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Abstract Proportional symbol maps are a tool often used
by cartographers and geoscience professionals to visualize
geopositioned data associated with events and demographic
statistics, such as earthquakes and population counts. Sym-
bols are placed at specific locations on a map, and their areas
are scaled to become proportional to the magnitudes of the
data points they represent. We focus specifically on creating
physically realizable drawings of symbols—opaque disks,
in our case—by maximizing two quality metrics: the total
and the minimum length of their visible borders. As these
two maximization problems have been proven to be NP-
hard, we provide integer programming formulations for their
solution, along with decomposition techniques designed to
decrease the size of input instances. Our computational ex-
periments, which use real-life data sets, demonstrate the ef-
fectiveness of our approach and provide, for the first time, a
number of optimal solutions to previously studied instances
of this problem.
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1 Introduction

Proportional symbol maps are a cartographic tool employed
in the visualization of geopositioned data or events asso-
ciated with specific locations. In these maps, symbols are
placed over the points that correspond to the positions where
data were gathered or events occurred, and the area of these
symbols are made proportional to the magnitude of the phe-
nomenon they represent. Commonly represented data in-
clude earthquakes (with location and intensity), and demo-
graphic statistics. While symbol shapes vary according to
each application, disks are often a very intuitive form of con-
veying information on the magnitude of events [4]. Hence,
we restrict ourselves to the placement of opaque circles.
Clearly, due to the proximity of the disks and their sizes,
overlapping may occur, as shown in Fig. 1.

Depending on the scaling factor applied to the symbols,
the amount of overlapping can differ greatly. Although the
general rule for choosing the representation scale, as stated
by Slocum et al. [9] “neither too full nor too empty,” is rather
subjective, it is expected that any visually pleasing map will
contain at least some overlap of symbols. Depending on the
(partial) order in which the disks are organized, different
portions of the symbols will be visible. The question we ad-
dress here is how to arrange a given set of disks so that the
final map reveals the best possible visual information.

The first paper to address this problem algorithmically
was Cabello et al. [1]. They introduced two metrics to quan-
tify the quality of a drawing and also two possible drawings
of disks, leading to four very interesting and related prob-
lems. We now briefly describe them.

Employing the same definitions and notations as in [1],
let S be a set of n disks in the plane. An arrangement A of
the boundaries of these disks partitions the plane into con-
nected regions. A vertex of A is the intersection point of
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Fig. 1 A screen shot from an interface that generates proportional
symbol maps from a data set

Fig. 2 Arrangement with vertex v, arc r , and face f (left); a physically
realizable drawing with interleaving disks (right)

two or more boundaries. An arc of A is a maximal con-
nected portion of the boundary that connects two vertices
and contains no vertex in its interior. A face of A is a maxi-
mal connected region bounded by arcs that does not contain
any vertices or arcs in its interior. A drawing D of S is a
subset of arcs and vertices of A drawn on top of the filled
interiors of disks in S. Figure 2 shows an arrangement and a
drawing.

A physically realizable drawing can be constructed from
whole symbols cut out from sheets of paper. Disks can be in-
terleaved as in Fig. 2 (right), provided that physical restric-
tions are observed. The drawing in Fig. 3 cannot be created
without cutting the disks.

Consider the arrangement of four disks in Fig. 4(i). If
the disks are of different colors, it is pretty clear that in any
physically realizable drawing each face of the arrangement
contained in at least one disk will have a unique color. By
not allowing the disks to be cut or folded, we have that given
two intersecting disks di and dj , either di is over dj (de-
noted “di > dj ”), or vice-versa. Thus, the color that is seen
on a face f corresponds to that of the disk that is placed
over all other disks that contain f . The iterated removal
of the topmost disk, and the corresponding change in the

Fig. 3 A drawing that is not physically realizable and the underlying
arrangement. If we remove the topmost disk, how can the remaining
ones be arranged?

Fig. 4 A physically realizable drawing of fours disks. The region of
face f from the arrangement that is initially seen in (i) belongs to d3.
After removing d3, it belongs to d1 in (ii), and after removing d1, it
belongs to d4 in (iii)

color of f , induces a total ordering of the disks contain-
ing f .

This ordering alone, however, is not enough to de-
fine a physically realizable drawing. For example, al-
though the drawing in Fig. 3 has an order-inducing se-
quence of colors for each face, it cannot be physically
constructed. To see why, notice that face f1 induces a to-
tal order between d1, d2, d3, and d4, but any such or-
der will conflict with the orders d2 > d3, d3 > d4, and
d4 > d2 induced by faces f2, f3, and f4, respectively. In
other words, although physically realizable drawings do
not require a total order, multiple partial orderings of the
disks engendered by the faces must not contradict each
other.

When the requirement of total order among the disks of S

is added, that is, all cyclic orders become forbidden, we have
a special case of a physically realizable drawing known as a
stacking drawing.

An arc r from the arrangement will belong to a drawing
(i.e., it will be visible) when it is not covered by any disk.
That is, the disk having r in its border must be above all
disks that contain r in their interior.

According to Cabello et al. [1], good drawings should en-
able the viewer to see at least some part of every disk and to
gauge their sizes as correctly as possible. As supporting ev-
idence for this argument, consider Fig. 5, in which we can
determine neither the center coordinates nor the radius of
the hidden disk. This led to the definition of two metrics
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Fig. 5 An example of a disk
whose border is completely
covered. Its center and radius
cannot be determined

Fig. 6 (ii), (iii) are solutions for (i) optimizing Max–Total and
Max–Min metrics, respectively; analogously, (v) and (vi) optimize
Max–Total and Max–Min metrics for instance (iv)

used to quantify the quality of a drawing D of a set S of
disks: the minimum visible boundary and the total visible
boundary of all disks in S. If bi is the total length of the vis-
ible boundary of disk i ∈ S in drawing D, we can state four
different optimization problems: maximizing min{bi |i ∈ S}
(Max–Min) or maximizing

