.77  164.26  411.04 1012.05 3788.13 10800.00 0.79  851.66  449.00  1658.40
6C 7 2 015 1.45 12.26 68.82  353.68 1518.86 10800.00 10800.00 0.71  3319.74 10578.00  4790.26
18 9 4 165 3274 16518  686.79 1856.79 2428.94  6430.24 10800.00 10800.00 1.07 17834.91 22980.33
20 10 5 361 109.79  955.08 2038.08 4351.67 7870.05 10800.00 10800.00 10800.00 1.53

22 11 5 452 197.52 2233.87 7476.42 10800.00 10800.00 10800.00 1.95

24 12 6 11.68 387.45 10800.00 10800.00 10800.00 10800.00 2.90

26 13 6 11.92  621.74 10800.00 10800.00 10800.00 3.75

26 5 5 354 10085 1140.39  5094.29 10800.00

28 14 7 16.98 973.06 10800.00 10800.00 4.29

28 5 5 508 13421 1836.80 9919.03

30 15 7 2343 1588.45 10800.00 10800.00 4.16

30 5 5 687 211.68 3232.17 10800.00

32 16 8 34.30 3920.92 10800.00 10800.00 7.09

32 5 5 960 452.96 7369.47 10800.00

Table 3: Solution times (in seconds) for linear relaxations MI¢ with w € [2,10], and for the relaxations of the best models
from literature.

Tables 2 and 3 show that, although the solution time for M increases considerably as w increases,
the lower bound does not always improve significantly and, sometimes, can even worsen. For example,
consider instance 14 with ¢z = 7 and ¢» = 3. The lower bound with w = 6 takes 24.54 seconds to
calculate but is never more than 155 miles below those obtained with w > 6, which take between 43.15
and 630.87 seconds to calculate. In addition, the lower bound found for this instance with w = 8 is
greater than those found with w > 8. A possible cause for the deterioration the M lower bounds as
w increases is the increase in model size. Because the linear relaxations of larger models take longer
to solve and our running time is limited, fewer iterations of the cutting-plane algorithm are executed.
With fewer cuts, the dual bounds are expected to decrease in quality. This behavior indicates that we
must be careful when choosing the value of w to use in our branch-and-cut algorithm.

We now compare M against RNFM, RSPM, and RSPCM. Recall that the variables of RNFM are
equivalent to those of M6 but the latter includes additional valid inequalities. On the 28 instances
with at most 16 teams, the lower bounds produced by M are between 1100 and 5478 miles greater
than those produced by RNFM. Moreover, 25 out of these 28 improved bounds require less time to
calculate with MZ6 than with RNFM. On instances with 18 or more teams, even though M can
be up to 5.6 times slower than RNFM, the lower bounds produced by MZ5 are between 5701 and
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11972 miles greater than those produced by RNFM. The variables of RSPM and RSPCM represent all
complete routes that satisfy (7ii)—(iv), which are equivalent to the variables of M%5 , i.e. a much larger
value of w than the largest one we consider. Note, however, that the lower bounds obtained by M on
16-team instances with ¢; = 7 and on all 14-team instances are already better than those obtained by
RSPM. Furthermore, on these instances, M solves between 3.9 and 35.8 times faster than RSPM is
solved in [9], and between 1.5 and 67.9 times faster than RSPM is solved in [8]. These ME® bounds are
at most 555 miles shorter than those obtained by RSPCM on the same instances, while still taking less
time to solve (between 9.9 and 88.4 times faster than RSPCM). Despite these good results, M does
not perform well on 16-team instances with ¢; = n = 8. M5 best lower bounds on these instances
are between 1442 and 3553 miles shorter, and between 1929 and 4544 miles shorter than those obtained
by RSPM and RSPCM, respectively, while solving between 1.5 and 18.3 times more slowly than RSPM,
as reported in [8]. We believe that RSPM and RSPCM tend to outperform M%6 as ¢; and ¢ increase
because this leads to an increase in the number of routes that are forbidden in RSPM and RSPCM
which would have, otherwise, been part of valid fractional solutions to M. As a consequence, Mg
optimal solutions may contain such routes, leading to weaker dual bounds. On instance 18, although
RSPM’s and RSPCM’s bounds obtained in [9] are 6378 miles (3.1%) and 7050 miles (3.4%) better than
the best M bound, they were obtained in 4 hours and 57 minutes and in 6 hours and 23 minutes,
respectively.

