
An Integrated Approach for Truss Structure Design

John N. Hooker1 Tallys Yunes2

1 Introduction

Truss structure optimization is one of the fundamental problems in engineering design. The goal
in this mixed discrete/nonlinear problem is to find a minimum-cost placement and sizing of truss
members (bars) to support a given load. The possible cross-sectional areas of the bars come from
a discrete set of values, which correspond to commonly manufactured sizes. The structure to be
built is represented as a network of nodes and arcs in two or three dimensions. The coordinates of
the nodes are given, and structural bars are joined at the nodes. The problem consists of selecting
the cross-sectional area of the bar to be placed along each arc, where the area is zero if no bar is
placed. The objective is to minimize cost, which in our case is the volume of metal (aluminum)
used in the bars. Each node has freedom of movement in a specified number of directions (degrees
of freedom). Several possible loading conditions are anticipated, each of which is represented by a
force applied to a subset of the nodes and along one or more degrees of freedom. There are limits
on the displacement of each node along their degrees of freedom for each loading condition. In
addition, the elongation, compression and stress on each bar must lie within given limits.

Due to the presence of nonconvex physical constraints coming from Hooke’s law, these problems
are very difficult to solve. The initial nonlinear (MINLP) formulation can be solved directly with
a global optimization solver (such as BARON, Tawarmalani and Sahinidis 2005), or converted
into an MILP model by adding 0-1 and continuous variables (Ghattas and Grossmann 1991). A
third approach, which was implemented by Bollapragada, Ghattas and Hooker (2001) is to use
a special kind of relaxation known as a quasi-relaxation, paired with logic cuts and an effective
branching scheme. We describe an integrated model written and solved with SIMPL that mimics
this latter approach with improved results. SIMPL (Yunes, Aron and Hooker 2009) is a modeling
and solution system specifically designed to facilitate the creation of high-level integrated models
that take advantage of low-level cooperation between different solution techniques such as constraint
programming and integer programming.

2 Alternative Problem Formulations

The problem data consists of the following: I is the number of bars, J is the number of degrees
of freedom (summed over all nodes), L is the number of loading conditions, and Ki is the number
of discrete cross-sectional areas for bar i. Also, hi is the length of bar i, Aik is the k-th discrete
cross sectional area of bar i, Ei is the modulus of elasticity of bar i, pj` is the force imposed by
loading condition ` at degree of freedom j, bij is the cosine of the angle between bar i and degree
of freedom j, and ci is the cost per unit volume of bar i (typically the weight density). Finally,
σL

i and σU
i are the minimum and maximum allowable stress in bar i, vL

i and vU
i are the limits on

elongation/contraction of bar i, and dL
j and dU

j are the displacement limits for degree of freedom j.

1Carnegie Mellon University, Pittsburgh, PA 15213-3890, john@hooker.tepper.cmu.edu
2University of Miami, Coral Gables, FL 33124-8237, tallys@miami.edu

1



An MINLP formulation of the problem is given by

min
I∑

i=1

cihiAi

I∑
i=1

bijsi` = pj`, all j, ` (a)

J∑
j=1

bijdj` = vi`, all i, ` (b)

Ei

hi
Aivi` = si`, all i, ` (c)

vL
i ≤ vi` ≤ vU

i , all i, ` (d)

dL
j ≤ dj` ≤ dU

j , all j, ` (e)
Ki∨
k=1

(Ai = Aik), all i (f)

(1)

The variables are as follows. Ai is the cross sectional area chosen for bar i, where the absence
of bar i is represented by assigning a very small value to Ai; si` is the force in bar i due to loading
condition `; σi` is the stress in bar i due to loading condition `; vi` is the elongation (or contraction,
if negative) of bar i due to loading condition `; dj` is the node displacement along degree of freedom
j for loading condition `. Constraints (a) are equilibrium equations that balance the external loads
with the forces induced in the bars; (b) are compatibility equations that relate the displacement of
the nodes with the elongation of the bars; (c) represent Hooke’s law, which relates the elongation
or compression of a bar to the force applied to it (note that this constraint is nonlinear); and the
disjunctive constraints (f) require that each area Ai take one of the discrete values Aik.

If we add 0-1 variables yik that are equal to 1 when Ai = Aik, (f) can be replaced by two
constraints, Ai =

∑
k Aikyik and

∑
k yik = 1, for each i. This transforms (1) into a mixed-integer

nonlinear programming model (MINLP), which can be solved by a global optimization solver like
BARON. Furthermore, if we disaggregate the vi` variables, we can convert (1) to an MILP model by
replacing vi` with

∑
k vik` and replacing (c) with Ei

hi

∑Ki
k=1Aikvik` = si`, for all i, `. A disadvantage

of the MILP model is the large number of variables. Bollapragada, Ghattas and Hooker (2001)
show how to get a much smaller relaxation of a problem that has the same optimal value as (1).
The resulting quasi-relaxation of (1) therefore provides a valid bound on the optimal value of (1).