∑
i∈S bi (Max–Total), either for

physically realizable drawings or for stacking drawings. At
this point, we should say that despite the attempts to capture
the essence of good drawings, these two metrics proposed
earlier in the literature may not be capable to produce good
drawings in all cases. As an example, consider the instance
given in Fig. 6(i). The optimal solutions for the Max–Total
and the Max–Min metrics are shown in (ii) and (iii), respec-
tively. One can see that in (ii) the bottom disk is totally cov-
ered, as it happens in Fig. 5. Likewise, for the instance in
Fig. 6(iv), optimal solutions for Max–Total and Max–Min
are depicted in (v) and (vi), respectively. Note that the posi-
tion of the tiny disk determines the Max–Min value, whereas
the order of the remaining disks is irrelevant for this objec-
tive function. As a result, there may be optimal Max–Min
solutions for this instance that do not necessarily represent
good drawings, as is the case in (vi). Notwithstanding these
extreme cases, these metrics have been shown to produce
high-quality drawings in practice.

For the remainder of this paper, we refer to the physically
realizable drawing problem as PRDP.

1.1 Related work

Cabello et al. [1] show that PRDP is NP-hard in both the
Max–Min and Max–Total versions. They also present an
O(n2 logn) algorithm for the Max–Min version restricted
to stacking drawings, whereas the complexity of the Max–
Total stacking drawing problem remains open.

An integer linear programming (ILP) formulation for the
Max–Total stacking drawing problem together with a theo-
retical study of that formulation is presented in [8]. Since
the difficulty of finding optimal solutions grows with the
cardinality of S, two techniques for decomposing a given
instance into smaller ones are also studied in [8]. In [6], a
tighter ILP formulation for the same problem was presented
which turned out to be much more effective in solving the
same set of instances.

1.2 Our contributions

This paper extends the results in [7], where we presented the
first exact algorithm for the Max–Total version of the PRDP,
by providing an ILP formulation and a theoretical study
of the resulting model. Moreover, we describe a novel de-
composition technique that can be successfully used, along
with previously introduced ones, to significantly speed up
the solution of large instances. We have been able to find
optimal solutions for several data sets for which only ap-
proximate solutions were previously known, and also for a
number of very hard instances derived from demographic
statistics. Furthermore, we also describe the first exact algo-
rithm for the Max–Min variant of the PRDP: by introducing
a real-valued variable, we were able to convert the previ-
ous model into a mixed integer linear programming (MILP)
formulation for the Max–Min version. We also draw on re-
sults obtained for the Max–Total PRDP in [7] to derive a
new algorithm for the Max–Total Stacking Drawing which
is significantly faster than the one presented in [6]. To our
knowledge, we are the first to provide provably optimal so-
lutions for both the Max–Total and Max–Min versions of
the PRDP, and the first to use integer programming to tackle
these problems.

1.3 Organization

In Sect. 2, we provide a brief background on ILP and MILP.
In Sect. 3, we describe the optimization models for both
stacking and physically realizable drawings, including extra
inequalities that can be added to strengthen these models. In
Sect. 4, we describe the decomposition techniques presented
in [8] that remain applicable here, as well as a new one de-
veloped specifically for the Max–Total PRDP. Details of our
implementation and experiments appear in Sects. 5 and 6,
respectively. Section 7 contains an analysis of our results,
followed by our final conclusions in Sect. 8.
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2 Integer linear programming background

We now provide a brief overview of basic integer program-
ming concepts. Wolsey’s book [10] is an excellent reference
for further reading on this subject.

Given a set of variables x ∈ Rn, a linear programming
(LP) problem consists of minimizing a linear function cT x

subject to a set of linear constraints Ax ≤ b, where c ∈ Rn,
A ∈ Rm×n, and b ∈ Rm. If, in addition, all (some) of the
x variables are restricted to be integer, we have an integer
(mixed-integer) linear programming problem (ILP/MILP).
Although LP problems can be solved in polynomial time,
solving an ILP/MILP problem is NP-Hard in general [10].

Let P be the set of integer points satisfying the con-
straints of an ILP model and consider the convex hull,
conv(P ), of P . Note that an optimal solution to the ILP is to
be found on a vertex of conv(P ). Therefore, if we could find
a polynomial description of conv(P ), we might ignore the
integrality constraint of the variables and solve the model in
time polynomial on the size of the constraints that describe
conv(P ).

In general, the number of inequalities to define this con-
vex hull is exponential in the size of the input. To circum-
vent this obstacle in practice, one uses a valid formulation
which is any formulation (i.e., system of inequalities) that
contains all points in P and no other integer points. The cor-
responding model with variables restricted to integers is then
solved with a branch-and-bound (B&B) algorithm. These
algorithms have theoretical exponential running times, but
tend to behave well in practice. Clearly, there are infinitely
many valid formulations for a given set P , and those that are
closer to the convex hull lead to better running times.

With this in mind, one seeks concise families of valid
inequalities for the problem. Since there may exist an ex-
ponential number of them, some selection process needs to
come into play. For this, we use cutting plane algorithms
which consist of solving in polynomial time a linear relax-
ation of the model (that is, a model without the integrality
constraint on the variables) to find an optimal solution s∗. If
this solution is integer, the problem is solved. Otherwise, we
solve the separation problem which, given a family of valid
inequalities, consists of (i) finding one that cuts off the op-
timal solution s∗, and (ii) adding it to the formulation. This
procedure is repeated a given number of times or until no
such inequalities can be found. The resulting formulation is
stronger and typically faster to solve.

The best cutting planes are those that define facets of the
polyhedron, that is, those which have dimension one less
than the convex hull of feasible integer solutions. Therefore,
when finding a new family of inequalities for a problem it is
important to prove whether they are facet-defining.

3 Integer linear programming formulations

We first describe the Max–Total stacking drawing model
from [6] because our model is related to it.

3.1 The Max–Total stacking drawing problem

We need the following data, which can be calculated in poly-
nomial time given the set of disks S as input:

– R ≡ set of all arcs of the arrangement;
– �r ≡ length of arc r ∈ R;
– dr ≡ disk that contains arc r in its border;
– SI

r ≡ set of disks that contain arc r in their interior.