MEs advantage becomes more pronounced as the problem size increases, as evidenced by Tables
2 and 3. Because RSPM and RSPCM have an exponential number of variables and the corresponding
pricing problem is time-consuming, these relaxations take too long to solve for instances with more than
18 teams. In addition to achieving good results on 16-team instances with ¢; = 7 and on all 14-team
instances, M5 can not only be solved within 3 hours for all instances with more than 18 teams, but
also produces the best lower bounds known to date for these instances.

5.3. Branch-and-Cut Results

Based on our earlier experiments, we develop a branch-and-cut algorithm to solve M¢ due to the
good performance of M5, Because (5)—(8) are exponential in number, we initialize our model with (1),
(2), and (4) only, and introduce (5)—(8) during the search as they become violated. We invoke CPLEX
callbacks at each node in the search tree to perform the separations in procedure Sep6.

We use the following parameter settings in CPLEX’s branch-and-cut algorithm. Preliminary exper-
iments show that CPLEX’s general primal heuristics do not find good solutions to M¢. Therefore, we
focus on finding good lower bounds and on optimality by setting the MIP emphasis parameter to “best
bound” and disabling primal heuristics. We also modify the MIP probing level parameter to force the
algorithm to run a moderate probing on variables, since the time-consuming aggressive probing does
not improve the results. In particular, we noticed probing spent too much time picking a branching
variable on instances whose linear relaxation takes a long time (over 1000 seconds) to solve. (See column
MES in Table 1 to identify these instances.) Hence, on these instances only, we set the MIP variable
selection strategy parameter to choose the variable whose value is farthest from integer. This speeds up
branching and increases the number of explored nodes within the given time limit, which led to better
results. Finally, we disable the generation of all CPLEX’s cuts to better assess the impact of our own
cuts.

Next, we conduct preliminary experiments to determine which value of w to use for each instance
in the benchmark based on the speed/strength trade-offs identified in Section 5.2. Our tests indicate
that the branch-and-cut obtains better results by setting w = 4 for all instances with ¢; < n and for
14-team instances with ¢; = n. The M lower bound for these instances is not too far from the best
one in Table 2 and it is calculated more quickly, allowing the enumeration of many more nodes. For the
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remaining instances with ¢; = n it is worth using time-consuming relaxations because of the improved
lower bounds. Therefore, these instances are solved with the value of w that yields the best bound (bold
numbers) in Table 2.

We execute our branch-and-cut algorithm with time limits of 3 and 24 hours to allow a fair comparison
between our results and existing ones in the literature. We report the best lower bounds obtained
within each time limit in Table 4. Column “Lower bound” contains the final (best) lower bound value,
“Iterations” stand for Simplex iterations, and “Cuts” are the total number of violated inequalities
added by Sep6. Instances with lower bounds displayed in bold and marked with an “*” were solved to
optimality by our algorithm. These are the only upper bounds found within the given time limits.

