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Proportional symbol maps are a cartographic tool to assist in the visualization and analysis of quantitative
data associated with specific locations, such as earthquake magnitudes, oil well production, and temperature

at weather stations. As the name suggests, symbol sizes are proportional to the magnitude of the physical
quantities that they represent. We present two novel integer linear programming (ILP) models to solve this
computational geometry problem: how to draw opaque disks on a map so as to maximize the total visible border
of all disks. We focus on drawings obtained by layering symbols on top of each other, also known as stacking
drawings. We introduce decomposition techniques as well as several families of facet-defining inequalities, which
are used to strengthen the ILP models that are supplied to a commercial solver. We demonstrate the effectiveness
of our approach through a series of computational experiments using hundreds of instances generated from
real demographic and geophysical data sets. To the best of our knowledge, we are the first to use ILP to tackle
this problem, and the first to provide provably optimal symbol maps for those data sets.
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1. Introduction
Proportional symbol maps (PSMs) are a cartographic
tool to assist in the visualization and analysis of
quantitative data associated with specific locations
(e.g., earthquake magnitudes, oil well production,
temperature at weather stations, etc.). At each loca-
tion, a symbol is drawn whose size is proportional
to the numerical data collected at that point on the
map (Cabello et al. 2006, 2010). For our purposes,
the symbols are scaled opaque disks, which are typ-
ically preferred by users (Griffin 1990), and we focus
on drawings obtained by layering symbols on top of
each other, also known as stacking drawings. Because
of overlapping, a drawing of the disks on a plane will
expose some of them (either completely or partially)
and potentially obscure the others. Although there
have been studies about symbol sizing, it is unclear
how much the symbols on a PSM should overlap
(Dent 1999, Slocum et al. 2003). The quality of a draw-
ing is related to how easily the user is able to cor-
rectly judge the relative sizes of the disks. Intuitively,
the accuracy of such a judgment is proportional to
how much of the disk borders are visible. Figure 1
illustrates why it is better to consider visible border
length rather than visible area. As a consequence, the
objective function consists of maximizing one of two

alternative measures of quality: the minimum visible
border length of any disk (the max-min problem) or
the total visible border length over all disks (the max-
total problem).
For n disks, Cabello et al. (2006) show that the max-

min problem can be solved in O4n2 logn5 time in gen-
eral or in O4n logn5 time if no point on the plane
is covered by more than O415 disks. According to
Cabello et al. (2006), the complexity of the max-total
problem for stacking drawings is open; therefore, we
focus on this version of the problem.
The contributions of this work are (i) identify-

ing a new application of integer linear programming
(ILP) in computational geometry and proposing two
novel ILP formulations for the max-total problem;
(ii) introducing decomposition techniques, as well
as several families of facet-defining inequalities, for
this problem; (iii) experimenting with ILP algorithms
that demonstrate the effectiveness of our approach
through a series of computational tests on hundreds
of instances obtained from real geophysical data from
NOAA’s National Geophysical Data Center (NOAA
Satellite and Information Service 2005); and (iv) pro-
viding, for the first time, provably optimal solutions
to all of the max-total instances studied in Cabello
et al. (2006, 2010). As a result, we find that the optimal
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Figure 1 One Cannot Tell Whether the Bottom Disk is Small or Large

solutions are significantly superior to the best heuris-
tic solutions obtained with the algorithm of Cabello
et al. (2006, 2010).
The PSM has a clear application to the visualization

of statistical data. Good understanding of such infor-
mation is crucial to strategic decisions, which is at the
heart of operations research. For example, knowing
the intensity and location of earthquakes is crucial in
deciding where to install emergency operations cen-
ters to handle such events.
An earlier and much shorter version of some of

the results herein, not including our latest and best
results, appeared as Kunigami et al. (2011). We are
unaware of other attempts at using ILP to solve this
problem.
In §2, we describe the problem more formally and

introduce some basic terminology. We present two
alternative ILP models for the problem in §3 and
perform a polyhedral study of those formulations
in §4. We describe new families of facet-defining
inequalities in §5 and introduce decomposition tech-
niques in §6. The computational results obtained with
ILP algorithms based on each of the two formula-
tions appear in §7. Finally, we conclude the paper
and propose directions for future research in §8. The
proofs of all theoretical results presented in this paper
are included in its accompanying online supplement
(available as supplemental material at http://dx.doi
.org/10.1287/ijoc.2013.0557).

2. Problem Description and
Terminology

Let S = 81121 0 0 0 1n9 be a set of disks with known radii
and center coordinates on the Euclidean plane. Let
A be their arrangement, defined as the planar subdi-
vision induced by the borders of all the disks in S.
In other words, A is a partition of the Euclidean plane
into regions delimited by the borders of the disks in S.
A point at which two or more disk borders intersect
is called a vertex of A. A portion of a disk border

f

v

r

Figure 2 Arrangement with Vertex v , Arc r , and Face f (Left), and
a Drawing (Right)

f g

r1

r2

r3

r4

Figure 3 Three Single-Piece Canonical Arcs r1, r2, r3, and a
Multipiece Canonical Arc r4

that connects two vertices, with no other vertices in
between, is called an arc. A region of A that is delim-
ited by arcs and does not have any arcs in its interior
is called a face. A drawing of S is a subset of the arcs
and vertices of A that is drawn on top of the filled
interiors of the disks in S (see Figure 2). A set of arcs
on the boundary of a face that belong to the same disk
constitutes a canonical arc. In Figure 3, the boundary
of face f is made up of canonical arcs r1 and r2. The
boundary of face g is made up of three canonical arcs:
r2, r3, and r4. Note that canonical arc r4 is composed
of two pieces. For simplicity, we will use the term arc
to mean canonical arc for the remainder of the paper,
unless noted otherwise.
Given an arrangement, many drawings are possi-

ble, but not all of them represent a sensible, physically
feasible, placement of symbols. A stacking drawing
is obtained by assigning disks to levels (a stacking
order) and drawing them, in sequence, from the low-
est to the highest level. Such a drawing is made up of
a set of arcs A and vertices V taken from A. An arc
r 2 A belongs to A if all the disks that contain r in
their interior are assigned to levels below the level of
the disk containing r in its border. Note that a visi-
ble arc of A may be the concatenation of many arcs
from A. A vertex v 2A belongs to V (in the sense that
it is a visible point in the drawing) if and only if there
exists at least one arc in A that has v as one of its
endpoints.

3. Two Alternative ILP Models
Let GS = 4V 1E5 be an undirected graph with one ver-
tex for every disk i 2 S (denoted V 4i5) and one edge
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i j k V(i) V( j) V(k)

Figure 4 An Optimal Solution (Left) Needs to Assign the Three Disks
to Levels 1, 2, and 3, Although the Largest Clique
in GS (Right) Has Size 2

for every pair of vertices whose corresponding disks
overlap. Moreover, let m É 1 be the length of the
longest simple path in GS , and let K be the set of all
maximal cliques of GS . Although GS is a graph with
special structure, the size of K can still be exponen-
tial in n, as is true for general graphs. This happens
because a special case of these graphs are unit disk
graphs, which are known to have exponentially many
maximal cliques in the worst case (Gupta et al. 2005).

Proposition 1. The max-total problem for stacking

drawings has an optimal solution that uses at most m
levels.

At first, it might seem that the number of levels
needed should be no greater than the size of the
largest clique in GS . However, consider the case when
GS is a simple path with m > 2 vertices. The largest
clique in GS has size 2, but an optimal solution may
need to use m levels. Figure 4 shows an example with
S = 8i1 j1k9 and m= 3.
From the set S, its arrangement A can be computed

in O4n25 time. Having A, the following data, which
serve as input to our ILP models, can be calculated in
polynomial time bounded by the total cardinality of
all sets SI

r , which does not exceed O4n35, in the worst
case:
• R ⌘ set of all arcs in A.
• lr ⌘ length of arc r 2R (total length if r has mul-

tiple pieces).
• dr ⌘ disk that contains arc r in its border.
• SI

r ⌘ set of disks that contain arc r in their
interior.
Now we describe our first model: For each r 2R, let

the binary variable xr be equal to 1 if arc r is visible
in the drawing, and 0 otherwise. Then, the objective
is to maximize X

r2R
lrxr 0 (1)

We assume that m� 2 because it is trivial to find the
optimal solution when m= 1. For each disk i 2 S, let
the binary variable yip be equal to 1 if disk i is at level
p (1  p  m, with 1 being the bottom level and m
being the top level), and equal to 0 otherwise. A stack-
ing drawing has to satisfy the following constraints:

mX

p=1

yip  11 8 i 2 S1 (2)

xr 
mX

p=1

ydr p1 8 r 2R1 (3)

X

i2V 4i52K
yip  11 8 1 pm1 K 2K1 (4)

pX

a=1

ydr a +
mX

b=p

yib + xr  21

8 r 2R1 i 2 SI
r 1 1 pm1 (5)

xr 2 801191 8 r 2R1 (6)

yip 2 801191 8 i 2 S1 1 pm0 (7)