There are two sets of variables. For each arc r ∈ R, the
binary variable xr equals 1 if arc r is visible, and equals 0
otherwise. The Max–Total problem maximizes

∑

r∈R

�rxr (1)

For each pair of disks i, j ∈ S, we define the binary vari-
able wij which is equal to 1 if disk i is above disk j , and
equal to 0 otherwise. The constraints are given by:

wij + wji ≤ 1, ∀i, j ∈ S, i < j (2)

xr ≤ wdrj , ∀r ∈ R, j ∈ SI
r (3)

wij + wjk − wik ≤ 1, ∀i �= j �= k �= i ∈ S (4)

xr ∈ {0,1}, ∀r ∈ R (5)

wij ∈ {0,1}, ∀i, j ∈ S, i �= j. (6)

Constraints (2) and (4) ensure that the wij variables impose
a partial order on the disks (see also Proposition 1). Con-
straint (3) says that if arc r is visible, its disk dr has to be
above all other disks that contain r in their interior.

In [8], additional inequalities are used to strengthen the
models. One of those inequalities is based on the fact that
some arcs may not be simultaneously visible.

We define a graph GI = (V ,E), with a vertex v(r) ∈ V

corresponding to arc r ∈ R and an edge (v(r1), v(r2)) if dr1

contains r2 and dr2 contains r1. Two arcs whose vertices are
adjacent in GI cannot both be visible. We can extend this
observation to cliques. Given a maximal clique K in GI ,
R(K) is the set of arcs with corresponding vertices in K .
The following is a valid constraint:

∑

r∈R(K)

xr ≤ 1, ∀K ∈ GI (7)

We define a vertex of the arrangement to be non-
degenerated if it is formed by the intersection of exactly
two circumferences. Given one such vertex v, its neighbor-
hood consists of four incident arcs as in Fig. 7(i). From all
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Fig. 7 Arcs incident to a non-degenerated vertex v (the black dot)
in (i), and feasible configurations in (ii)–(vi)

16 possible configurations of visible arcs, only five are fea-
sible. They are shown in Fig. 7(ii)–(vi). Together with (7),
valid constraints introduced in [8] avoid all infeasible cases.
Referring to r1, r2, r3, and r4 as in Fig. 7(i), those constraints
are:

xr1 ≥ xr3 (8)

xr2 ≥ xr4 (9)

xr3 + xr4 ≥ xr1 (10)

xr3 + xr4 ≥ xr2 (11)

3.2 The Max–Total PRDP

In this section, we will show that an ILP formulation corre-
sponding to a given subset of constraints from the previous
model is valid for the Max–Total PRDP. Let F be the set of
faces from the arrangement. Given f ∈ F , let Sf be the set
of disks that contain face f .

Our model is similar to the previous one except that con-
straint (4) is replaced by the following:

wij + wjk − wik ≤ 1, ∀f ∈ F, i, j, k ∈ Sf . (12)

Intuitively, physically realizable drawings cannot contain
all transitivity constraints in (4) because that would pre-
clude valid drawings such as the one on the right side of
Fig. 2. However, by definition, a physically realizable draw-
ing needs transitivity enforced on disks that intersect to form
a face, giving rise to (12).

Let FPR be the formulation with constraints (2), (3),
(12), (5), and (6). Given a solution satisfying FPR we can
build a solution satisfying (2) as equality, as stated in Propo-
sition 1. If we think of w as relations between disks, solu-
tions satisfying FPR are partial orders between the disks of
Sf for each f ∈ F . Proposition 1 shows that we can trans-
form them into total orders without decreasing the objective
function value.

Proposition 1 Given a solution satisfying FPR , we can
build a solution also satisfying (2) as equality with greater
or equal objective value.

Proof First, let us restrict ourselves to Sf for each f ∈ F .
Define a digraph KSf

= (V ,A), with vertex set correspond-
ing to the disks in Sf , where v(d) is the vertex correlated to

disk d . There is an arc (v(i), v(j)) in A iff wij = 1. Clearly,
this graph is acyclic. Let h(v) be the position of vertex v in
some topological order of KSf

. Then, for each pair of disks
i, j ∈ Sf such that wij = 0 and h(v(i)) > h(v(j)), we set
wij = 1 and add (v(i), v(j)) to A. One can see that KSf

re-
mains acyclic and thus w satisfies (12). We also now have
that either wij = 1 or wji = 1 for all pair of disks i, j ∈ Sf .
It is clear that for each pair i, j ∈ S, every wij or wji will
be set to 1, except for those pairs such that both wij and wji

were initially set to 0 and {i, j} �∈ Sf for any f ∈ F . But for
these pairs, we may arbitrarily set any of them to 1, since
this will not violate any transitivity constraint. Hence, this
new solution satisfies (2) as equality. Because no w variable
was set to 0 during this process, no x variable has decreased
in value (see (3)). Therefore, the objective function value
cannot go down. �

We thus define an alternative formulation F ′
PR that is

equivalent to FPR with (2) replaced by an equality. We now
show that we can solve the Max–Total physically realizable
drawing problem by solving the ILP model consisting of
maximizing (1) subject to F ′

PR , through Proposition 2.

Proposition 2 The solution that maximizes (1), subject to
F ′

PR is an optimal solution for the Max–Total physically re-
alizable drawing problem.