Inst. ¢ @ w Time limit
3 hours 24 hours

Lower bound Time (sec.) Iterations Nodes Cuts Lower bound Time (sec.) Iterations Nodes Cuts
14 7 3 4 158578.5 10800 6578554 5462 16004 159271.8 86400 34265950 25830 26417
14 6 3 4 157469.3 10800 8680509 12259 14585 158037.6 86400 41153400 52618 23008
14 5 3 4 154962.0%* 1823.44 1951142 10980 7622
14A 7 3 4 152537.1 10800 7231231 7036 15132 153257.5 86400 36554874 33291 25296
14A 6 3 4 151611.1 10800 10066365 15628 12439 152169.5 86400 50868260 68271 20215
14A 5 3 4 149331.0%* 524.79 836360 3300 4342
4B 7 3 4 152647.1 10800 7157927 5776 15660 153191.1 86400 34391926 23233 27720
4B 6 3 4 151360.5 10800 9863357 14392 12906 151821.9 86400 45898826 58131 22350
4B 5 3 4 149455.0%* 1003.7 1668752 8887 5211
14C 7 3 4 151129.1 10800 6314167 4764 16719 151791 86400 30767570 20898 28766
14C 6 3 4 149820.4 10800 9316255 13735 13601 150286.6 86400 44207534 54463 22375
14C 5 3 4 148333.2 10800 8106602 27195 13572 148349.0%* 11457.49 8330667 29379 13705
16 8 4 10 183386.2 10800 1093933 8 9802 185936.7 86400 7361031 54 27141
16 8 2 8 152569.6 10800 206239 1 5230 153725 86400 1214144 13 9179
16 7 3 4 159841.1 10800 3261959 1649 13424 160664 86400 28910558 13240 28292
16 7T 2 4 149560.8 10800 2634818 1573 13536 149988.5 86400 23603021 12705 30384
16A 8 4 10 196183.3 10800 1145764 12 13048 198330.5 86400 7415309 75 27001
16A 8 2 8 164625.8 10800 207790 1 4917 165915.3 86400 1256325 12 9541
16A 7 3 4 173028.2 10800 3065182 1052 12339 174226.3 86400 28361114 9054 28039
16A 7 2 4 162675.1 10800 2817934 1696 13326 163052.0 86400 26985443 14253 27689
6B 8 4 10 205073.4 10800 1126908 8 12883 207781.1 86400 7296067 61 31270
6B 8 2 8 167241.6 10800 190363 1 4021 168223.9 86400 1991551 7 7452
6B 7 3 4 172131.7 10800 2971901 1235 13041 173178.0 86400 29106668 10769 27111
6B 7 2 4 164978.2 10800 3988299 2986 13180 165581.1 86400 33172881 24074 25088
16C 8 4 10 198274.6 10800 1190729 11 11403 202369.4 86400 7259649 76 22285
6C 8 2 8 167339.8 10800 178530 1 4245 167530.7 86400 1124098 2 4983
6C 7 3 4 172377.7 10800 2787489 1072 13455 173273.9 86400 26730153 9351 29042
6C 7 2 4 164531.3 10800 3519161 1998 13513 165125.2 86400 27695874 13998 28036
18 9 4 9 205781.9 10800 257650 1 9386 206759.4 86400 1681072 16 12350
20 10 5 10 245897.4 10800 93440 1 9842 250372.6 86400 572624 1 17704
22 1 5 7 266415.6 10800 189486 1 20364 269735.5 86400 1062045 5 33425
24 12 6 7 297898.6 10800 107241 1 19403 301441.0 86400 671652 1 38858
26 13 6 6 333504.9 10800 127822 1 19216 336854.4 86400 730203 1 34010
26 5 5 4 324387.1 10800 1409902 247 11564 324753.2 86400 11158237 2770 22082
28 14 7 5 374630.6 10800 220783 1 26780 377356.2 86400 1149468 1 36817
28 5 5 4 363072.1 10800 916593 91 10571 363541.4 86400 7865382 1422 20455
30 5 7 5 422026.0 10800 144276 1 20906 424537.6 86400 749184 1 34822
30 5 5 4 415296.4 10800 614318 43 9642 415747.5 86400 5650380 1063 18417
32 16 8 5 462894.6 10800 99418 1 14476 468803.5 86400 590596 1 32946
32 5 5 4 455836.4 10800 376627 1 9909 456685.9 86400 3843703 492 17838

Table 4: Lower bounds obtained with the branch-and-cut algorithm. Asterisk indicates proven optimality.