We refer to the convex hull of feasible integer solu-
tions to (2)–(7) as P1. Constraint (2) states that each
disk is assigned to at most one level. Because of
Proposition 1, and because assigning a disk to the
lowest level never decreases the objective function
value, any optimal solution to (2)–(7) can be con-
verted to another solution with the same value and
having all disks assigned to at most m levels. Hence,
we use  instead of = in (2) to prevent P1 from losing
dimension, turning the study of the facial structure of
this polytope (see §4) technically simpler. Constraint
(3) states that a disk with a visible arc must be
assigned to a level, and (4) says that overlapping disks
cannot be at the same level. Although the latter con-
straints can be exponential in number, a compact for-
mulation can easily be obtained by replacing them
with simple constraints stating that a disk cannot be
on two different levels simultaneously. However, we
prefer to present the stronger form of constraints (4),
which derives directly from previous studies on the
independent set polytope (see Padberg 1973). Con-
straint (5) ensures that arc r is only visible if dr is
above all other disks that contain r .
Our second model is related to the partial order

polytope (Müller 1996) (see §5 for further details).
It uses the same xr variables introduced in the first
model but replaces variables yip with new binary
variables wij for every pair of distinct disks i1 j 2 S.
If wij = 1, it means that disk i is placed above disk j .
The constraints are as follows:

wij +wji  11 8 i1 j 2 S1 i < j1 (8)

xr wdr j
1 8 r 2R1 j 2 SI

r 1 (9)

wij +wjk Éwik  11 8 i1 j1k 2 S1 i 6= j 6= k 6= i1 (10)

xr 2 801191 8 r 2R1 (11)

wij 2 801191 8 i1 j 2 S1 i 6= j0 (12)

We refer to the convex hull of feasible integer solu-
tions to (8)–(12) as P2. Constraint (8) states that either i
is above j or vice versa. Constraint (9) states that if arc
r is visible, its disk dr has to be above all other disks
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that contain r in their interior. Finally, (10) makes sure
that the (partial) order imposed by the wij variables is
transitive.
Note that both formulations accept partial draw-

ings as feasible solutions. By a partial drawing we
mean a set of arcs that is a subset of a drawing. How-
ever, because our objective is to maximize a linear
function with nonnegative coefficients, any optimal
solution to these models must be a complete drawing.

4. Polyhedral Results
In this section, we obtain the dimension of P1 and
P2and determine which inequalities in their original
formulations define facets.

4.1. Polyhedral Study of P1
Proposition 2. The dimension of P1 is nm+ óRó.
Proposition 3. Given an arc r 2 R, the inequality

xr � 0 defines a facet of P1, whereas the inequality xr  1
does not.

Proposition 4. Given a disk i 2 S and a level

1 pm, the inequality yip � 0 defines a facet of P1,

whereas the inequality yip  1 does not.

Proposition 5. Given a disk i 2 S, (2) defines a facet

of P1.

Proposition 6. Given an arc r 2R, (3) defines a facet

of P1.

Proposition 7. Given 1  p  m and K 2 K with

óKó � 2, (4) defines a facet of P1.

Proposition 8. Given an arc r 2 R, i 2 SI
r , and 1 

p  m, (5) does not define a facet of P1, but (13) does if

1 p <m:

pX

a=1

ydr a +
mX

b=p

yib + xr  1+
mX

a=1

ydr a0 (13)

4.2. Polyhedral Study of P2
Proposition 9. The dimension of P2 is n4nÉ 15+ óRó.
Proposition 10. Given an arc r 2 R, the inequality

xr � 0 defines a facet of P2, whereas the inequality xr  1
defines a facet of P2 only when SI

r =ô.

Proposition 11. Given two distinct disks i1 j 2 S, the
inequality wij � 0 defines a facet of P2 if S

I
r = ; for all arcs r

on the border of disk i. Moreover, the inequality wij  1
does not define a facet of P2.

Proposition 12. Given two disks i1 j 2 S with i < j ,
(8) defines a facet of P2.

Proposition 13. Given an arc r 2R and a disk j 2 SI
r ,

(9) defines a facet of P2.

Proposition 14. Given three distinct disks i1 j1k 2 S,
(10) defines a facet of P2.

4.3. Relationship Between P1 and P2
We conclude this section with a formal comparison
of our two ILP formulations. Let P̃1 be the feasible
set of the linear relaxation of (2)–(7) and let P̃2 be the
feasible set of the linear relaxation of (8)–(12). More-
over, let P̃ x

1 and P̃ x
2 be the projections of P̃1 and P̃2

respectively, onto the x-space. More specifically, P̃ x
1=

8x 2 ✓óRó ó 4y1x5 2 P̃1 for some y 2 ✓nm9 and P̃ x
2 = 8x 2

✓óRó ó 4w1x5 2 P̃2 for some w 2✓n4nÉ159.

Proposition 15. P̃ x
1 * P̃ x

2 .

Moreover, we conjecture that P̃ x
2⇢ P̃ x

1 .

5. Strengthening the ILP Formulations
The geometric nature of PSMs enables us to obtain
new valid inequalities by observing that certain
groups of arcs cannot be visible simultaneously
because of physical impossibility. In the sequel, A is
an arrangement of disks on a plane. We use the fol-
lowing additional data sets:
• Df ⌘ set of disks that contain face f .
• Bf ⌘ set of arcs that form the boundary of face

f . B+
f = 8r 2 Bf ó dr 2Df 9 and BÉ

f = Bf \B+
f .

• If ⌘ set of disks whose borders contain an
arc in Bf .
• Cf ⌘ set of disks that contain face f in their inte-

rior (Cf =Df \ If ).
Consider the arrangement in Figure 3. The boundary
of face g is formed by arcs r2, r3, and r4. We have
Bg = 8r21 r31 r49, Dg = 8dr49, B

+
g = 8r49, BÉ

g = 8r21 r39, Ig =
8dr21dr31dr49, and Cg = ;.
In the arrangement of Figure 5, the boundary of

face f is formed by arcs r1, r2, and r3. Therefore, we
have Bf = B+

f = 8r11 r21 r39, Df = 8dr11dr21dr31dr49, If =
8dr11dr21dr39, and Cf = 8dr49. If one of the arcs in Bf is
visible in a drawing, the other two cannot be visible.

r1

r2 r3

r4

f

Figure 5 Arcs r1, r2, and r3 of Face f Cannot Be Visible
Simultaneously
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Moreover, if dr4 is assigned to the topmost level m,
f will not be visible. This leads to the valid inequal-
ity ydr4m + xr1 + xr2 + xr3  1. In general, we have the
following result:

Proposition 16. Let f be a face of A with óB+
f ó � 1. If

óCf ó � 1 or óB+
f ó � 2, then (14) defines a facet of P1:

X

i2Cf

yim +
X

r2B+
f

xr  10 (14)

Proposition 17. Let f be a face of A with óBÉ
f ó � 1.

For each r 2 BÉ
f , (15) defines a facet of P1:

X

i2Df

yim + xr  10 (15)

Now let GR be a graph with one node for every arc
r 2R, denoted V 4r5, and an edge between two nodes
V 4r15 and V 4r25 if dr1 2 SI

r2
and dr2 2 SI

r1
(i.e., r1 and r2

cannot be visible simultaneously). Given a clique K
of GR, to simplify notation we will treat K as a set
of arcs whose corresponding vertices induce a clique
in GR. Therefore, we can apply typical set operations
to K, such as writing r 2 K to indicate that V 4r5 is
a node of the clique and writing óKó to indicate the
number of nodes in the clique.
In an attempt to find the counterpart of Proposi-

tion 16 for P2, we obtained the following result.

Proposition 18. Let K be a maximal clique in GR with

óKó � 3. Then (16) defines a facet of P2:

X

r2K
xr  10 (16)

Because the wij variables define a partial order on
the disks in S, P2 can be viewed as a lifted partial
order polytope (POP) with side constraints (Müller
1996). Therefore, one could use valid inequalities for
the POP as a starting point for finding valid inequal-
ities for P2. The odd closed-walk inequality studied
in Müller (1996) is one such example.

Proposition 19. Let DS = 4V 1A5 be a complete

directed graph with one node in V for every disk in S. As
before, V 4i5 denotes the node corresponding to disk i, and
an arc from V 4i5 to V 4j5 in DS corresponds to the variable

wij . Let C = 4V 4i151 0 0 0 1V 4ik51V 4ik+155, with ik+1 = i1
and ik+2 = i2, be an odd cycle of length k in DS . Then (17)
defines a facet of P2:

kX

a=1

wiaia+1
É

kX

a=1

wiaia+2
 kÉ 1

2
0 (17)

A vertex of an arrangement is nondegenerate if it is
an intersection point of exactly two disks or, equiva-
lently, four arcs, as shown in Figure 6(i). Since each
arc can be either visible or not, there are 16 potential

r1 r2

r3r4

r1 r2

r3

(i) (ii)

r1 r2

r4

(iii)

r1 r2

r3r4

(iv)

r1 r2

r3r4

(v)

r1 r2

r3r4

(vi)

r1 r2

r3r4

(vii)

r1 r2

r3r4

(viii)

r4 r3

Figure 6 A Nondegenerate Vertex (i), Five Feasible Arc
Configurations: (ii)–(vi), and Two Infeasible Ones: (vii)
and (viii)

assignments of values to their respective x vari-
ables. Because of our objective function (1), draw-
ings that are candidates for optimal solutions can only
include the five assignments shown in Figure 6(ii)–(vi)
(dashed arcs are obscured). Assignments such as the
ones shown in Figure 6(vii)–(viii) cannot be part of
an optimal drawing. This observation gives rise to
inequalities (18)–(21):

xr1 � xr31 (18)

xr2 � xr41 (19)

xr3 + xr4 � xr11 (20)

xr3 + xr4 � xr2 0 (21)

Because the definitions of P1 and P2 accept par-
tial drawings as feasible solutions, (18)–(21) are not
strictly valid for P1 and P2. Nevertheless, since opti-
mal solutions are complete drawings that never vio-
late (18)–(21), these inequalities can still be used to
speed up the search.