Proof It suffices to show that a solution that satisfies F ′
PR

and maximizes (1) corresponds to a physically realizable
drawing and that, conversely, any physically realizable
drawing corresponds to a solution that satisfies F ′

PR .
Let (x∗,w∗) be a solution satisfying FPR that maximizes

(1). We first note that for each f ∈ F , there exists a total
order between disks in Sf induced by w∗, since this rela-
tionship between disks in Sf is antisymmetric and total due
to (2) and transitive due to (12). Also, there is no two disks
i, j that have their relative order swapped for different faces,
because in this case we would have w∗

ij = w∗
ji = 1, contra-

dicting the fact that w∗ is antisymmetric. This means that the
orders induced by faces do not conflict and it is physically
possible to draw them with these orderings. Also, because
we are maximizing (1), any arc that would be visible in such
drawing is set to 1. If an arc r is not visible in the drawing,
it means there is a disk j that contains it and is above dr , so
w∗

dr j
= 0 and x∗

r = 0.
Given a physically realizable drawing, we consider the

total order induced by each face f from the arrangement.
Given two disks i, j ∈ Sf , we assume, w.l.g., that i is
above j . We then set wij = 1 and wji = 0. It clearly satisfies
(2) as equality. For any three disks i, j, k ∈ Sf , assuming i is
above j and j is above k, it is true that i is above k, and thus
such construction satisfies (12) for f . For pairs of disks i, j

that do not both belong to any Sf , we arbitrarily set wij = 1
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and wji = 0. Since, in this case, wij does not appear in (12),
it is enough to observe that it satisfies (2) as equality. Given
any visible arc r from this drawing, its disk dr must be above
all disks containing r , so setting xr = 1 will satisfy (3). �

3.3 The Max–Min PRDP

In this section, we show how to modify our formulation for
the Max–Total PRDP to solve the Max–Min version. We add
a real variable z and the following constraints:

z ≤
∑

r∈R|dr=i

xr�r , ∀i ∈ S (13)

For a given disk i ∈ S, the right-hand side of (13) is bi ,
as defined in Sect. 1. If z satisfies (13) and the objective
function is set to maximize z, we obtain z = min{bi |i ∈ S},
which is the Max–Min metric.

3.4 Additional inequalities

In a physically realizable drawing, given two arcs r1 and r2,
if dr1 contains r2 and dr2 contains r1, then at most one of
these arcs can be visible. By using graph GI as in Sect. 3.1,
we see that (7) is also valid for our model.

From Fig. 7, note that for a nondegenerated vertex v there
is a face contained in the same disks as v. This implies a to-
tal order among such disks and, therefore, locally around v,
these disks behave as a stacking. Because the possible con-
figurations around v are the same for stacking and physically
realizable drawings, (8)–(11) are also valid for our model.

We now derive polyhedral properties for PRPD. Let us
denote the convex hull of the points satisfying FPR by PPR ,
and establish some of its theoretical properties.

Define PSD as the convex hull of feasible solutions of the
(2)–(6). Since FPR contains a subset of the constraints that
define PSD , the dimension of PPR must be greater than or
equal to the dimension of PSD . Because the latter has full
dimension [6], so does PPR . Therefore, any facet-defining
inequality for PSD that is valid for PPR is also facet-defining
for PPR . Thus, (2), (3), (12), and (7) define facets of PPR ,
because (2)–(4) and (7) define facets of PSD [6].

4 Decomposition techniques

In addition to the trivial decomposition that considers dis-
joint sets of disks independently, two decomposition tech-
niques are presented in [8], which we briefly describe here.
First, observe that if a disk d1 is contained inside another
disk d2, there exists an optimal solution in which d1 is drawn
above d2. In general, if two sets of disks do not intersect
at their boundaries, such as sets {a, b} and {c, d, e, g} in
Fig. 8(i), the drawing problem can be solved independently

Fig. 8 An instance that allows for decomposition

for each set. To combine those solutions, sets of disks con-
tained inside other disks (e.g., {a, b} are inside g) can be
drawn above the disks containing them, while keeping the
orders resulting from the independent solutions. These ar-
guments hold for both Max–Total and Max–Min problems.

Given a set of disks S, we can define a disk graph,
GS = (V ,E), with a vertex v(d) ∈ V corresponding to a
disk d ∈ S and an edge (v(d1), v(d2)) belonging to E if
disks d1 and d2 overlap. If this graph is not biconnected,
there must exist an articulation point v(d∗) in it. The re-
moval of the corresponding disk d∗ from S will spawn new
connected components in GS . It is a simple exercise to ver-
ify that if we replicate d∗ in each set of disks correspond-
ing to these components, then these augmented sets may be
solved separately and their solutions easily assembled into
an optimal solution to the original Max–Total problem. In
our example, this corresponds to the instances in Figs. 8(ii)–
(iv). On the other hand, this method may produce subopti-
mal solutions if used for the Max–Min objective. To see that,
consider the example in Fig. 6(i) and its disk graph depicted
in Fig. 10(i). Since d is an articulation point, this decompo-
sition method splits the graph in several components that are
solved to optimality as shown in Fig. 10(ii). By combining
these optimal solutions, one ends up with the drawing shown
in Fig. 6(ii), which clearly does not have the same Max–Min
value as the optimal solution in Fig. 6(iii).

We now introduce a new decomposition technique that
takes advantage of the specific structure of the Max–Total
PRDP. If a pair of disks i and j are such that any face of the
arrangement contained in both of them is not contained in
any other disk, then all induced orders that include i and
j are restricted to these two disks. Hence, any order we
choose between i and j will not conflict with any other in-
duced order. Therefore, we may remove the corresponding
edge (v(i), v(j)) from GS , solve for the connected compo-
nents of GS independently, and later decide the relative or-
der between i and j , in a greedy way. For example, Fig. 9(i)
depicts a set of disks with the underlying disk graph. The
dashed edges can be removed from GS . However, because
face f is contained in d1, d2 and d3, no edges between ver-
tices corresponding to those disks may be removed. The
resulting connected components are {d1, d2, d3}, {d4} and
{d5}. This decomposition is not guaranteed to produce op-
timal solutions for the Max–Min objective. To see that, we
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Fig. 9 (i) An instance with its corresponding disk graph. Dashed
edges may be ignored in the ILP model. (ii) An instance where disk
d would be replicated nine times when applying the decomposition
that removes articulation points

Fig. 10 (i) Disk graph of the instance in Fig. 6(i) and (ii) a Max–Min
optimal solution for disks d and dk

refer again to the instance in Fig. 6(i). According to this
decomposition, we would remove all the edges of the disk
graph shown in Fig. 10(i) and solve the problem by sim-
ply computing the optimum of the instances formed by the
central disk and each of the surrounding ones. However, in
these two-disk instances, the smaller disk goes on top of the
larger one as illustrated in Fig. 10(ii), leading us to the draw-
ing of Fig. 6(ii) which, as seen before, does not optimize the
Max–Min value.