As seen in Table 4, we solve to optimality all of the 14-team instances with ¢; = 5 and ¢ = 3, and
all but one of them within 3 hours. The only previously published method capable of optimally solving
instances with more than 12 teams is the branch-and-price-and-cut presented in [9]. It found optimal
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solutions to instances 14 and 14A with ¢; = 5 and ¢ = 3 after 34:45h and 11:24h, respectively, whereas
we solve all 14-team instances with ¢; = 5 and ¢z = 3 in no more than 3:10h (14, 14A, and 14B only
require 31, 9, and 17 minutes, respectively). The results reveal that the majority of the improvement
in the lower bound is achieved by the branch-and-cut within the first three hours of computation.
Extending the time limit to 24 hours only produces an increase of 1368 miles in the dual bound on
average, although the gain largely varies from an instance to another, as its standard deviation is of
1413 miles.

To complement the information in Table 4, we now present the percentage of separated cuts that
come from each family of inequalities on average (followed by =+ its standard deviation). With execution
times limited to 3 hours, the averages are: 18.5%=+14.3% from (7), 12.2%+12.8% from (8), 30.6%+11.6%
from (9), 36.3% =+ 15.5% from (10), and 2.4% + 8.4% from (13). With execution times limited to 24
hours, the figures are similar: 21.2% + 16.9% from (7), 11.9% + 9.6% from (8), 30.2% + 11.1% from (9),
35.4% + 14.5% from (10), and 1.3% £ 7.1% from (13).

In Table 5 we compare, with matching times, the lower bounds found by our branch-and-cut al-
gorithm (BC) with the best lower bounds available, which were obtained by the following methods:
the decomposition approach (DA) in [7], the branch-and-price (BP) in [§8], the branch-and-bound (BB)
and branch-and-price-and-cut (BPC) in [9], and the branch-and-bound with decomposition-based lower
bounds in [19] (BB-DLB). In [7], DA results are reported for two time limits: up to 3 hours (which we
call DA3), and over 3 hours (which we call DA+). Methods BB and BP were limited to run for 3 hours,
whereas BPC and BB-DLB were limited to 48 hours. Unlike the other methods, BB-DLB found many
optimal solutions and infeasibility proofs before reaching the time limit. Therefore, for those results,
we include BB-DLB’s corresponding execution times in the last row of Table 5. We compare the lower
bounds found by BC within 3 hours with those obtained by BB, BP, DA3, and BB-DLB within 3 hours,
and the ones found by BC within 24 hours with those obtained by DA+, BPC and BB-DLB in more
than 3 hours. As before, lower bounds marked with an “*” are optimal. A lower bound appears in bold
if no better one was found within the time the former one was obtained.

According to Table 5, it seems that BB-DLB is better suited for smaller instances, whereas BC is
more appropriate for larger ones. To see this, we divide our analysis in two complementary groups of
instances. The first (SMALL) is composed of instances having up to 18 teams, while the second (LARGE)
contains the remaining instances (with 20 or more teams).

For 20 of the 29 instances in the SMALL group, the BB-DLB lower bounds are strictly greater than
those found by the other methods. BB-DLB solves 19 instances to optimality and produces 4 proofs of
infeasibility not known before. BPC and BC only solve 2 and 4 instances to optimality, respectively.

We now focus on the 11 instances in the LARGE group, whose sizes come closer to the actual number
of teams in MLB. Not all methods can handle instances this big and, therefore, several results are
missing for many of them. Results for BB, DA3, DA+, and BB-DLB are only available for 7, 1, 4, and
7 instances in the LARGE group, respectively. These results, as well those for BC, appear in the last 11
rows of Table 5. We start with the results obtained within 3 hours of computation. Under this limit, the
data for BC, BB, and DA3 are available: BC produces results for all 11 instances, BB for 7, and DA3 for
just one instance. BC is clearly the winner as it computes the best lower bound for all the instances in
LARGE. The average/max/min improvement in the lower bound values is of 23548.4 / 32379.7 / 11571.4
miles, with a standard deviation of 6718.9 miles.