6. Decomposition Techniques
To reduce the size of the ILP model, we introduce
decomposition techniques that allow us to consider
smaller sets of disks at a time.
Without loss of generality, we assume that GS is

connected. Otherwise, each of its connected com-
ponents can be treated separately. A graph is
2-connected if it cannot be disconnected by remov-
ing fewer than two vertices. When the graph is con-
nected but not 2-connected, the disconnecting vertices
are known as a cut vertices, or articulation points (West
2001). If GS is not 2-connected, we can decompose
it around its articulation points. Consider the exam-
ple in Figure 7(i), in which S = 8a1 b1 c1d1 e1v9. The
node corresponding to disk v, i.e., V 4v5, is an articu-
lation point of GS because its removal disconnects the
graph into three connected components: 8a1 b9, 8c1d9,
and 8e9. By adding v to each of these components,
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a

e

c

b d

v

(i) (ii) (iii) (iv)

a

b

v

e

v c

d

v

Figure 7 An Instance That Allows for Decomposition

we get instances (ii), (iii), and (iv) of Figure 7, which
are solved independently. Those three optimal solu-
tions can be combined into an optimal solution for
the entire set S by preserving the relative order of the
disks in each solution. Proposition 20 formalizes this
idea.

Proposition 20. Let S be a set of disks such that GS

is not 2-connected, and let v be a disk corresponding to an

articulation point of GS . Let Sk contain v plus the disk set

of the k-th connected component obtained after the removal

of V 4v5 from GS . The optimal solutions for each Sk can be

combined into an optimal solution for S in polynomial time.

If the graph of a connected component (GSk
) is not

2-connected and has an articulation point, the previ-
ous procedure can be applied recursively.
From Figure 7(ii), it is clear that there exists an opti-

mal solution in which a and b are drawn above v.
Hence, we can consider a and b as a separate instance,
and v as another. Proposition 21 formalizes this idea.

Proposition 21. Let S be a set of disks and let HS be

a directed graph with one node for every disk in S and an

arc from node i to j whenever a portion of the border of i’s
disk is contained in the interior of j’s disk. Let Sk be the

disk set of the k-th strongly connected component of HS .

The optimal solutions for each Sk can be combined into an

optimal solution for S in polynomial time.

7. Computational Experiments
Our experiments are performed on the same set of
instances used in Cabello et al. (2006). Instances City
156 and City 538 represent the 156th and 538th largest
American cities, respectively, in which the area of each
disk is proportional to the city’s population. Instances
deaths and magnitudes represent the death count and
Richter scale magnitude of 602 earthquakes world-
wide, respectively. Disks are placed at the epicenters
of each earthquake, and disk areas are proportional
to the corresponding quantities (NOAA Satellite and
Information Service 2005). When disks in an instance
coincide, we replace them by a single disk whose bor-
der is the total border length of the original disks. This
is possible because we can assume that such disks
would occupy adjacent levels in an optimal solution.
This preprocessing step reduces the number of disks
in deaths and magnitudes to 573 and 491, respectively.

Table 1 Number of Components and Largest Component Before and
After Decomposition

Instance # disks Connected Strongly connected 2-connected

City 156 156 38 (57) 45 (56) 53 (29)
City 538 538 185 (98) 213 (94) 240 (53)
Deaths 573 134 (141) 317 (85) 333 (70)
Magnitudes 491 31 (155) 31 (155) 45 (116)

Part of the success of our approach depends on
using our decomposition techniques to break down
those large original instances into hundreds of smaller
instances, as explained next.
In Table 1, column Connected shows the number

of connected components in GS for each instance,
with the number of disks in the largest component
in parentheses. Column Strongly connected shows the
resulting number of components (and largest compo-
nent) after we apply the decomposition of Proposi-
tion 21. Proposition 20 yields further decomposition,
as shown under column 2-connected. The reductions
in problem size are remarkable. City 538 can now
be solved by optimizing over sets of disks no larger
than one-tenth of its original size. Before applying
our decompositions, the largest instance in the origi-
nal data set had 573 disks. As shown in the rightmost
column of Table 1, the largest instance after decom-
position has 116 disks. Solving the original instances
is now equivalent to solving 671 significantly smaller
instances.
We solved the strengthened versions of the two ILP

models described in §3 with a commercial solver run-
ning its standard branch-and-cut algorithm. Thus, the
cuts that are separated during the execution of the
algorithm are restricted to those already implemented
inside the solver. From now on, we refer to the first
model ((2)–(7)) as model M1, and we refer to the sec-
ond model ((8)–(12)) as model M2. We now present
some implementation details for each case.
In model M1, we implement (2) as SOS1, substi-

tute (13) for (5), and add (14) and (18)–(21) at the root
node. (Inequalities (15) did not help computationally.)
Because óKó can be exponentially large, rather than
including all of (4), we heuristically look for an edge
covering of GS by maximal cliques (Nemhauser and
Sigismondi 1992). Alternatively, we also tried replac-
ing (4) with yip + yjp  1 for each level p and all
4i1 j5 2 E. Although theoretically weaker, the latter for-
mulation performed better in our experiments. This
might be explained by the sparser coefficient matrix
of the weaker model, which typically yields easier-to-
solve linear relaxations. Finally, instead of computing
the exact value of m as in Proposition 1, which is
NP-hard (Garey and Johnson 1979), we use m= n in
every run, because the exact m is equal to n in many
of the large components.
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In model M2, we create a variable wij for all pairs
i1 j 2 S with i 6= j . This way, (10) prevents any cyclic
orientation among disks. In addition, we implement
(8) as an equality rather than an inequality because
our computational experience suggests that the equal-
ity form yields better running times. Finally, we
include (16) and (18)–(21) at the root node. For (16) in
particular, instead of looking for all maximal cliques
in GR as described in Proposition 18, we only con-
sider cliques corresponding to the arcs of B+

f for each
face f of the arrangement. Although such cliques are
not necessarily maximal, they can be found efficiently
and already provide good results (see later).
Our implementation was done in C++, using

CGAL for data extraction (Wein et al. 2007). We use
XPRESS-Optimizer (Fair Isaac Corporation 2009) ver-
sion 20.00 to solve each problem on a 2.4 GHz Intel®
Core™2 Quad Processor with 4 GB RAM. Unless
noted otherwise, we limit each run to five hours of
CPU time.
For comparison purposes, we use the O4n2 logn5

heuristic from Cabello et al. (2006, 2010) to find good
feasible solutions. Despite being a max-min heuristic,
its solutions also perform well in terms of the max-
total objective.

7.1. Results Obtained with Model M1
Out of the 671 components obtained through decom-
position, all but the five or six largest ones from each
original instance are easily solved by our optimization
algorithm. We will focus on them first.
For components with óSkó  2, the solution is triv-

ial. For the remaining easy-to-solve components, we
summarize our results in Table 2. Column Comp.
w/óSkó> 2 indicates how many easy components from
the corresponding original instance have more than
two disks. The next nine columns indicate the min-
imum, average, and maximum values of component
size, followed by the number of search nodes and
CPU time required to find an optimal solution, respec-
tively. When compared to the heuristic solutions, the
optimal solutions to the 67 problems from Table 2
are 13.2% better on average (min = 0% and max =
15804%).
The results obtained with the five (or six) most

challenging components of each original instance

Table 2 Average Results with Model M1 Over Smallest Nontrivial Components of Each Instance

óSk ó Nodes Time (in sec.)

Original instance Comp. w/óSk ó> 2 Min Avg Max Min Avg Max Min Avg Max

City 156 11 3 503 14 1 2008 213 0 305 38
City 538 20 3 504 12 1 1109 145 0 004 5
Deaths 22 3 407 10 1 508 93 0 001 1
Magnitudes 14 3 407 10 1 108 7 0 001 1

appear in Table 3. Component names are written as
“Å-Ç-É (Ñ),” where Å identifies the instance, Ç-É indi-
cates that this is the É-th component generated by
Proposition 20 when applied to the Ç-th component
generated by Proposition 21, and Ñ is the number of
disks. In Table 3, column Base value represents the
total length of arcs r that are visible in any feasible
solution (SI

r =ô). This value is equal to the length of
the border of the region corresponding to the union
of all disks and is subtracted from the solution val-
ues in the remaining columns. Columns Best feasible
and Best UB are the best lower and upper bounds on
the optimal value found within the time limit, respec-
tively (optimal solutions appear in bold). Column
Instance City 156 presented no difficulties, hav-

ing all of its five largest components solved in less
than eight minutes. We found optimal or near-optimal
solutions to the first four largest components of City
538, with significant improvements in quality with
respect to the heuristic solutions. The two largest com-
ponents of City 538 turned out to be more challeng-
ing, with sizable gaps remaining after five hours of
computation. All but one of the largest earthquake
and death components were solved to optimality.
As was the case with component 538-24-0, the time
limit was exhausted during the solution of death-2-0
even before branching started. The largest compo-
nents obtained from the decomposition of earthquake
magnitudes turned out to be the most challenging
ones. Note that we do not have valid upper bounds
for instances mag-1-0 and mag-7-0 because the time
limit was not even enough to solve their first linear
relaxation. Overall, we were able to find optimal solu-
tions to 662 of the 671 components derived from our
original four instances.
Cutting planes (14) and (18)–(21) were essential in

achieving the results in Table 2 and Table 3. With
those cuts, the number of search nodes was 54 times
smaller on average, with some cases achieving reduc-
tions of almost three orders of magnitude. (Five of the
21 hardest components—six overall—would not have
been solved to optimality by model M1 without those
cuts.) As a consequence, computation times were also
drastically reduced.
Because of its direct relationship to the amount of

overlapping between disks, the number of arcs in an
instance/component is a better measure of difficulty
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Table 3 Results with Model M1 on Largest Components from Each Original Problem Instance

Base Best Best % above
Component value feasible UB % gap heur. Nodes Time (s)