5 Implementation details

Our implementation was done in C++ (gcc 4.4.3) and used
CGAL [2] v3.5.1 to gather the necessary input data. We
used the MILP solver XPRESS [3] v20.00.05 to solve the
optimization models and ran our experiments on an Intel
Core 2 Quad 2.83 GHz machine with 8 GB of RAM, un-
der GNU/Linux v2.6.32.

ILP/MILP models Both of our original optimization mod-
els include (2) as an equality, (3), (5), (6), and (12).

When it comes to (7), because the number of maximal
cliques in a graph may be an exponential, we decided to se-
lect only some of them using the following heuristic. For
each face f , let B+

f initially be the set of arcs r that belong

to the boundary of f and whose disks dr contain f . Let C+
f

initially be the set of all disks that contain an arc in B+
f .

It is easy to see that the vertices corresponding to disks in
C+

f form a clique in GI . Since this clique is not necessarily

maximal, we might try to extend C+
f (and its corresponding

clique). Let r ′ be an arc contained in all disks in C+
f and

whose disk dr ′ contains all arcs in B+
f . The vertex set cor-

responding to C+
f ∪ {dr ′ } forms a clique in GI . We thus add

dr ′ to C+
f and r ′ to B+

f , and repeat this procedure until the
resulting clique is maximal in GI .

Surprisingly, our experiments showed that extending the
original set C+

f decreases the performance of the branch-
and-bound algorithm. One possible explanation is that this
extension increases the density of the model (in terms of its
coefficient matrix), making it harder to solve at each search
node. Therefore, we opted for simply using the initial C+

f

in the experiments reported in Sect. 7. As a consequence,
the total number of constraints (7) and (8)–(11) is relatively
small when compared to the number of constraints in the
original model (16.3 % on average). Hence, we included all
of those constraints at the beginning of the search, instead of
using a separation procedure to add them gradually as they
became violated (a practice known as branch-and-cut).

Max–Min PRDP heuristics As mentioned in Sect. 1.1, Ca-
bello et al. developed an O(n2 logn) algorithm for the Max–
Min stacking drawing problem. Since a stacking drawing is
a special case of a physically realizable drawing, we may use
this algorithm to obtain a feasible solution for the Max–Min
PRDP. Feasible solutions provide lower bounds for maxi-
mization problems that, when tight, may improve the per-
formance of the branch-and-bound algorithm.

The polynomial-time algorithm can also be used for the
physically realizable version when the decompositions of
Sect. 4 create more than one component. Let nC be the
number of components and mi be the optimal value of
component 1 ≤ i ≤ nC for the Max–Min stacking draw-
ing problem. Let the labels of the components be such that
m1 ≤ m2 ≤ · · · ≤ mnC

, which means that the optimal so-
lution for the stacking drawing version for the whole in-
stance is m1. Now, let m′

i be the optimal value of com-
ponent i for the physically realizable version. It is easy to
see that if m′

i ≤ mi+1, 1 ≤ i < nC , then the optimal value
for the Max–Min physically realizable drawing problem is
minj≤i{m′

j }. Therefore, we first presolve each component i

using the Max–Min algorithm for stacking drawings to ob-
tain mi . We then solve for the physically realizable version
of each component in nondecreasing order of mi to obtain
m′

i , and as soon as we find that m′
i ≤ mi+1, we can stop.

XPRESS parameters For reproducibility purposes, we pro-
vide the XPRESS parameters that had their default val-
ues changed in our experiments: XPRS_MIPRELSTOP
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Table 1 Decomposition results

Instance Disks Decomp. ACB Decomp. AB

Max # Avg. Max # Avg.

City 156 156 26 66 2.39 29 53 3.09

City 538 538 53 258 2.10 53 240 2.35

Death 573 70 355 1.62 70 333 1.77

Magnitude 491 50 116 9.92 45 116 11.22

set to 0.0, XPRS_MIPABSSTOP set to 10−7, XPRS_
MIPRELCUTOFF set to 0.0, XPRS_MIPADDCUTOFF set
to 10−7, and XPRS_MAXTIME set to −18000. For more
information on these parameters and their default values,
please refer to the XPRESS-Optimizer Manual [3].

6 Problem instances

We assess the effectiveness of our solution approach through
a series of experiments with various data sets. From [1], we
use the following datasets: City 156 and City 538 (popula-
tions of the 156 and 538 largest cities in the United States);
and Earthquake-Death and Earthquake-Magnitude (death
counts and magnitudes associated with earthquakes around
the world).

In addition to the data sets above, we created addi-
tional instances consisting of the populations of the largest
cities in the following countries: Australia, Belgium, Brazil,
China, Denmark, France, Germany, Indonesia, Israel, Italy,
Japan, Netherlands, Norway, Portugal, Spain, Russia, UK,
and eastern/western USA.

The instances used in our experiments and all the known
optimal solutions are available for download [5].