The quasi-relaxation technique, generalized in Hooker (2005), applies to any constraint of the
form g(x, y) ≤ 0 where g is semihomogeneous in x and concave in y, and where x ∈ Rn and y
is a scalar. The function g(x, y) is semihomogeneous in x when g(αx, y) ≤ αg(x, y) for all x, y
and α ∈ [0, 1] and g(0, y) = 0 for all y. We also suppose there are bounds xL ≤ x ≤ xU and
yL ≤ y ≤ yU , and the objective function involves variables in x. Then a quasi-relaxation can be
obtained by decomposing x with the constraint x = x1 + x2, and replacing g(x, y) ≤ 0 with

g(x1, yL) + g(x2, yU ) ≤ 0
αxL ≤ x1 ≤ αxU

(1− α)xL ≤ x2 ≤ (1− α)xU

2



This idea is sufficiently general to justify a metaconstraint that represents constraints of the form
g(x, y) ≤ 0 satisfying the above conditions. (The bilinear constraints (c) in (1) satisfy these
conditions.) In SIMPL, constraints are the central elements that control search, inference and
relaxation. We use the term metaconstraint to refer to a constraint endowed with additional
attributes and/or operations, such as: how to relax itself, how to branch on itself, and how to infer
other constraints from itself. The SIMPL model of Section 3 will invoke the quasi-relaxation simply
by adding an additional relaxation option to a bilinear metaconstraint representing (c) in (1).

A quasi-relaxation of (1) is written as follows:

min
I∑

i=1

cihi

[
AL

i yi +AU
i (1− yi)

]
I∑

i=1

bijsi` = pj`, all j, `

J∑
j=1

bijdj` = vi0` + vi1`, all i, `

Ei

hi

(
AL

i vi0` +AU
i vi1l

)
= si`, all i, `

vL
i yi ≤ vi0` ≤ vU

i yi, vL
i (1− yi) ≤ vi1` ≤ vU

i (1− yi), all i, `

dL
j ≤ dj` ≤ dU

j , all j, ` and 0 ≤ yi ≤ 1, all i

(2)

Model (1) can be solved by branch-and-bound using (2) as the relaxation at each node. If
0 < yi < 1 in the optimal solution of (2) and AL

i 6= AU
i , let A∗i = AL

i yi + AU
i (1 − yi). We split

the domain of Ai into two parts: Ai ∈ {cross-sectional areas < A∗i }, and Ai ∈ {cross-sectional
areas ≥ A∗i }. We branch first on the second part because it is more likely to lead to a feasible
solution. Another property of (2) is that, whenever it is feasible, there exists a feasible solution in
which both vi0` and vi1` have the same sign. Therefore, if vi0` and vi1` have opposite signs in the
solution of (2), we can branch by introducing logic cuts of the form vi0`, vi1` ≥ 0 (left branch), and
vi0`, vi1` ≤ 0 (right branch). These logic cuts are particularly useful in the presence of displacement
bounds (dL

j > −∞ and dU
j <∞), and they are checked for violation before the check on yi.

3 Integrated Approach

We now describe the SIMPL model for (1). Note that constraints (d), (e) and (f) are part of the
variable declarations (the data and variable declaration sections are omitted).

01. OBJECTIVE
02. maximize sum i of c[i]*h[i]*A[i]
03. CONSTRAINTS
04. equilibrium means {
05. sum i of b[i,j]*s[i,l] = p[j,l] forall j,l
06. relaxation = { lp } }
07. compatibility means {
08. sum j of b[i,j]*d[j,l] = v[i,l] forall i,l
09. relaxation = { lp } }

3



10. hooke means {
11. E[i]/h[i]*A[i]*v[i,l] = s[i,l] forall i,l
12. relaxation = { lp:quasi } }
13. SEARCH
14. type = { bb:bestdive }
15. branching = { hooke:first:quasicut, A:splitup }

Inside SIMPL, each constraint in line 11 becomes two constraints: E[i]/h[i]*z[i,l] = s[i,l]
and bilinear(A[i],v[i,l],z[i,l]) (which imposes Aivi` = zi` among other things). The
lp:quasi statement creates a quasi-relaxation of the bilinear constraint and sends it to the LP
solver. This relaxation is volatile (i.e. it is updated whenever the lower and/or upper bounds on Ai

change). We first branch by looking for the first violation of the logic cuts (hooke:first:quasicut),
and then by choosing the first Ai that violates its indomain constraint. Following a recommenda-
tion by Bollapragada, Ghattas and Hooker (2001), we turn off logic cuts when the problem has no
displacement bounds (i.e. when dL

j = −∞ and dU
j = ∞). When no logic cuts are found/enabled,

branching is performed on the Ai variables. The domain of the chosen Ai is split at the current
fractional value and we branch first on the upper (right) piece (splitup). The problem also includes
the concept of equivalence classes (or linking groups), which are subsets of bars that are supposed to
have the same cross-sectional area (a requirement of the application). The choice of the Ai variable
on which to branch can be prioritized to scan the bars in non-increasing order of linking group size.
To do this, we can modify the A:splitup statement in line 15 to A:most(1,LinkSize):splitup.
Here, LinkSize is a vector of numbers (with the same dimension as the A vector). The number
1 indicates that the values in this vector are to be used as the first sorting criterion which, as a
consequence, makes the violation amount the second sorting criterion.