156-18-0 (7) 63097 12091 12091 0 0 1 0
156-3-2 (8) 39084 40099 40099 0 805 7 0
156-3-0 (14) 66015 71017 71017 0 708 213 39
156-2-0 (26) 167022 138005 138005 0 301 51949 381
156-2-1 (29) 219036 153085 153085 0 104 117 10
538-47-2 (17) 26075 25027 25027 0 200 21463 11259
538-3-0 (26) 34027 39019 39019 0 1500 231589 91562
538-29-1 (26) 46048 36040 36040 0 403 11143 11260
538-1-6 (29) 21098 43051 47005 800 906 21399 181000
538-1-0 (51) 77037 82013 107035 3007 000 22 181000
538-24-0 (53) 18098 58050 186023 21803 000 1 181000
death-6-0 (12) 953008 60016 60016 0 000 51 1
death-8-0 (14) 68005 39065 39065 0 301 87 0
death-0-0 (24) 175078 145074 145074 0 507 41925 199
death-3-0 (24) 441075 323018 323018 0 103 31919 210
death-2-0 (70) 725028 964066 11652002 7102 000 1 181000
mag-5-1 (25) 214092 593074 593074 0 307 965 91609
mag-6-0 (26) 217021 579058 610099 504 500 31385 118000
mag-1-1 (39) 417032 919028 11350023 4609 000 3 181000
mag-5-0 (81) 601079 11741024 21317066 3301 000 1 181000
mag-1-0 (113) 581041 21743068 — — 000 1 181000
mag-7-0 (116) 700037 21622046 — — 000 1 181000

than the number of disks. Model M1 appears to be
capable of handling about 600–700 arcs in five hours
of CPU time, which, for our benchmark set, roughly
corresponds to instances having between 24 and 26
disks. Table 4 contains more details about the size of
our five largest components and how big their ILP
formulation is before and after the inclusion of cuts.
Because the number of cuts is small in model M1, we
add them at the root node of the search tree.

7.2. Results Obtained with Model M2
As far as size is concerned, model M2 is roughly
equivalent to model M1 in terms of the number
of variables, but it can have fewer constraints than
model M1, depending on the problem instance. For
the instances listed in Table 4, for example, model M2
can have between 1.6 and 14.7 times fewer rows than
model M1. Moreover, the number of nonzero entries
in the constraint matrices of those instances can be
between 45 and 288 times smaller in model M2.
For our set of problem instances, model M2

turns out to be empirically superior to model M1.

Table 4 Number of Arcs and Size of ILP Formulation for the Five
Largest Components Using Model M1

No. of No. of No. of No. of rows No. of rows
Component disks arcs cols. before cuts after cuts

538-24-0 53 3,753 61562 310261565 310351839
death-2-0 70 1,366 61266 6201970 6241115
mag-5-0 81 2,059 81620 9141490 9191623
mag-1-0 113 4,318 171087 317331407 317441116
mag-7-0 116 3,759 171215 217921468 218011845

On average, for the easy-to-solve instances (i.e., those
summarized in Table 2), model M2 solves 307 times
faster (min = 0095 times, max = 90 times) than model
M1 does and uses 9 times fewer (min= 1 times, max=
213 times) search nodes to reach optimality. How-
ever, the most impressive results are obtained on the
larger, unsolved components of Table 3, as can be seen
in Table 5. Model M2 managed to solve all remain-
ing instances to optimality, five of them quite easily.
Although we allowed it to run for more than five
hours in some cases, it is important to note that model
M1 would not have been able to solve those instances
even if it had been given the same amount of addi-
tional time.
While comparing the root node upper bounds for

the instances in Table 5 for which both models found
a valid upper bound (i.e., excluding mag-1-0 and
mag-7-0), we verified that the bounds obtained from
model M2 are always strictly better (1004% better on
average; 17.0% better if we ignore the base value) than
those from model M1. Although our implementation
of constraints (4), (8), and (16) varies slightly from
their strict definitions (see §7), the previous results,
coupled with the superior empirical performance of
model M2 as well as Proposition 15, are supportive of
the conjecture stated at the end of §4.

8. Conclusions
We propose two novel ILP formulations to optimize
stacking drawings of PSMs with the objective of
maximizing the total visible border of its symbols
(opaque disks in our case). By studying structural and
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Table 5 Results with Model M2 on Components Not Solved to Optimality by Model M1

Base Best Best % Above
Component value feasible UB % Gap Heur. Nodes Time (s)

538-1-6 (29) 21098 44032 44032 0 1107 1 5
538-1-0 (51) 77037 90008 90008 0 907 1 19
538-24-0 (53) 18098 65008 65008 0 1102 453 841308
death-2-0 (70) 725028 11152013 11152013 0 1904 1 61
mag-6-0 (26) 217021 579058 579058 0 500 1 13
mag-1-1 (39) 417032 11128052 11128052 0 2208 1 48
mag-5-0 (81) 601079 11914028 11914028 0 909 1 21312
mag-1-0 (113) 581041 31158082 31158082 0 1501 1 341306
mag-7-0 (116) 700037 21916017 21916017 0 1102 1 251256

polyhedral aspects of these formulations, we devised
effective decomposition techniques and new fami-
lies of facet-defining inequalities that greatly reduce
the computational effort required to solve the prob-
lem. These improvements enabled us to find the
first provably optimal solutions to all of the real-
world instances studied in Cabello et al. (2006, 2010).
Because PSM instances are still challenging to solve
when the number of arcs exceeds 2000 or so, we
continue to study the PSM polyhedron in search of
new families of cutting planes and/or alternative
formulations.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2013.0557.
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A.1. Introduction

This document contains the proofs of the propositions presented in the main body of our

paper. For ease of reference, we reproduce below both sets of inequalities defining the two

models for the PSM problem given in Section 3.

m∑

p=1

yip ≤ 1, ∀ i ∈ S (2)

xr ≤
m∑

p=1

ydrp, ∀ r ∈ R (3)

∑

i :V (i)∈K

yip ≤ 1, ∀ 1 ≤ p ≤ m, K ∈ K (4)

p∑

a=1

ydra +
m∑

b=p

yib + xr ≤ 2, ∀ r ∈ R, i ∈ SI
r , 1 ≤ p ≤ m (5)

xr ∈ {0, 1}, ∀ r ∈ R (6)

yip ∈ {0, 1}, ∀ i ∈ S, 1 ≤ p ≤ m (7)

We refer to the convex hull of all feasible integer solutions to (2)–(7) as P1.

1



wij + wji ≤ 1, ∀ i, j ∈ S, i < j (8)

xr ≤ wdrj, ∀ r ∈ R, j ∈ SI
r (9)

wij + wjk − wik ≤ 1, ∀ i, j, k ∈ S, i ̸= j ̸= k ̸= i (10)

xr ∈ {0, 1}, ∀ r ∈ R (11)

wij ∈ {0, 1}, ∀ i, j ∈ S, i ̸= j (12)

We refer to the convex hull of all feasible integer solutions to (8)–(12) as P2.

In each proof, the vector x⃗ contains all of the variables in the formulation under consid-

eration. Specifically, in proofs related to P1, x⃗ = (y, x) ∈ Rnm+|R|, whereas in proofs related

to P2, x⃗ = (w, x) ∈ Rn(n−1)+|R|.

To prove that a given valid inequality βx⃗ ≤ β0 defines a facet of P1 or P2, we follow

one of two methods: (i) the direct method in which we list the required number of affinely

independent points satisfying βx⃗ = β0; or (ii) the indirect method discussed in Theorem 3.6,

Part I.4 of Nemhauser and Wolsey (1988), which works as follows. (We will focus on P1, but

the same explanation is also valid for P2.) Let F be the face of P1 induced by βx⃗ ≤ β0, that

is F = {x⃗ ∈ P1 | βx⃗ = β0} (F ̸= ∅ and F ̸= P1 in all of our proofs). Let πx⃗ ≤ π0 be a generic

valid inequality for P1 whose induced face contains F . Because P1 is full-dimensional, if we

can show that πx⃗ ≤ π0 is a scalar multiple of βx⃗ ≤ β0, the latter inequality must define

a facet of P1. This is accomplished by adequately choosing points x⃗0 ∈ F and requiring

that π and π0 be such that πx⃗0 = π0 as well. After enough such points are considered, the

values of π and π0 can be calculated by solving a system of equations. For βx⃗ ≤ β0 to be

facet-defining, the solution of this system must be of the form π = αβ and π0 = αβ0, for

some scalar α.

To construct the points x⃗0 ∈ F for use in indirect-method proofs, we set some of their

coordinates to specific values to guarantee feasibility. All the coordinates that are not as-

signed specific values inside a proof are always assumed to be equal to zero, unless noted

otherwise.

Finally, before proceeding to the proofs, we need to clarify the indexation of vector π

when it is used in inner products of the form πx⃗, where x⃗ is a specifically constructed

feasible solution (akin to x⃗0 in the previous paragraph). In proofs related to P1, πip is the

component of π that multiplies variable yip, and πr is the component that multiples variable

2



xr. In proofs related to P2, πij is the component of π that multiplies variable wij, and πr is

again the component that multiples variable xr.

Proposition 1. The Max-Total problem for stacking drawings has an optimal solution that

uses at most m levels.

Proof. Given an optimal solution, create a directed graph G′
S such that V (G′

S) = V (GS)

and arc (i, j) is directed from i to j in G′
S if edge (i, j) ∈ E(GS) and disk i is at a level below

disk j. Because the solution is a stacking drawing, G′
S is a directed acyclic graph (DAG).

Therefore, G′
S admits a topological ordering of its vertices (Cormen et al., 2001), that is, an

assignment of its vertices to numbered layers such that, whenever a directed arc from i to

j exists, i’s layer has a smaller number than j’s layer. Note that this ordering induces the

same stacking order as the given solution. Because the length of the longest directed path

in G′
S is at most m− 1, the topological ordering will require at most m layers.

