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Abstract

Proportional symbol maps are a cartographic tool that employs scaled symbols
to represent data associated with specific locations. The symbols we consider are
opaque disks, which may be partially covered by other overlapping disks. We ad-
dress the problem of creating a suitable drawing of the disks that maximizes one of
two quality metrics: the total and the minimum visible length of disk boundaries.
We study three variants of this problem, two of which are known to be NP-hard
and another whose complexity is open. We propose novel integer programming for-
mulations for each problem variant and test them on real-world instances with a
branch-and-cut algorithm. When compared with state-of-the-art models from the
literature, our models significantly reduce computation times for most instances.
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1 Introduction

Proportional symbol maps are a cartographic tool to visualize data associ-
ated with specific locations (e.g. earthquake magnitudes and city populations).
Symbols whose area is proportional to the numerical values they represent are
placed at the locations where those values were collected. Although symbols
can be of any geometric shape, opaque disks are the most frequently used and,
for that reason, the focus of our study. Portions of a disk may not be visible
when overlapping occurs and, when large portions of a disk are covered, it is
difficult to deduce its size and the location of its center. Therefore, the way in
which the disks are drawn affects the amount and quality of information that
can be inferred from a symbol map.

Let S be a set of n disks and A be an arrangement, which is the subdivision
defined by the boundaries of the disks in S (Fig. 1). We denote the sets of
arcs and faces of A by R and F , respectively. A drawing of S is a subset of
the arcs and vertices of A that is drawn on top of the filled interiors of the
disks in S. Cabello et al. [1] define two types of drawings that are suitable for
symbol maps, namely, physically realizable drawings and stacking drawings.

A drawing D is physically realizable if for every face f ∈ F , there exists an
order among the disks that contain f such that: (i) an arc r on the boundary
of a disk dr is visible in D if and only if dr is above all disks that contain
r in their interior; and (ii) the orders associated with distinct faces do not
contradict each other. Informally, this definition states that a drawing is
physically realizable if it can be constructed from whole symbols, cut out
from sheets of paper. The disks can be interleaved and warped, but cannot be
cut. A stacking drawing is a restriction of a physically realizable drawing in
which there exists a total order among all disks in S, i.e. it is a drawing that
corresponds to the disks being stacked up in layers, starting with the ones on
the bottom layer. Fig. 2 shows examples of both types of drawings.

v
r f

Figure 1: An arrangement with ver-
tex v (intersection of boundaries), arc
r, and face f .

Figure 2: A physically realizable drawing
that is not a stacking drawing (left) and
a stacking drawing (right).

According to Cabello et al. [1], two metrics can be considered to determine
the quality of a drawing: the minimum visible boundary length of any disk and
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the total visible boundary length over all disks. The Max-Min and Max-Total
problems consist in maximizing the former and the latter values, respectively.
Combining these two metrics with the two types of drawings yields four op-
timization problems. As in [3], we refer to the physically realizable drawing
problem as PRDP and to the stacking drawing problem as SDP.

Cabello et al. [1] describe a greedy algorithm to solve the Max-Min SDP
in O(n2 log n) time. They also show that both variants of PRDP are NP-
hard. The computational complexity of the Max-Total SDP remains open.
Kunigami et al. [3] propose integer linear programming (ILP) models to solve
both versions of PRDP and the Max-Total SDP. Their models are based on
two sets of binary variables: an arc variable xr for each r ∈ R (to indicate
whether r is visible in the solution) and an ordering variable wij for each pair
of disks i, j ∈ S (to indicate the relative order between i and j). The authors
also present decomposition techniques to reduce the size of input instances.

We propose novel ILP models for the three problem variants studied in [3]
(Sect. 2). Our formulations are in terms of arc variables only, thus reducing
the dimension of the resulting polyhedra and the execution times. We show
that these models are projections of the ones described in [3] (Sect. 3). We
implement and test a branch-and-cut algorithm on real-world benchmark in-
stances. A comparison with the formulations from [3] shows that our algorithm
significantly improves computation times in several cases (Sect. 4).

2 Integer Linear Programming Models

Given an arc r ∈ R, we denote by �r the length of r and by dr the disk in S
whose boundary contains r. In addition, for each arc r (face f), let Sr (Sf )
denote the set of disks that contain arc r (face f) in their interior.

For each r ∈ R, we define a binary variable xr that is equal to 1 if r is
visible in the drawing, and equal to 0 otherwise. For the Max-Total problem,
the objective is to maximize

∑
r∈R �rxr. As in [3], for the Max-Min problem

the objective is to maximize an additional real variable z, which is added to
the model together with the following constraints:

z ≤
∑

r∈R : dr=i

�rxr, ∀ i ∈ S. (1)

We first consider the constraints required by SDP. Note that when an arc
r is visible in a drawing, it induces an order among dr and every disk in Sr

(dr must be drawn above every disk i ∈ Sr). We define an induced order
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graph GO = (V,E) as a directed multigraph with a vertex vi ∈ V for every
disk i ∈ S, and a directed edge erj = (vdr , vj) for each arc r ∈ R and disk
j ∈ Sr. An example is shown in Fig. 3 (left and center). Let C be the set
of all directed cycles in GO. Now, given a cycle C ∈ C, let RC be the set of
arcs that give rise to the edges of C, i.e. RC = {r : erj ∈ C, for some j ∈ S}.
For every cycle C ∈ C, we cannot have all arcs from RC visible in a solution
because they induce a cyclic order among the corresponding disks. Thus, the
following constraints must be satisfied:

∑
r∈RC

xr ≤ |C| − 1, ∀ C ∈ C. (2)
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Figure 3. An arrangement with four disks (left), its graph GO (center) and the
face-transitive closure of the cycle {ep1, eb2, ef3, el4} (right).