4 Computational Results

For our computational experiments we used 12 instances from the literature (the same ones used
by Bollapragada, Ghattas and Hooker 2001). Eleven of them come from Venkayya (1971), and
one of them from Cai and Theirauf (1993). Table 1 shows the number of search nodes and CPU
time (in seconds) required to solve these problems with each of the following four approaches:
solving the MILP version of model (18) with CPLEX 11; solving the MINLP version of model (18)
with BARON; using the original implementation of Bollapragada, Ghattas and Hooker (2001)
(referred to as BGH); and replicating the BGH approach with SIMPL. BARON was run on an
IBM workstation with two 3.2 GHz Intel Xeon processors and 2.5 GB of RAM. The other three
algorithms were run on the same machine as the other experiments in this paper. All runs had a
time limit of 24 CPU hours.

As the problem size increases, the standard global optimization approach (BARON column)
does not scale well and time becomes a factor. The MILP model solved by CPLEX tends to
get too large as the number of bars increases, and the solution time grows more quickly than in
the integrated approaches. It is worth noting that CPLEX found a solution of value 5096.99 for
instance 3, whereas BARON, BGH and SIMPL all found a solution of value 5156.64 (if we use
CPLEX version 9 instead of 11, the “optimal” solution it returns for instance 3 has value 5037.4).
Both BGH and SIMPL behave very similarly (as expected), with SIMPL having some advantage
on the larger instances. Surprisingly, even though SIMPL’s underlying code has considerably more

4



Table 1: Number of search nodes and CPU time (in seconds). Only CPLEX, BGH and SIMPL
were run on the same machine. ∗CPLEX’s solution to instance 3 is apparently incorrect. †Instance
9 was run in SIMPL with depth-first search (like BGH).

BARON CPLEX 11 BGH SIMPL
Problem #Bars Nodes Time Nodes Time Nodes Time Nodes Time

1A 10 263 5.26 390 0.40 95 0.03 83 0.08
1B 10 175 3.83 106 0.26 81 0.02 73 0.07
1C 10 479 8.12 702 0.83 521 0.16 533 0.49
1D 10 518 8.76 1,320 1.17 719 0.22 726 0.63
2 10 449 24.28 2,977 4.86 841 0.64 1,028 1.84
3 10 11,354 327.19 403,683∗ 146.14∗ 517,255 144.67 94,269 64.75
4 10 34,662 2,067.43 678,471 1,086.72 1,088,955 600.09 508,816 650.71
5 25 3,190 3,301.62 3,739 43.65 11,351 44.09 2,401 20.23
6 72 291 3,375.93 1,962 207.81 665 33.01 489 27.93
7 90 782 21,610.86 2,376 576.46 1,889 130.86 826 92.47
8 108 no sol. > 24h 14,966 3,208.38 9,809 1,996.87 8,485 1,719.99
9 200 no sol. > 24h no sol. > 24h feasible > 24h feasible > 24h

cost = 32747.58 cost = 32700.25†

overhead than the BGH code (which was solely written for the purpose of solving the truss design
problem), SIMPL is only about two and a half times slower than BGH (on average, over the 12
instances) in terms of number of nodes processed per second.

For the 200-bar instance, in particular, neither BARON nor CPLEX were able to find a single
feasible solution within 24 hours. Both BGH and SIMPL found a feasible (but not provably optimal)
solution in less than 24 hours, and the solution found by SIMPL (32700.25) was slightly better than
the one found by BGH (32747.58).

References

Bollapragada, S., O. Ghattas, J. N. Hooker. 2001. Optimal design of truss structures by mixed
logical and linear programming, Operations Research 49(1), 42–51.

Cai, J., G. Thierauf. 1993. Discrete Optimization of structures using an improved penalty function
method, Engineering Optimization 21, 293–306.

Ghattas, O., I. Grossmann. 1991. MINLP and MILP strategies for discrete sizing structural opti-
mization problems, Proc. of ASCE 10th Conference on Electronic Computation, Indianapolis.

Hooker, J. N. 2005. Convex programming methods for global optimization, in C. Jermann, A.
Neumaier, and D. Sam, eds., Global Optimization and Constraint Satisfaction (COCOS 2003
invited talk), Lecture Notes in Computer Science 3478, 46–60.

Tawarmalani M., N. V. Sahinidis. 2005. A polyhedral branch-and-cut approach to global opti-
mization, Mathematical Programming 103(2), 225–249.

Venkayya, V. B. 1971. Design of optimum structures, Computers and Structures 1, 265–309.

Yunes, T., I. D. Aron, J. N. Hooker. 2010. An integrated solver for optimization problems,
Operations Research 58(2), 342–356.

5