The advantage of BC over the other methods in dealing with instances in the LARGE group is
confirmed when we extend the analysis to the results obtained with more than 3 hours of computation.
In this case, two other methods are considered in addition to BC: DA+ and BB-DLB. These two
methods can be viewed as complementary with respect to LARGE in the sense that there are results
reported for exactly one of them for each instance in this group, 7 for BB-DLB and 4 for DA+. BC’s
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Inst. @ @ Time limit / Method

3 hours 24 hours > 3 hours 48 hours

BC BB BP DA3 BC DA+ BPC BB-DLB
14 7 3 158578.5 154175.6  157812.8 156536 159271.8 159797 158900.2 164440.0%* (228.6)
14 6 3 157469.3 154036.7  155570.4 156551 158037.6 156551 157083.4 158875.0%* (51.6)
14 5 3 154962.0* 153318.8  153759.6 153066 153066 154962.0* 154962.0* (130.2)
14A 7 3 152537.1 147866.4  151243.5 151406 153257.5 153199 152635.7 158760.0* (123.0)
14A 6 3 151611.1 147773.1  149285.4 150998 152169.5 150998 151043.2 152981.0%* (30.0)
14A 5 3 149331.0% 147358.3  147966.4 148299 148299 149331.0* 149331.0* (67.2)
14B 7 3 152647.1 147159.6 151165.8 149910 153191.1 151059 152517.6 157884.0* (241.2)
14B 6 3 151360.5 147031.5 149208.6 149267 151821.9 149267 150941.3 152740.0* (103.2)
14B 5 3 149455.0% 146606.1  147638.3 147534 147534 149311.6 149455.0* (63.0)
14C 7 3 151129.1 146104.6 150101.6 151122 151791 151581 150925.9 154913.0* (45.6)
14C 6 3 149820.4 145982.2 147820 148728 150286.6 148728 148986.5 150858.0* (100.2)
14C 5 3 148333.2 145598.1  146622.1 146764 148349.0* 146764 147902.9 148349.0%* (764.4)
16 8 4 183386.2 156206.4 193457.1 168847 185936.7 185939 191458 infeas.  (13977.6)
16 8 2 152569.6 145829.7 155045.2 151481 153725 151481 156088.1 145531
16 7 3 159841.1 153649.4 158586 155707 160664 158480 160161.3 165765.0%  (24296.4)
16 7 2 149560.8 145787  148341.8 147138 149988.5 147138 149488 150433.0*%  (66118.8)
16A 8 4 196183.3 168882.5 200648.5 185119 198330.5 185119 206141.2 infeas.  (13549.2)
16A 8 2 164625.8 158645.6 166624.1 162788 165915.3 162788 168274.4 160739
16A 7 3 173028.2 166459.3 172420.1 170342 174226.3 172964 172471.4 178511.0%* (15101.4)
16A 7 2 162675.1 158621.8 161571.2 161640 163052 161640 162621.7 163709.0%  (57922.2)
6B 8 4 205073.4 169684.4 209346.5 188195 207781.1 208418 215520.6 infeas.  (13764.6)
6B 8 2 167241.6 159525.2 170092.6 167768 168223.9 167768 170384.4 165737
6B 7 3 172131.7 165753.2 172058 170940 173178.0 173023 172695.9 180204.0* (136216.8)
16B 7 2 164978.2 159538.6 163649.6 164012 165581.1 164012 164816 167190.0* (138118.8)
16C 8 4 198274.6 170370.6 205643.8 179213 202369.4 188561 206368.8 infeas.  (14216.4)
16C 8 2 167339.8 161296.6 168783.6 163543 167530.7 166001 169697.7 164541
16C 7 3 172377.7 166562.3 171767.6 170133 173273.9 171377 172754.6 176161.0
16C 7 2 164531.3 161241.1 163850.8 163305 165125.2 163305 164625.7 166479.0* (135509.4)
18 9 4 205781.9 184222 206759.4 213805.5 193632
20 10 5 245897.4 216462.6 250372.6 220907
22 11 5 266415.6 245030.5 269735.5 243052
24 12 6 297898.6 272970 301441.0 250590
26 13 6 333504.9 312705.5 336854.4 289651
26 5 5 324387.1 324753.2 318690
28 14 7 374630.6 350290.9 377356.2 322208
28 5 5 363072.1 363541.4 358593
30 15 7 422026.0 424537.6 339331
30 5 5 415296.4 398032.9 403725 415747.5 413103
32 16 8 462894.6 430514.9 468803.5 369695
32 5 5 455836.4 456685.9 443281