A.2. Polyhedral Study of P1

Proposition 2. The dimension of P1 is nm+ |R|.

Proof. The first model has nm + |R| variables, so we claim that P1 is full-dimensional.

Because P1 contains the origin, it suffices to exhibit nm + |R| linearly independent points

in P1. Index the variables such that the number that corresponds to yip is m(i − 1) + p,

and the number that corresponds to xr is nm + r (1 ≤ r ≤ |R|). Let ei be the unit vector

in Rnm+|R| with a 1 in the i-th position. The vectors ei with i ∈ {1, . . . , nm} are linearly

independent and belong to P1. They correspond to setting a single yip variable to 1. We

obtain the remaining |R| points by setting xr = ydr1 = 1 for each r ∈ R, one at a time.

Proposition 3. Given an arc r ∈ R, the inequality xr ≥ 0 defines a facet of P1, whereas

the inequality xr ≤ 1 does not.

Proof. The origin plus the points described in the proof of Proposition 2, except for the

point that has xr = 1, constitute nm + |R| affinely independent points satisfying xr = 0.

The inequality xr ≤ 1 is not facet-defining for P1 because it is implied by the combination

of (2) and (3).

Proposition 4. Given a disk i ∈ S, and a level 1 ≤ p ≤ m, the inequality yip ≥ 0 defines a

facet of P1, whereas the inequality yip ≤ 1 does not.

3



Proof. Case (i): p > 1: the origin plus the points described in the proof of Proposition 2,

except for the point em(i−1)+p, constitute nm + |R| affinely independent points that satisfy

yip = 0. Case (ii): p = 1: use the first nm points from case (i) plus the following points

for each r ∈ R: set xr = ydr1 = 1 when dr ̸= i, and set xr = ydr2 = 1 when dr = i. The

inequality yip ≤ 1 does not define a facet of P1 because it is implied by (2).

Proposition 5. Given a disk i ∈ S, (2) defines a facet of P1.

Proof. We list nm+ |R| affinely independent points that satisfy (2) as an equality. The first

m points are em(i−1)+p (i.e. setting yip = 1 for all 1 ≤ p ≤ m). The next nm − m points

are obtained as follows: by setting yi1 = yi′p′ = 1, for i′ ̸= i and 2 ≤ p′ ≤ m, we obtain

(n − 1)(m − 1) points; and by setting yi2 = yi′1 = 1, for i′ ̸= i, we obtain another n − 1

points. To obtain the remaining |R| points, for each r ∈ R, first set xr = 1. In addition, if

dr = i, set ydr1 = 1; otherwise, set yi1 = ydr2 = 1.

Proposition 6. Given an arc r ∈ R, (3) defines a facet of P1.

Proof. We use the indirect method with generic valid inequality πx⃗ ≤ π0. Let F be the face

of P1 induced by (3). Because the origin is a feasible solution that satisfies (3) as an equality,

we have that π0 = 0. Let 1 ≤ p ≤ m and x⃗rp satisfy ydrp = xr = 1, with all other variables

equal to zero. It is easy to see that x⃗rp is feasible and satisfies (3) as an equality. Then,

πx⃗rp = πdrp + πr = π0 = 0 . (22)

Therefore, πdrp = −πr. By varying the value of p, (22) implies that

πdr1 = πdr2 = · · · = πdrm = −πr = αr . (23)

To complete the proof, we need to show that all remaining components of π are equal to

zero.

Let r′ ∈ R \ {r} with dr′ = dr. Consider the vector x⃗ = x⃗rp + enm+r′ , whose components

are all zero except ydrp, xr and xr′ which have value one. Clearly, x⃗ is feasible and belongs

to F . Therefore, we have πr′ = 0. From now on, let us assume that dr′ ̸= dr. For any

p ∈ {1, . . . ,m}, by setting ydr′p = 1 and all other variables equal to zero, we obtain a feasible

vector x⃗ that lies on F . As a consequence, πx⃗ = π0, implying that πdr′p
= 0 for all r′ ̸= r

and all p. Similarly, choosing x⃗ such that ydr′p = xr′ = 1, we generate a feasible point in F

which yields πr′ = 0 for all r′ ̸= r.
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Proposition 7. Given 1 ≤ p ≤ m and K ∈ K with |K| ≥ 2, (4) defines a facet of P1.

Proof. We use the indirect method with generic valid inequality πx⃗ ≤ π0. We partition

the variables into five classes and determine the corresponding coefficients in vector π by

exhibiting feasible points that satisfy (4) as an equality. (i) yjp with V (j) ∈ K: Let x⃗ have

yjp = 1. Then, πx⃗ = πjp = π0. (ii) yjq with V (j) ∈ K, and q ̸= p: Let i ∈ S be such that

V (i) ∈ K, and let x⃗ have yjq = yip = 1. Then, πx⃗ = πjq + πip = π0, which implies πjq = 0

because of (i). (iii) yjq with V (j) /∈ K: There exists i ∈ S with V (i) ∈ K such that V (j)

is not adjacent to V (i) (otherwise, V (j) would be a vertex of K). For each 1 ≤ q ≤ m,

let x⃗ have yjq = yip = 1. Then, as in (ii), πjq = 0. (iv) xr with V (dr) ∈ K: If x⃗ satisfies

ydrp = xr = 1, we have πx⃗ = πdrp + πr = π0, which implies πr = 0. (v) xr with V (dr) /∈ K:

As in (iii), we can find an i ∈ S with V (i) ∈ K such that V (dr) is not adjacent to V (i). Let

x⃗ have ydr1 = yip = xr = 1. Then, πx⃗ = πdr1 + πip + πr = π0, which implies πr = 0.

Proposition 8. Given an arc r ∈ R, i ∈ SI
r and 1 ≤ p ≤ m, (5) does not define a facet of

P1, but (13) does if 1 ≤ p < m.

p∑

a=1

ydra +
m∑

b=p

yib + xr ≤ 1 +
m∑

a=1

ydra (13)

Proof. We first show that inequality (5) does not define a facet of P1. To this end, let F̄

denote the face of P1 induced by (5). Now, we claim that all feasible points in F̄ satisfy

inequality (2) at equality for i = dr (otherwise dr is not assigned to a level, xr is zero because

of (3), and the left-hand side of (5) is at most one). Since P1 is full-dimensional, F̄ cannot

be a facet of it.

Notice that, by defining the binary variable z =
∑m

a=1 ydra and lifting this variable in (5),

we obtain inequality (13). We now prove that the latter inequality is facet defining for P1

under the assumptions made in the proposition.

Initially, we observe that (13) is not facet-defining for P1 when p = m because one can

check that it is dominated by one of two valid inequalities presented later in this text (namely

(14) and (15)), depending on what kind of arc r is. Moreover, for convenience, we rewrite

(13) as:

m∑

b=p

yib −
m∑

a=p+1

ydra + xr ≤ 1. (24)
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We use the indirect method with generic valid inequality πx⃗ ≤ π0. We partition the

variables into ten classes and establish the appropriate corresponding coefficients in vector

π. For each choice of x⃗ given below, undefined variables are assumed to be equal to zero

and the vector is easily shown to be feasible and to lie on the face of P1 induced by (24). (i)

yil for p ≤ l ≤ m: Let x⃗ have yil = 1. Then, πx⃗ = πil = π0. (ii) yjm for all j ∈ S \ {dr, i}:

Let x⃗ have yi(m−1) = yjm = 1. Then, πx⃗ = πi(m−1) + πjm = π0 which, from the previous

result, implies that πjm = 0. (iii) yjl for all j ∈ S \ {dr, i} and 1 ≤ l ≤ m − 1: Let x⃗ have

yim = yjl = 1. Then, πx⃗ = πim + πjl = π0 which, from (i), implies that πjl = 0. (iv) ydrl

for 1 ≤ l ≤ p: Let x⃗ have yim = ydrl = 1. Then, πx⃗ = πim + πdrl = π0 which, from (i),

implies that πdrl = 0. (v) xr: Let x⃗ have ydrp = xr = 1. Then, πx⃗ = πdrp + πr = π0 which,

from (iv), implies that πr = π0. (vi) yil for 1 ≤ l ≤ p − 1: Let x⃗ have ydrp = xr = yil = 1.

Then, πx⃗ = πdrp + πr + πil = π0 which, from (iv) and (v), implies that πil = 0. (vii) xq

for all j ∈ S \ {dr, i} and all arcs q of disk j: Let x⃗ have yi(m−1) = yjm = xq = 1. Then,

πx⃗ = πi(m−1) + πjm + πq = π0 which, from (i) and (ii), implies that πq = 0. (viii) xq for all

arcs q of disk i: Let x⃗ have yim = xq = 1. Then, πx⃗ = πim + πq = π0 which, from (i), implies

that πq = 0. (ix) xq for all arcs q of disk dr except arc r: Let x⃗ have ydrp = xr = xq = 1.

Then, πx⃗ = πdrp + πr + πq = π0 which, from (iv) and (v), implies that πq = 0. (x) ydrl for

p+ 1 ≤ l ≤ m: Let x⃗ have yip = ydrl = xr = 1. Then, πx⃗ = πip + πdrl + πr = π0 which, from

(i) and (v), implies that πdrl = −π0.

A.3. Polyhedral Study of P2

Proposition 9. The dimension of P2 is n(n− 1) + |R|.

Proof. The second model has n(n−1)+ |R| variables, so we claim that P2 is full-dimensional.

Because P2 contains the origin, it suffices to exhibit n(n−1)+|R| linearly independent points

in P2. Index the variables such that the number that corresponds to wij is (n− 1)(i− 1)+ j

when j < i or (n − 1)(i − 1) + j − 1 when j > i, and the number that corresponds to xr

is n(n − 1) + r (1 ≤ r ≤ |R|). Let ei be the unit vector in Rn(n−1)+|R| with a 1 in the i-th

position. The vectors ei with i ∈ {1, . . . , n(n − 1)} are linearly independent and belong to

P2. They correspond to setting a single wij variable to 1. We get the remaining |R| points

by setting xr = wdrj = 1 for each r ∈ R (one at a time), and j ∈ SI
r , if any.