7 Results and discussion

Decomposition results We begin by discussing the effects
of the decomposition techniques on the instances used in
[1], which are summarized in Table 1. For simplicity, we
name the decompositions as follows. Decomposition A is
that which regards sets of disks with no boundary intersec-
tion independently; decomposition B is the one that keeps
removing articulation points until the resulting components
are biconnected; and decomposition C is the new one intro-
duced in Sect. 4. We reproduced the results in [8] by decom-
posing the original instance with A, and further decompos-
ing each resulting component with B . We denote this chain
decomposition as AB . Using similar notation, we denote by
ACB the decomposition sequence of A, followed by C, and
then B . The reason to perform C before B is that some cases
are decomposable by either B or C, as in Fig. 9(ii), but since

Table 2 Results on the largest components that were solved from each
original problem instance. Times are in seconds

Component Base
value

Optimal
value

Nodes Time

PR SD PR SD

538-1-6 (29) 21.98 44.32 1 1 3 5

538-1-0 (51) 77.37 90.08 1 1 4 19

538-24-0 (53) 18.98 65.08 177 453 14554 84308

death-2-0 (70) 725.28 1152.13 1 1 6 61

mag-6-0 (26) 217.21 579.58 1 1 4 13

mag-1-1 (39) 417.32 1128.52 1 1 13 48

mag-5-0 (81) 601.79 1914.27 1 1 14 2312

mag-1-0 (113) 581.41 3158.82 3 1 107 34306

mag-7-0 (116) 700.37 2916.17 1 1 42 25256

B replicates vertices, increasing the total number of disks to
be solved, it is best to apply C first.

The first two columns of Table 1 indicate the names of
the instances and their original number of disks. For each
decomposition, we show the size of the largest component
(Max), the total number of resulting components (#), and
the average component size (Avg.) obtained after perform-
ing the decomposition. Multiplying the average number (of
disks) by the number of instances will not necessarily pro-
duce the number of original disks because decomposition B

replicates disks.
The reductions in problem size are remarkable. For ex-

ample, instances City 538 and Magnitude can now be solved
by optimizing over sets of disks no larger than about a tenth
of their original sizes. Even after introducing decomposition
C, the largest component of most instances remained unbro-
ken, but this decomposition did split other smaller compo-
nents, decreasing the average number of disks to be solved
at a time.

Experimental results with the Max–Total PRDP We focus
on the challenging components from City 538, Earthquake-
Death and Earthquake-Magnitude because the remaining in-
stances/components could be solved very easily. In general,
instances whose GS graphs contain large cliques tend to be
the most challenging for our algorithm. Table 2 summarizes
our results.

The first column contains the component name in the
form α-β-γ (δ), where α relates to the original instance
(“538” for City 538, “death” for Earthquake-Death and
“mag” for Earthquake-Magnitude), β identifies the compo-
nent id from decomposition A, and γ indicates the γ -th
component obtained after performing decomposition B on
component β . Finally, δ denotes the number of remaining
disks in this component. Column Base Value shows the to-
tal length of the arcs that are always visible in any solution,
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Table 3 Optimal solutions for population instances

Country Base value Optimal solution

(PR) (SD)

Belgium (312) 5354.300 3127.988 3127.788

China (141) 1988.467 2409.173 2409.151

Denmark (310) 4640.934 2301.315 2301.089

Indonesia (150) 2062.608 1275.765 1275.749

Israel (150) 1772.046 1892.881 1892.823

Netherlands (367) 6459.026 4720.454 4720.453

Norway (150) 2108.152 1230.658 1230.632

Spain (300) 4469.564 3861.171 3861.157

UK (186) 2530.148 1999.492 1999.491

US (East) (150) 1810.834 2462.580 2462.556

Fig. 11 A close up of the Denmark instance, showing a difference
between the SD and PR optimal solutions

that is, those that are not contained in any disk. The Opti-
mal Value column shows the value of the optimal solution
minus the base value. The last four columns show the num-
ber of search nodes and time (in seconds) required by our
algorithm (PR) and by the algorithm in [6] (SD). In all in-
stances, PR requires less time to obtain provably optimal
solutions than SD does, sometimes by more than one order
of magnitude.

Tables 3 and 4 show results for ten population-based in-
stances for which an optimal physically realizable
drawing has an objective value strictly greater than the value
of an optimal stacking drawing, thus resulting in visually
better solutions. See Fig. 11 for an example.

Table 3 shows the base values as well as the optimal so-
lution values obtained by the physically realizable (PR) and
the stacking drawing (SD) algorithms, respectively. Table 4
complements Table 3 with the number of nodes explored by
each algorithm and their execution times. Table 5 extends
Table 4 for instances whose optimal PR and SD solutions
have the same value.

Although the solution values of the physically realizable
drawings in Table 3 are only slightly greater than their stack-
ing counterparts, when looking at a map with hundreds of
disks, even minor improvements can mean the difference be-
tween seeing or missing a city.

Table 4 Search nodes and time for population instances

Country PR SD

Nodes Times Nodes Times

Belgium (312) 18 6 18 2757

China (141) 5 6 5 3797

Denmark (310) 19 9 19 1007

Indonesia (150) 2 14 2 2477

Israel (150) 6 22 6 1044

Netherlands (367) 23 9 24 4222

Norway (150) 4 11 3 3433

Spain (300) 16 54 15 194

United Kingdom (186) 8 7 8 422

United States (East) (150) 8 22 6 1084

Table 5 Search nodes and time for other countries

Country PR SD

Nodes Times Nodes Times

Australia (210) 10 4 10 3250

Brazil (150) 10 45 10 787

Canada (150) 10 17 8 950

France (135) 8 1785 8 2288

Germany (150) 16 74 12 737

Italy (300) 22 135 23 538

Japan (150) 6 153 6 2005

Portugal (150) 4 486 4 2525

Russia (150) 3 8 3 690

United States (West) (87) 6 704 6 2788

In terms of execution times, once again, the PR algorithm
is greatly superior to the SD algorithm, as shown in Tables 4
and 5. As before, improvements can range from one to more
than two orders of magnitude.

Experimental results for the Max–Min PRDP We now
present the results for the Max–Min PRDP using the chal-
lenging components from City 538, Earthquake-Death, and
Earthquake-Magnitude as input. Table 6 shows our results
for the components that had the same optimal Max–Min val-
ues for both stacking and physically realizable drawings.