Table 5: Comparison between branch-and-cut lower bounds and best lower bounds from the literature. The time (in
seconds) spent by BB-DLB to prove optimally or infeasibility appears between parentheses in the last column.

lower bounds are the best in all 11 cases. The average/max/min improvement in the lower bound values
is of 38248.0 / 99108.5 / 2644.5 miles, with a standard deviation of 32671.3 miles. Furthermore, note
that BC lower bounds remain the largest ones even when it is restricted to run for no more than 3 hours,
while the other methods are allowed to run for longer periods of time. One possible explanation could
be that BB-DLB seems to suffer from scalability problems, as its good performance on SMALL instances
does not carry over to LARGE. In fact, the BB-DLB lower bounds for LARGE instances turn out to be
worse than those generated by BB in 3 hours (we disregard here the 30-team instance with ¢; = 15 and
¢2 = 7 for which no BB bound is available).

Finally, we assess whether or not it is advantageous to allow more computation time to BC in terms
of lower bound improvement. Comparing the results in columns 4 and 8 for the last eleven rows of
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Table 5, we see that the average/max/min increase in the lower bound, when going from 3 to 24 hours,
is of 2542.6 / 5908.9 / 366.1 miles, with a standard deviation of 1833.9 miles. These figures are roughly
one order of magnitude smaller than those coming from the comparison between BC and the other
methods. This is an indication that no substantial lower bound gains are likely if we keep running BC
for much longer.

6. Conclusions and Future Work

We introduce a parametrized IP model for the TUP that generalizes the two best existing models,
which are based on network flows and set partitioning. Our parametrization determines the length w
of umpires’ trip sequences, which range from 2 to 4n — 2 games and are represented as binary decision
variables in the model. This flexibility allows us to explore the trade-off between solution speed (when
trip sequences are short) and lower bound strength (when trip sequences are long). This model is further
strengthened by new families of strong valid inequalities, which are added to the formulation as they
are found to be violated inside a branch-and-cut (BC) algorithm.

Our computational results attest the relevance and impact of our inequalities and confirm the
speed/strength trade-off as a function of w. BC was developed with the goal of solving instances of
realistic size. Our experiments show that it scales better than existing alternatives because it continues
to find strong lower bounds even for instances with 20 or more teams, improving all best known lower
bounds for these instances. Although smaller instances were not the focus of this work, it is remarkable
that only one method performed better than BC on instances having between 14 and 18 teams. Because
of its robustness in producing high-quality bounds for both small and large instances, we believe that
BC currently ranks as one of most competitive methods for the TUP.

As future work, we intend to study primal heuristics that can be embedded in our BC algorithm to
help prune the search tree more quickly. In addition, instead of including all of our variables a priori,
we plan on pricing them into the formulation dynamically (as in a branch-and-cut-and-price algorithm)
to improve solution speed. We foresee the pricing problem to be challenging because it needs to account
for our specific cutting planes, but we believe the ability to solve smaller linear relaxations will more
than compensate for the extra pricing effort.

Appendix A. Number of Variables in the Optimization Model

Table A.6 shows the number of variables in the model presented in Section 3 for all instances and
values of w between 2 and 10. Empty entries indicate that the given pair (instance, w) would produce
a model with more than 5 million variables, which we do not consider in our experiments. Because
instances with letters in their names have the same tournament and, therefore, the same variables as
the original instances, they are omitted from Table A.6.
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