Proposition 10. Given an arc r ∈ R, the inequality xr ≥ 0 defines a facet of P2, whereas

the inequality xr ≤ 1 defines a facet of P2 only when SI
r = ∅.
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Proof. The origin plus the points described in the proof of Proposition 9, except for the point

that has xr = 1, constitute n(n− 1)+ |R| affinely independent points satisfying xr = 0. The

inequality xr ≤ 1 is not facet-defining for P2 when SI
r ̸= ∅ because it is implied by (9). If

SI
r = ∅, we obtain enough affinely independent points satisfying xr = 1 by using the points

described in the proof of Proposition 9, except for the origin, and setting xr = 1 in each of

them.

Proposition 11. Given two distinct disks i, j ∈ S, the inequality wij ≥ 0 defines a facet of

P2 if SI
r = ∅ for all arcs r on the border of disk i. Moreover, the inequality wij ≤ 1 does not

define a facet of P2.

Proof. If SI
r ̸= ∅ for an arc r on the border of i (dr = i), wij ≥ 0 is not facet-defining for

P2 because it is implied by (9). Otherwise, the origin plus the points described in the proof

of Proposition 9, except for the point that has wij = 1, constitute n(n − 1) + |R| affinely

independent points satisfying wij = 0. The inequality wij ≤ 1 is not facet-defining for P2

because it is implied by (8).

Proposition 12. Given two disks i, j ∈ S with i < j, (8) defines a facet of P2.

Proof. We use the indirect method with generic valid inequality πx⃗ ≤ π0. Let x⃗ have wij = 1.

Then, πx⃗ = πij = π0. Now let x⃗ have wji = 1 only. Then, πx⃗ = πji = π0 = πij (from the

previous identity). Because of the transitivity constraints (10), we have to take care of the

remaining w variables in a specific order. First, we zero out all components of π whose first

subindex is i before any others. Specifically, let x⃗ have wij = wiℓ = 1 for any given ℓ ̸= j.

This yields πx⃗ = πij + πiℓ = π0, which implies πiℓ = 0 for all ℓ ̸= j. Now define a new x⃗ by

setting wij = 1 and wkℓ = 1 for some (k, ℓ) ̸= (i, j) and (k, ℓ) ̸= (j, i). If k ̸= j we do not have

to worry about (10), and this feasible x⃗ yields πx⃗ = πij + πkℓ = π0, which implies πkℓ = 0.

If k = j, however, x⃗ also needs to have wiℓ = 1. Therefore, πx⃗ = πij + πkℓ + πiℓ = π0. But

since we have previously shown that πiℓ = 0, this last identity implies that πkℓ = 0.

Let r ∈ R and define x⃗ by setting xr = 1, and wdrk = 1 for all k ∈ SI
r . If this assignment

sets neither wij nor wji to 1, make wij = 1 and, if i ∈ SI
r , also make wdrj = 1. Then, we

have πx⃗ = πr + πab = π0, where ab is either ij or ji, which implies πr = 0.

Proposition 13. Given an arc r ∈ R and a disk j ∈ SI
r , (9) defines a facet of P2.
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Proof. We use the indirect method with generic valid inequality πx⃗ ≤ π0. Because the origin

satisfies (9) as an equality, π0 = 0. Let x⃗ satisfy wij′ = 1 for i ̸= dr or j′ ̸= j, with the

remaining variables equal to zero. Then, πij′ = π0 = 0. Moreover, if xr = 1 and wdrj′ = 1

for all j′ ∈ SI
r , we have πx⃗ = πr + πdrj = π0 = 0, which implies πr = −πdrj = α. It remains

to show that π′
r = 0 for r′ ̸= r. Let r′ ∈ R be such that dr′ ̸= dr. If xr′ = 1 and wdr′j

′ = 1

for all j′ ∈ SI
r′ , we conclude that πr′ = 0. On the other hand, if r′ is such that dr′ = dr, by

setting xr′ = xr = 1, and wdrj′ = 1 for all j′ ∈ SI
r′ ∪ SI

r , we also conclude that πr′ = 0.

Proposition 14. Given three distinct disks i, j, k ∈ S, (10) defines a facet of P2.

Proof. We use the indirect method with generic valid inequality πx⃗ ≤ π0. Let x⃗ have

wij = 1. This implies that πx⃗ = πij = π0 = α. Likewise, if wjk = 1, we get πjk = α. Finally,

if wij = wjk = wik = 1, we have that πik = −α.

We now show that all remaining coefficients of π are zero. Let i′ and j′ not in {i, j, k}

and let x⃗ have wi′j′ = wij = 1. Then, πx⃗ = α implies πi′j′ = 0. Now, let ℓ /∈ {i, j, k}. The

point satisfying wℓi = wjk = 1 implies πℓi = 0, and the point wiℓ = wjk = 1 implies πiℓ = 0.

Likewise, the point wℓk = wij = 1 implies πℓk = 0, and the point wkℓ = wij = 1 implies

πkℓ = 0. Continuing in this fashion, the point wℓj = wij = 1 implies πℓj = 0, and the point

wjℓ = wjk = 1 implies πjℓ = 0. We still need to show that πji = πkj = πki = 0. The point

satisfying wjk = wji = 1 implies πji = 0; the point satisfying wij = wkj = 1 implies πkj = 0,

and, finally, the point with wki = wjk = wji = 1 implies πki = 0.

It remains to show that πr = 0 for all r ∈ R. If dr /∈ {i, j, k}, let xr = wdrj′ = 1 for all

j′ ∈ S, in addition to wij = 1, to get πr = 0. If dr = i, let xr = wij′ = 1 for all j′ ∈ SI
r ,

together with wij = 1, and wjk = 1 if k ∈ SI
r , to get πr = 0. If dr = j, let xr = wjj′ = 1 for

all j′ ∈ SI
r , in addition to wjk = 1, to get πr = 0. Finally, if dr = k, let xr = wkj′ = 1 for

all j′ ∈ S, together with wij = 1, to obtain xr = 0 (this works even if i and/or j belong to

SI
r ).

A.4. Relationship Between P1 and P2

Let P̃1 be the feasible set of the linear relaxation of (2)–(7) and let P̃2 be the feasible set of the

linear relaxation of (8)–(12). Moreover, let P̃ x
1 and P̃ x

2 be the projections of P̃1 and P̃2 onto

the x-space, respectively. More specifically, P̃ x
1 = {x ∈ R|R| | (y, x) ∈ P̃1 for some y ∈ Rnm}

and P̃ x
2 = {x ∈ R|R| | (w, x) ∈ P̃2 for some w ∈ Rn(n−1)}.
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3

4 5

6
7

8
9
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d3

Figure 8: Counterexample showing that P̃ x
1 ! P̃ x

2 .

Proposition 15. P̃ x
1 ! P̃ x

2 .

Proof. We exhibit a fractional solution (y0, x0) ∈ P̃1 for which there exists no w0 ∈ Rn(n−1)

such that (w0, x0) ∈ P̃2. Consider the arrangement shown in Figure 8.

The nine arcs in the arrangement are identified by the numbers 1 through 9 (note that

d1 = d5 = d6, d2 = d4 = d8, d3 = d7 = d9, and arcs 1, 2, and 3 have two pieces).

Therefore, we have S = {d1, d2, d3}, R = {1, . . . , 9}, m = 3, and the set of GS maximal

cliques K is {{d1, d2}, {d2, d3}, {d1, d3}}. The following solution is feasible for P̃1: x0 =

(78 ,
7
8 ,

7
8 ,

1
4 ,

3
4 ,

1
8 ,

7
8 ,

7
8 ,

1
8), y

0
d11 = y0d23 = y0d32 = 3

8 , and for all the remaining (disk,level) pairs

(i, p), with i ∈ S and 1 ≤ p ≤ 3, let y0ip =
1
4 . Feasibility can be checked by substituting these

variable values into constraints (2)–(5). Hence, x0 ∈ P̃ x
1 . To show that x0 does not belong to

P̃ x
2 we show that, after substituting x0 into constraints (9), we cannot find a corresponding

vector w0 that would satisfy (8)–(10). This vector w0 would have to satisfy w0
d1d2

= 3
4 ,

w0
d2d1

= 1
4 , w

0
d1d3

= w0
d3d2

= 1
8 , and w0

d3d1
= w0

d2d3
= 7

8 , which would violate the transitivity

constraint w0
d1d2

+ w0
d2d3

− w0
d1d3

≤ 1.

A.5. Strengthening the ILP Formulations

Proposition 16. Let f be a face of A with |B+
f | ≥ 1. If |Cf | ≥ 1 or |B+

f | ≥ 2, then (14)

defines a facet of P1.

∑

i∈Cf

yim +
∑

r∈B+
f

xr ≤ 1 (14)

Proof. To prove validity, note that for every arc r ∈ B+
f , all the arcs in B+

f \ {r} are in

the interior of dr. Therefore, if r is visible, no other arc of B+
f \ {r} can be visible, which

implies
∑

r∈B+
f
xr ≤ 1. Moreover, if a disk in Cf is at the top level (m), we must have
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∑
r∈B+

f
xr = 0, so it suffices to show that

∑
i∈Cf

yim ≤ 1. Because all the disks in Cf contain

f , the corresponding vertices in GS form a clique. Hence, at most one of those disks can be

assigned to level m because of (4), which implies that (14) is valid.