In general, finding the optimal Max–Min drawing is
computationally more challenging than finding the optimal
Max–Total drawing in the physically realizable case. Com-
ponent 538-24-0 was the most challenging for our Max–Min
PR algorithm, which was not able to find an optimal solution
even after 10 CPU hours. The value reported for this com-
ponent in Table 6 was obtained using the Max–Min SD al-
gorithm. Table 7 has results for the remaining components,
which had better Max–Min values for physically realizable
drawings.
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Table 6 Results on the largest components that were solved from each
original problem instance. Times are in secs

Component Value Times

538-1-6 (29) 1.22 3

538-1-0 (51) 1.15 4

538-24-0 (53) 0.76 >10 h

death-2-0 (70) 0.77 8

mag-6-0 (26) 12.64 15

mag-1-1 (39) 14.30 82

mag-1-0 (113) 12.87 1536

Table 7 Results on the largest components that were solved from each
original problem instance. Times are in secs

Component SD value PR

Value Times

mag-5-0 (81) 13.59 13.61 1919

mag-7-0 (116) 12.01 13.05 4802

For the population-based instances, we also have optimal
solutions with the same Max–Min value for both physically
realizable and stacking drawings. Column Value in Table 8
shows the optimal values. For these instances, we used the
heuristic mentioned in Sect. 5 in order to solve fewer com-
ponents. We were able to find all of the optimal solutions
solving only the first analyzed component of each instance.
The last three columns of Table 8 show, respectively, the
number of components, the size of the solved component,
and the execution time of the algorithm in seconds.

Even using heuristics to boost computation, some in-
stances are still hard to solve, such as France, which took
more than an hour and USA West, which was not solved to
optimally after 10 hours of execution.

Experiments with Max–Total stacking drawings Since the
PR algorithm is much faster than its SD counterpart [8], we
decided to adapt it to the Max–Total stacking drawing prob-
lem (SDP) as follows. We first run the PR algorithm on a
given instance. If the optimal solution has no cyclic order
among the disks, the physically realizable drawing is also a
stacking drawing, and we are done. Otherwise, we choose
any cycle in the solution and add a transitivity constraint for
each triple of vertices in this cycle. We then resolve the in-
stance with these additional constraints, repeating until no
cyclic order exists. In this procedure, decomposition C, as
defined in the beginning of this section, cannot be used.

Table 9 shows the results of this new method on the
population-based instances of Table 3. The second and third
columns show the number of cycles nC that were removed
by the algorithm, and the size of the largest removed cycle

Table 8 Optimal solutions for population instances: Max–Min PR

Country Value Components Times

# Size

Australia (210) 6.41 62 3 2

Belgium (312) 13.92 69 145 5

Brazil (150) 13.44 35 88 68

Canada (150) 9.50 29 87 17

China (141) 10.34 8 123 9

Denmark (310) 8.79 70 102 4

France (135) 6.45 53 41 4826

Germany (150) 9.60 37 61 182

Indonesia (150) 7.58 33 99 43

Israel (150) 11.49 20 54 6

Italy (300) 6.18 39 67 500

Japan (150) 8.73 29 101 682

Netherlands (367) 15.72 63 225 9

Norway (150) 6.73 35 98 15

Portugal (150) 9.14 30 46 59

Russia (150) 7.42 23 114 12

Spain (300) 8.73 41 46 99

United Kingdom (186) 9.03 25 135 9

United States (East) (150) 9.34 8 85 144

United States (West) (87) 9.31 6 76 >10 h

Table 9 Optimal solutions for population instances: SD

Country Cycles removed Times Ratios
w/SDnC Cmax

Belgium (312) 2 4 6 459.5

China (141) 1 8 6 632.8

Denmark (310) 4 4 15 67.1

Indonesia (150) 1 4 17 145.7

Israel (150) 2 4 23 45.4

Netherlands (367) 1 4 8 527.8

Norway (150) 1 3 15 228.9

Spain (300) 2 9 49 4.0

UK (186) 1 5 7 60.3

US (East) (150) 1 4 25 111.5

Cmax. Because the algorithm adds a new constraint for each
triple of vertices in a cycle, at most nC ·C3

max constraints are
added to the original model. The execution times (in sec-
onds) appear in the fourth column.

As expected, the number of cycles and their length were
very small when compared to the total number of disks.
Even though we had to solve the model nC + 1 times, our
method is still faster than running the original SD algorithm,
as seen in the last column of Table 9, which has the ratio be-
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Table 10 Results on the instances that have the same optimal value
for both types of drawings, but for which the PR algorithm returns a
non-stacking drawing. Times in secs

Country Cycles removed Times Ratios
w/SD# Max size

538-1-6 (29) 1 5 3 1.7

Magnitude-7-0 (116) 1 3 65 388.6

France (135) 1 3 1783 1.3

tween the execution time of the SD algorithm and that of our
method.

When the SD and PR algorithms return optimal solutions
with the same value, it is not necessarily true that the solu-
tion returned by the PR algorithm is a stacking drawing. This
can be seen in Table 10 which shows results for instances in
Tables 2 and 5 that had cyclic orders when solved by the PR
algorithm.

For the remaining instances, the PR and SD execution
times were not considerably different.

8 Conclusion

Proportional symbol maps (PSMs) are an important visual-
ization tool for geopositioned data. The symbols we con-
sider are opaque disks whose areas are proportional to the
magnitude of the data they represent, and we focus on the
class of physically realizable drawings.

Visually effective PSMs typically maximize one of two
quality metrics: the total length of the visible borders of the
disks on the map (Max–Total), or the minimum length of the
visible disk borders (Max–Min); both of which are known
to be NP-Hard. Physically realizable drawings can be su-
perior to the previously studied stacking drawings because
they have the potential to expose greater portions of the disk
borders.

We propose and implement exact algorithms to solve the
Max–Total and Max–Min problems. Our optimization ap-
proach is based on integer programming formulations en-
hanced by the application of known and novel decomposi-
tion techniques, as well as the introduction of several fami-
lies of strong inequalities.

Our computational results, which involve real life data
sets related to natural events and population statistics, in-
dicate that, in addition to being visually superior, optimal
physically realizable drawings can be obtained at a fraction
of the computational effort required to obtain optimal stack-
ing drawings when optimizing the Max–Total metric.