We now turn our attention to PRDP, which allows some cycles to occur.
We determine the allowable ones as follows. Let HO be an arbitrary subgraph
of GO. Given a set of disks X ⊆ S, denote by HO[X] the subgraph of HO

induced by the vertices {vi : i ∈ X}. Also, let FX ⊆ F be the set of faces that
are contained in at least one of the disks in X. We define the face-transitive
closure H∗

O of HO as its minimal supergraph such that for each face f ∈ FX ,
H∗

O[Sf ] is transitively closed. Let C ∈ C be a cycle in GO and C∗ be its
face-transitive closure. The arcs in RC can all be visible in a solution if and
only if all subgraphs C∗[Sf ] are acyclic. Let Ĉ be the set of cycles in GO that
do not satisfy this condition. One such cycle is depicted in Fig. 3 (right). Its
face-transitive closure is obtained by adding the dashed edges to the original
cycle. For PRDP, we must replace (2) by the following constraints:

∑
r∈RC

xr ≤ |C| − 1, ∀ C ∈ Ĉ. (3)
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3 Polyhedral Study

We refer to the models presented in Section 2 as arc models (AM) and to the
models proposed in [3] as graph orientation models (GOM). Given a model M ,
we denote by M -PRD and M -SD the specific variants designed to solve PRDP
and SDP, respectively. Also, let PM and P̃M be the polyhedra defined by the
convex hull of all integer feasible solutions of M and by the linear relaxation
of M , respectively. Proofs are omitted due to space limitations.

Proposition 3.1 The polyhedra P̃AM−SD, P̃AM−PRD, PAM−SD and PAM−PRD

are the projections of P̃GOM−SD, P̃GOM−PRD, PGOM−SD and PGOM−PRD onto
the x-space, respectively.

Proposition 3.2 The dimension of PAM−SD and PAM−PRD is |R|.
Proposition 3.3 Given an arc r ∈ R, the inequality xr ≥ 0 always defines a
facet of PAM−SD and PAM−PRD. The inequality xr ≤ 1 defines facets of both
polyhedra if and only if Sr = ∅.
Proposition 3.4 Let GR be a graph with a vertex vr for each arc r ∈ R and
an edge {vr, vs} for each pair of arcs r and s such that dr ∈ Ss and ds ∈ Sr.
Given a maximal clique K in GR, the inequality

∑
r : vr∈K xr ≤ 1 defines a

facet of PAM−SD and PAM−PRD.

We conclude this section mentioning that, generally, inequalities (2) and (3)
are not facet-defining. However, they can be strengthened by lifting proce-
dures, whose description we leave for the full version of this paper.

4 Computational Results

We assess the effectiveness of our algorithms using a set of 28 instances 5

generated from data on the population of cities from several countries. For
all of them, we apply the decomposition techniques from [3]. The separation
routines for inequalities (2) and (3) are based on a procedure described by
Grötschel et al. [2]. The algorithms were implemented in C++ and compiled
with gcc 4.4.3. We used CGAL 3.5.1 to build the arrangements and CPLEX

12.4 to solve the integer programs. The experiments were run on an Intel
Xeon X3430, 2.40GHz CPU with 8GB RAM.

Table 1 summarizes the results for the hardest instances, showing the num-
ber of disks and arcs in each one and the execution times for models AM and

5 Available at www.ic.unicamp.br/~cid/Problem-instances/Symbol-Maps.
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GOM for each problem variant. Columns Speedup show the ratio between
the execution times of the two models. We use a time limit of five hours for
each ILP. For the Max-Total SDP and PRDP, the arc model performs better
for all instances, especially for the hardest ones (reported here), for which it
presents a (geometric) average speedup of 8.8. For the remaining instances,
both problems can be solved in less than two minutes, and the arc model
achieves a speedup of 2.4. For the Max-Min PRDP, it performs better for all
but three instances. Still, it achieves an average speedup of 1.8.

Instance |S| |R| Max-Total SDP Max-Total PRDP Max-Min PRDP

AM GOM Speedup AM GOM Speedup AM GOM Speedup

France 135 3230 435 5039 11.6 369 5034 13.6 3319 >5h >5.4

Greece 102 3482 495 5755 11.6 546 5475 10.0 15722 >5h >1.1

Italy 300 4366 16 86 5.4 14 86 6.1 1662 1890 1.1

Japan 150 3544 17 249 14.6 17 219 12.9 403 2216 5.5

Portugal 150 5070 39 304 7.8 40 306 7.7 85 28 0.3

USA (West) 87 3717 124 709 5.7 123 709 5.8 678 >5h >26.5

Table 1: Results for the six hardest instances. Times are given in seconds.

5 Conclusion

We study three variants of a proportional symbol maps problem and pro-
pose novel ILP models in terms of arc variables only. We show that these
formulations are projections of another model previously described in the lit-
erature. When compared with state-of-the-art models, our formulations sig-
nificantly reduce computation times for most instances. Future research direc-
tions include the study of new facet-defining inequalities and the development
of branching techniques based on geometric properties of the problem.
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