If |B+
f | = 0, (14) is dominated by (4). If |Cf | = 0 and |B+

f | = 1, (14) reduces to xr ≤ 1,

which is not facet-defining due to Proposition 3.

To prove that (14) is facet-defining for P1 under the assumptions stated in the proposition,

we use the indirect method with generic valid inequality πx⃗ ≤ π0.

Let r ∈ B+
f , 1 ≤ p ≤ m, and let x⃗rp satisfy ydrp = xr = 1, with all other variables equal

to zero. Clearly, x⃗rp satisfies (14) as an equality, x⃗rp ∈ P1, and

πx⃗rp = πdrp + πr = π0 . (25)

By varying the value of p, (25) implies that, for any r ∈ B+
f ,

πdr1 = πdr2 = · · · = πdrm = αr . (26)

Let r ∈ B+
f and q /∈ B+

f . If pq < pr ≤ m, let x⃗rqprpq satisfy ydrpr = ydqpq = xr = 1, with

all other variables equal to zero. This gives πx⃗rqprpq = πdrpr + πdqpq + πr = π0 + πdqpq = π0

(using (25)), which implies πdqpq = 0. If pr < pq = m, there are two cases: (i) dq /∈ Cf : we

can still set ydrpr = ydqm = xr = 1, which yields πdqm = 0 as above; (ii) dq ∈ Cf : setting

ydqm = 1 and all remaining variables equal to zero, we conclude that πdqm = π0.

We now deal with coefficients of π corresponding to x variables associated with arcs

outside B+
f . Let q /∈ B+

f . There are two cases to consider: (i) dq ∈ Cf : let x⃗qm satisfy

ydqm = xq = 1, with all other variables equal to zero. Then, πx⃗qm = πdqm+πq = π0+πq = π0.

Therefore, πq = 0; (ii) dq /∈ Cf : Take r ∈ B+
f and let x⃗qr21 satisfy ydq2 = ydr1 = xq = xr = 1

(even if q ∈ B−
f , both q and r will be visible). Then, by (25) and since πdqpq = 0 for pq < m,

we obtain πx⃗qr21 = πdq2 + πdr1 + πq + πr = π0 + πq = π0. Hence, πq = 0.

If |B+
f | ≥ 2, let p1 > p2, r1 and r2 ∈ B+

f with r1 ̸= r2, and let x⃗r1r2p1p2 satisfy ydr1p1 =

ydr2p2 = xr1 = 1, with all other variables equal to zero. Then, πx⃗r1r2p1p2 = πdr1p1
+ πdr2p2

+

πr1 = αr1 +αr2 +πr1 = π0, yielding αr2 = 0, because of (25) and (26). Moreover, since r1 and

r2 were chosen arbitrarily, we can conclude that αr = 0 for all r ∈ B+
f . Consequently, πr = π0

for all r ∈ B+
f . To achieve the same results when |B+

f | = 1, we assume |Cf | ≥ 1. Let x⃗qrm

satisfy ydqm = ydr(m−1) = 1, where dq ∈ Cf and B+
f = {r}. Then, πx⃗qrm = πdqm + πdr(m−1) =

π0 + πdr(m−1) = π0, which implies πdr(m−1) = 0. Consequently, because of (26), πdrp = 0 for

all p, and πr = π0.
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Proposition 17. Let f be a face of A with |B−
f | ≥ 1. For each r ∈ B−

f , (15) defines a facet

of P1.

∑

i∈Df

yim + xr ≤ 1 (15)

Proof. The inequality is clearly valid. To prove that (15) is facet-defining for P1 under the

assumptions stated above, we use the indirect method with generic valid inequality πx⃗ ≤ π0.

Let 1 ≤ p ≤ m, and let x⃗rp satisfy ydrp = xr = 1. Clearly, x⃗rp satisfies (15) as an equality,

x⃗rp ∈ P1, and

πx⃗rp = πdrp + πr = π0 . (27)

By varying the value of p, (27) implies that

πdr1 = πdr2 = · · · = πdrm = αr . (28)

Let q ̸= r. If pq < pr ≤ m, let x⃗rqprpq satisfy ydrpr = ydqpq = xr = 1. This gives

πx⃗rqprpq = πdrpr + πdqpq + πr = π0 + πdqpq = π0 (using (27)), which implies πdqpq = 0. If

pr < pq = m, there are two cases: (i) dq /∈ Df : we can still set ydrpr = ydqm = xr = 1, which

yields πdqm = 0 as above; (ii) dq ∈ Df : setting ydqm = 1 we conclude that πdqm = π0.

We now deal with coefficients of π corresponding to x variables associated with arcs

q ̸= r. There are two cases to consider: (i) dq ∈ Df : let x⃗qm satisfy ydqm = xq = 1. Then,

πx⃗qm = πdqm + πq = π0 + πq = π0. Therefore, πq = 0; (ii) dq /∈ Df : Let x⃗qr21 satisfy

ydq2 = ydr1 = xq = xr = 1. Then, πx⃗qr21 = πdq2 + πdr1 + πq + πr = π0 + πq = π0. Hence,

πq = 0.

Finally, let dq ∈ Df and let x⃗qrm satisfy ydqm = ydr(m−1) = 1. Then, πx⃗qrm = πdqm +

πdr(m−1) = π0 + πdr(m−1) = π0, which implies πdr(m−1) = 0. Consequently, because of (28),

αr = 0 and πr = π0.

Proposition 18. Let K be a maximal clique in GR with |K| ≥ 3. Then, (16) defines a facet

of P2.

∑

r∈K

xr ≤ 1 (16)
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Proof. The inequality is clearly valid. To see the connection between (16) and (14) note

that, given a face f of A, the arcs in B+
f correspond to a clique in GR, but when Cf ̸= ∅

that clique is not necessarily maximal.

We begin by showing that (16) does not necessarily define a facet of P2 when |K| < 3.

If |K| = 1, (16) reduces to xr ≤ 1, which may or may not be facet defining, according to

Proposition 10. If |K| = 2, let r1 and r2 be the two arcs of K. The following system of

inequalities has to be satisfied:

xr1 + xr2 ≤ 1 (29)

wdr1dr2
+ wdr2dr1

≤ 1 (30)

xr1 ≤ wdr1dr2
(31)

xr2 ≤ wdr2dr1
(32)

To satisfy (29) as an equality, we need either xr1 = 1 or xr2 = 1. If xr1 = 1, then (31) implies

wdr1dr2
= 1, which in turn implies wdr2dr1

= 0 because of (30). Likewise, xr2 = 1 implies

wdr2dr1
= 1 and wdr1dr2

= 0. Hence, a point that satisfies (29) as an equality also satisfies

(30) as an equality, implying that (29) is not facet-defining.

From now on, we assume that |K| ≥ 3. We use the indirect method with generic valid

inequality πx⃗ ≤ π0. Before proceeding, we define a standard type of feasible point and

two sets of disks as follows. For any r ∈ R with SI
r ̸= ∅, define x⃗r as the point having

xr = wdrj′ = 1 for all j′ ∈ SI
r . Let IK be the set of all disks in S that contain an arc of K on

their border, that is IK = ∪r∈Kdr. Let DK be the set of disks in S that contain an arc of K

in their interior, that is DK = ∪r∈KSI
r (note that IK ⊆ DK).

If r ∈ K, which implies SI
r ̸= ∅, note that x⃗r satisfies (16) as an equality and πx⃗r gives

πr +
∑

j′∈SI
r

πdrj′ = π0 , (33)

to which we will refer multiple times during the proof.

We will show that the πij components of π are equal to zero by breaking the proof down

into three cases, depending on the value of i. As we consider each possible case for i ∈ S,

we will also look at the arcs r on i’s border to prove that either πr = π0 (when r ∈ K), or

πr = 0 (when r /∈ K). This way, once we go through all disks in S, we will also have gone

through all arcs in R.
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Case 1: i ∈ IK . This is equivalent to saying that i = dr for a given r ∈ K. Therefore, we

have to show that πdrj = 0 for all j ∈ S. We proceed by breaking this case down into three

subcases.

Subcase 1.1: j /∈ SI
r . Let x⃗ be initially equal to x⃗r and, in addition, set wdrj = 1. This

yields πx⃗ = πx⃗r + πdrj = π0, which implies πdrj = 0 because of (33).

Subcase 1.2: j ∈ SI
r ∩ IK . This means j = dr2 for some r2 ∈ K \ {r}. By assumption,

|K \ {r}| ≥ 2. Therefore, let x⃗ be initially equal to x⃗r and, in addition, set wdr2dr3
= 1 for

some pair of arcs r2, r3 ∈ K \ {r}. As in Case 1.1, this point yields πdr2dr3
= 0 because of

(33), and in a similar manner we can also show that πdr3dr2
= 0. Note that by repeating the

previous argument, we can show that πdrdr3
= πdr3dr

= 0 by using x⃗r2 as a starting point for

x⃗. Similarly, we can show that πdrdr2
= πdr2dr

= 0 by using x⃗r3 as a starting point for x⃗, and

so on.

Subcase 1.3: j ∈ SI
r \IK . Let r2 ∈ K \{r} and let x⃗ be initially equal to x⃗r2 . Note that the

point x⃗r2 has wdr2dr
= 1 because dr ∈ SI

r2
. If j ∈ SI

r2
, x⃗r2 also has wdr2j

= 1; otherwise we

already know that πdr2j
= 0 (from Subcase 1.1) and we can still set wdr2j

= 1 in x⃗. Either

way, observe that it is feasible to also set wdrj = 1 in x⃗ without violating the transitivity

constraint. Then, we have πx⃗ = πx⃗r2 + πdrj = π0, which implies πdrj = 0 because of (33).