To the best of our knowledge, we are the first to find prov-
ably optimal physically realizable drawings for the data sets
proposed in [1], as well as the population-based data sets
described in Sect. 6.

Finally, we also implement a method to solve the Max–
Total stacking drawing problem using the above algorithm
and additional constraints, which turns out to be faster than
the algorithm proposed in [8].

Acknowledgements Guilherme Kunigami is supported by CNPq
(Conselho Nacional de Desenvolvimento Científico e Tecnológico)
grant 830510/1999-0. Pedro J. de Rezende is partially supported by
CNPq grants 483177/2009-1, 473867/2010-9, FAPESP (Fundação
de Amparo à Pesquisa do Estado de São Paulo) grant 07/52015-0,
and a grant from FAEPEX/UNICAMP. Cid C. de Souza is par-
tially supported by CNPq grants 301732/2007-8, 472504/2007-0,
473867/2010-9, and FAPESP grant 07/52015-0.

The authors would like to express their appreciation to the anony-
mous referees for their careful and thorough reviews and for their com-
ments which contributed to improving the exposition.

References

1. Cabello, S., Haverkort, H., van Kreveld, M., Speckmann, B.:
Algorithmic aspects of proportional symbol maps. Algorithmica
58(3), 543–565 (2010)

2. CGAL: Computational Geometry Algorithms Library. www.cgal.
org

3. Fair Isaac Corp: Xpress optimizer reference manual
4. Griffin, T.: The importance of visual contrast for graduated circles.

Cartography 19(1), 21–30 (1990)
5. Kunigami, G., Cano, R.G., de Rezende, P.J., Yunes, T.H.,

de Souza, C.C.: Proportional symbol maps—benchmark instanc-
es (2011). www.ic.unicamp.br/~Cid/Problem-instances/Symbol-
Maps

6. Kunigami, G., de Rezende, P.J., de Souza, C.C., Yunes, T.:
Optimizing the layout of proportional symbol maps. www.
optimization-online.org/DB_HTML/2010/11/2805.html

7. Kunigami, G., de Rezende, P.J., de Souza, C.C., Yunes, T.: Deter-
mining an optimal visualization of physically realizable symbol
maps. In: Lewiner, T., Torres, R. (eds.) Proc. of the 24th Conf.
on Graphics, Patterns and Images. IEEE Comp. Soc. Conf. Pub.
Serv., pp. 1–8 (2011)

8. Kunigami, G., de Rezende, P.J., de Souza, C.C., Yunes, T.: Opti-
mizing the layout of proportional symbol maps. In: Murgante, B.
et al. (eds.) Proceedings of ICCSA 2011. Lecture Notes in Com-
puter Science, vol. 6784, pp. 1–16. Springer, Berlin (2011)

9. Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H.: The-
matic Cartography and Geographic Visualization, 2nd edn. Pren-
tice Hall, New York (2003)

10. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)

Guilherme Kunigami is a software
engineer working with Operations
Research. His research interests are
in combinatorial optimization (in-
cluding integer linear programming
and metaheuristics), artificial intel-
ligence, computational geometry,
and computer graphics. He holds
a M.Sc. degree in Computer Sci-
ence and B.S. degree in Computer
Engineering from the University of
Campinas, Brazil.

http://www.cgal.org
http://www.cgal.org
http://www.ic.unicamp.br/~Cid/Problem-instances/Symbol-Maps
http://www.ic.unicamp.br/~Cid/Problem-instances/Symbol-Maps
http://www.optimization-online.org/DB_HTML/2010/11/2805.html
http://www.optimization-online.org/DB_HTML/2010/11/2805.html


1026 G. Kunigami et al.

Pedro J. de Rezende received B.Sc.
and M.Sc. degrees in Mathemat-
ics from the University of Brasília,
Brazil, in 1977 and 1979. In 1988,
he received his Ph.D. in Computer
Science from Northwestern Univer-
sity, USA. He was a faculty member
at the University of Brasília, Brazil,
1978–1979; Northeastern Univer-
sity, USA, 1985–1988; Wellesley
College, USA, 1989–1990; and has
worked at University of Camp-
inas, Brazil, since 1990. In 2006–
2007, he visited McGill University,
Canada. His research interests in-

clude computational geometry, combinatorial optimization, pattern
recognition, and medical imaging applications.

Cid C. de Souza got his Ph.D.
degree in Applied Sciences at the
Center for Operations Research and
Econometrics of the Catholic Uni-
versity of Louvain, Belgium, in
1993. He also holds M.S. and B.S.
degrees in electrical engineering
from the Catholic University of Rio
de Janeiro, in Brazil. He is cur-
rently a full professor at the Insti-
tute of Computing of the University
of Campinas, Brazil. His main re-
search interests include combinato-
rial optimization, linear and integer
programming, and design and anal-
ysis of algorithms.

Tallys Yunes is an Associate Pro-
fessor of Management Science at
the University of Miami School of
Business Administration. His re-
search interests are in applied op-
timization, including scheduling,
product line simplification, trans-
portation, visualization, and loca-
tion problems. He holds a Ph.D. in
Operations Research from Carnegie
Mellon University, as well as M.S.
and B.S. degrees in Computer Sci-
ence and Computer Engineering
from the University of Campinas,
in Brazil.


	Generating optimal drawings of physically realizable symbol maps with integer programming
	Abstract
	Introduction
	Related work
	Our contributions
	Organization

	Integer linear programming background
	Integer linear programming formulations
	The Max-Total stacking drawing problem
	The Max-Total PRDP
	The Max-Min PRDP
	Additional inequalities

	Decomposition techniques
	Implementation details
	ILP/MILP models
	Max-Min PRDP heuristics
	XPRESS parameters

	Problem instances
	Results and discussion
	Decomposition results
	Experimental results with the Max-Total PRDP
	Experimental results for the Max-Min PRDP
	Experiments with Max-Total stacking drawings

	Conclusion
	Acknowledgements
	References