To conclude the proof of Case 1, we consider arcs r on the border of disks i ∈ IK (i.e.

dr = i). If r ∈ K, because we have just shown that πdrj = πij = 0 for all j ∈ S, (33) implies

that πr = π0. If r /∈ K, there exists an arc r′ ∈ K on the border of i so that dr′ = dr = i.

Notice that from the previous cases we already know that πdrj = 0 for all j ∈ S − {dr}.

Hence, let x⃗ be initially equal to x⃗r + x⃗r′ and, in addition, set wdr′j
= 1 for all j ∈ SI

r . Then,

πx⃗ = πr + πr′ = π0, which implies πr = 0.

Case 2: i ∈ S \ DK . Let x⃗ be initially equal to x⃗r for some r ∈ K and, in addition, set

wij = 1 for any j ∈ S \{dr}. Then πx⃗ = πx⃗r+πij = π0, which implies that πij = 0. To show

that πidr = 0, we proceed in a similar way, but start with the point x⃗r2 for some r2 ∈ K \{r}

and additionally set widr = 1.

We now consider the arcs on the border of disks i in this case. Given r ∈ K and an arc

r1 on the border of i (dr1 = i) two subcases may occur:

Subcase 2.1: dr /∈ SI
r1
. Use x⃗ = x⃗r + x⃗r1 to get πx⃗ = πr + πr1 = π0, which yields πr1 = 0.
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Subcase 2.2: dr ∈ SI
r1
. Start with x⃗ = x⃗r + x⃗r1 and, in addition, also set wij = 1 for all

j ∈ SI
r to conclude that πr1 = 0.

Case 3: i ∈ DK \ IK . This means that i contains some (maybe even all) of the arcs of K

in its interior, but no arc of K is on i’s border. Given r ∈ K and j ∈ S \ {dr}, to show that

πij = 0 we can start with the point x⃗r, set wij = 1, and set wdrj = 1 (recall that we have

already shown that πdrj = 0 in Case 1). To show that πidr = 0, we begin with the point

x⃗r2 for some r2 ∈ K \ {r} and additionally set widr = 1. Note that this works regardless of

whether SI
r2

contains i or not, because x⃗r2 sets wdr2dr
= 1.

We now consider the arcs on the border of disks i in this case. Given an arc r1 on

the border of i (dr1 = i), because r1 /∈ K, there exists an arc r ∈ K such that dr /∈ SI
r1
.

Therefore, take the point x⃗r + x⃗r1 and additionally set wdrj = 1 for all j ∈ SI
r1
. Multiplying

this point with π yields πr + πr1 = π0, which implies πr1 = 0.

Proposition 19. Let DS = (V,A) be a complete directed graph with one node in V for every

disk in S. As before, V (i) denotes the node corresponding to disk i, and an arc from V (i)

to V (j) in DS corresponds to the variable wij. Let C = (V (i1), . . . , V (ik), V (ik+1)), with

ik+1 = i1 and ik+2 = i2, be an odd cycle of length k in DS. Then, (17) defines a facet of P2.

k∑

a=1

wiaia+1
−

k∑

a=1

wiaia+2
≤

k − 1

2
(17)

Proof. We use the indirect method with generic valid inequality πx⃗ ≤ π0. We will show that

πiaia+1
= α and πiaia+2

= −α, for a = 1, ..., k, and π0 = αk−1
2 .

Let V (ia) be a vertex of C. We refer to subsequent vertices in the directed cycle as

V (ia+j), for j = 1, . . . , k−1. If a+j > k, ia+j = i((a+j) mod k). Define the point x⃗ia by setting

variables wia+j′ ia+j′+1
= 1 for all j′ odd, that is, wia+1ia+2

= wia+3ia+4
= ... = wia−2ia−1

= 1,

as exemplified in Figure 9(i). Note that x⃗ia is feasible and satisfies (17) as an equality.

Therefore, πx⃗ia = π0.

We divide variables wij, with i, j ∈ S into four classes. If V (i), V (j) /∈ C, start with

the point x⃗ia and also set wij = 1. When we multiply the resulting point by π, we obtain

πx⃗ia + πij = π0, which implies that πij = 0. If V (i) ∈ C and V (j) /∈ C, choose a′ such that

V (ia′) = V (i), start with x⃗ia′
, and additionally set wij = 1 to conclude that πij = 0. By

proceeding in an analogous way, we can also show that πij = 0 when V (i) /∈ C and V (j) ∈ C.

Next, we deal with the case in which both V (i) and V (j) belong to C.
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V (ia)

(i) (ii) (iii)

V (ia) V (ia)

V (ia+2)

(iv)

Figure 9: A cycle of length 7. Only edges whose corresponding variable w is set to 1 are
shown.

Consider the point x⃗ia+2
; it has wia+3ia+4

= · · · = wia−2ia−1
= wiaia+1

= 1. Because both

x⃗ia and x⃗ia+2
satisfy (17) as an equality, and the only variables that are equal to one in only

one of these points are wia+1ia+2
(in x⃗ia) and wiaia+1

(in x⃗ia+2
), as shown in Figure 9(i) and

(ii), it is true that π(x⃗ia − x⃗ia+2
) = πia+1ia+2

− πiaia+1
= 0. By varying the value of a, we can

show that πiaia+1
= α for a = 1, . . . , k. In addition, because πx⃗ia = π0, we also conclude that

π0 = αk−1
2 .

If we take the point x⃗ia and also set wiaia+1
= wiaia+2

= 1 for a = 1, . . . , k, it is easy to see

that the resulting point is feasible and still satisfies (17) as an equality. Since πx⃗ia = π0, we

conclude that πiaia+1
+ πiaia+2

= 0. Therefore, πiaia+2
= −πiaia+1

= −α, for all a = 1, . . . , k.

We now show that πiaib = 0 for b ̸= a+ 1 and b ̸= a+ 2, for all a = 1, . . . , k. Start with

the point x⃗ia . Let a′ = a + j′, with j′ ≥ 3 and odd. Recall from the definition of x⃗ia that

wia′ ia′+1
= 1. Then, set wiaia′+1

= 1, as shown in Figure 9(iii) and multiply the resulting

point by π to conclude that πiaia′+1
= 0 for all a′. Now create another point starting with

x⃗ia and setting wiaia′
= 1. To respect the transitivity constraint (10), we also have to set

wiaia′+1
= 1, as shown in Figure 9(iv). As before, we conclude that πiaia′

= 0 for all a′.

Finally, we consider the πr components of π, for each r ∈ R. If V (dr) /∈ C, start with

the point x⃗ia for an arbitrary ia ∈ C. Otherwise, start with the point x⃗ia with ia = dr.

Next, define x⃗ as the point x⃗ia chosen in the previous step, with the following additional

components set to one: xr = 1 and wdrj = 1 for all j ∈ S.

If V (dr) /∈ C, no other variable in (17) has been set to one in x⃗ besides those in x⃗ia .

Therefore, πx⃗ = π0 allows us to conclude that πr = 0.

If V (dr) ∈ C, the resulting point x⃗ sets only two additional variables in (17) to one,

namely wiaia+1
and wia,ia+2

. Nevertheless, the equality between the left-hand side and the

right-hand side of (17) is maintained because the coefficients of those variables have opposite

signs. Therefore, πx⃗ = π0 also allows us to conclude that πr = 0.
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A.6. Decomposition Techniques

Proposition 20. Let S be a set of disks such that GS is not 2-connected and let v be a disk

corresponding to an articulation point of GS. Let Sk contain v plus the disk set of the k-th

connected component obtained after the removal of V (v) from GS. The optimal solutions for

each Sk can be combined into an optimal solution for S in polynomial time.

Proof. Let V (v) be an articulation point of GS and let v be its corresponding disk in S

(note that articulation points can be found in O(|E|) time, Cormen et al., 2001). Using the

notation introduced in the proposition, consider the disk subsets Si and Sj corresponding to

any two distinct connected components of GS −V (v). By definition, the pieces of v’s border

contained in Si\{v} and in Sj\{v} are disjoint. Hence, the optimal solutions of the problems

defined over Si and Sj do not influence each other. In other words, the relative order imposed

by those solutions onto the disks of each such subset is optimal for the complete set of disks

S. If we consider these orders as representing an orientation of the arcs of GS, we have a

directed acyclic graph G′
S. The optimal assignment of disks to levels can be obtained in

polynomial time from a topological ordering of G′
S.

Proposition 21. Let S be a set of disks and let HS be a directed graph with one node

for every disk in S and an arc from node i to node j whenever a portion of the border of

i’s disk is contained in the interior of j’s disk. Let Sk be the disk set of the k-th strongly

connected component of HS. The optimal solutions for each Sk can be combined into an

optimal solution for S in polynomial time.

Proof. Let I and J be two distinct strongly connected components of HS, and let SI and SJ

be their corresponding sets of disks, respectively. Either there exists no directed arc between

I and J — in which case they can be solved independently — or, without loss of generality,

all arcs go from I to J . (Having arcs in both directions would imply that I and J form a

single strongly connected component.) In the latter case, there exists a disk dI ∈ SI that

is entirely contained inside some disk dJ ∈ SJ . As a consequence, every disk in SI must be

entirely contained inside dJ . To see why, suppose that there exists d′I ∈ SI disjoint from

dJ . Because dI and d′I belong to the same strongly connected component, there must exist

another disk d′′I ∈ SI crossing the border of dJ , as shown in Figure 10, which would contradict

the fact that I and J are distinct components. Hence, because SI is entirely contained inside

16



dJ

d′I

dI

d′′I

Figure 10: If dI is contained in dJ and d′I is disjoint from dJ , there must exist a disk d′′I that
crosses the border of dJ , which leads to a contradiction.

a disk of SJ , we can independently calculate the optimal solutions to these two sets of disks

and then draw all the disks that belong to SI on top of the disks that belong to SJ .
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