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• A new formulation is described to create optimal proportional symbol maps.
• We address three problem variants, two of which are known to be NP-hard.
• Efficient separation routines and lifting procedures are described.
• The new formulation is up to 82 times faster than the others in the literature.
• Most known benchmark instances can now be solved in less than one minute.
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Proportional symbol maps are a cartographic tool that employs scaled symbols
to represent data associated with specific locations. The symbols we consider are
opaque disks, which may be partially covered by other overlapping disks. We ad-
dress the problem of creating a suitable drawing of the disks that maximizes one of
two quality metrics: the total and the minimum visible length of disk boundaries.
We study three variants of this problem, two of which are known to be NP-hard
and another whose complexity is open. We propose novel integer programming for-
mulations for each problem variant and test them on real-world instances with a
branch-and-cut algorithm. When compared with state-of-the-art models from the
literature, our models significantly reduce computation times for most instances.
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1. Introduction

Proportional symbol maps are a cartographic tool to visualize data associated with specific locations
(e.g., earthquake magnitudes and city populations). Symbols whose area is proportional to the numerical
values they represent are placed at the locations where those values were collected. Although symbols can
be of any geometric shape, opaque disks are the most frequently used and, for that reason, the focus of our
study. Fig. 1 shows an example in which the area of each disk is proportional to the population of a city in
central Europe.

Depending on the size and the position of the disks, some of them may be (partially) obscured. Although
the literature contains studies on symbol sizing, it is unclear how much they should overlap (see [1,2]). When
large portions of a disk are covered, it is difficult to deduce its size and the location of its center. Therefore,
the order in which the disks are drawn affects the amount and quality of information that can be inferred
from a symbol map.

1.1. Problem description

Let S be a set of n disks in the plane and A be the arrangement formed by the boundaries of the disks in
S, as illustrated in Fig. 2(a). An intersection point of the boundaries of two or more disks defines a vertex
of A. The portion of the boundary of a disk that connects two vertices and contains no other vertices in
between is called an arc. A maximal connected region delimited by arcs with no vertices in its interior is a
face of A. A drawing of S is a subset of the arcs and vertices of A that is drawn on top of the filled interiors
of the disks in S. An example is shown in Fig. 2(b).

Cabello et al. [3] observed that the quality of a drawing depends on the visible boundary of the disks
rather than on their visible area. As depicted in Fig. 2(c), a disk that has no visible boundary transmits
little or no information, because it is not possible to determine its size or the position of its center. Based
on this remark, the authors considered two quality metrics: the minimum visible boundary length of any
disk and the total visible boundary length over all disks. The Max–Min and Max-Total problems consist in
maximizing the former and the latter values, respectively.

Not every subset of the arcs and vertices of A yields a suitable drawing for use in a symbol map. Two
types of drawings can be used, namely, physically realizable drawings and stacking drawings. A drawing D
is physically realizable if, for each face f of A, there exists a (strict) total order on the disks that contain f
such that the following conditions hold.

1. An arc r on the boundary of a disk dr is visible in D if and only if, for every disk j that contains r in its
interior, dr is above j (denoted interchangeably by dr ≻ j or j ≺ dr).

2. Total orders associated with distinct faces are consistent with each other, i.e., two disks i and j stand in
the same relationship to each other in all total orders associated with faces that are contained in both i
and j.

Informally, this definition states that a drawing is physically realizable if it can be constructed from whole
symbols, cut out from sheets of paper. The disks can be interleaved and warped, but cannot be cut. Fig. 3
shows an example of a drawing that is not physically realizable. Since arcs a, b and c are visible, in order
to satisfy Condition 1 we must have 1 ≻ 2, 2 ≻ 3 and 3 ≻ 1. But any total order assigned to face f will
contradict one of these relationships, precluding the satisfaction of Condition 2.

It should be noted that physically realizable drawings do not necessarily exhibit a total order among all
disks. This allows us to create drawings that have a somewhat cyclic structure, as the one shown in Fig. 4(a).
The imposition of the need for a total order results in the second type of drawings. Stacking drawings are
a restriction of physically realizable drawings in which there exists a total order relation on S, i.e., they
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Fig. 1. Proportional symbol map showing the 300 largest cities in Germany, France, Belgium and the Netherlands.

Fig. 2. (a) An arrangement A with vertex v, arc r, and face f ; (b) a drawing of the disks in A; (c) a drawing in which visible
boundary is more important than visible area.

Fig. 3. (a) A drawing that is not physically realizable and (b) the underlying arrangement.

Fig. 4. (a) A physically realizable drawing that does not exhibit a total order (i.e., that is not a stacking drawing); (b) a stacking
drawing.
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correspond to the disks being stacked up in layers, starting with the ones on the bottom layer. An example
is given in Fig. 4(b).

We can now formally state our problem: given a set S of opaque disks, construct a physically realizable
drawing or a stacking drawing of S that maximizes the Max–Min or the Max-Total metric. As in [4], we
refer to the Physically Realizable Drawing Problem as PRDP and to the Stacking Drawing problem as SDP.

1.2. Related work

Cabello et al. [3] are the first to study proportional symbol maps problems algorithmically. They identify
and formally define the two types of drawings and the two quality metrics considered here. The authors
prove that the PRDP is NP-hard for both objective functions. In addition, they describe a greedy algorithm
to optimally solve the Max–Min SDP in O(n2 logn) time. Computational results reported in that work
show that this algorithm also performs relatively well as a heuristic for the Max-Total SDP. Nevertheless,
in general, it does not produce optimal solutions for the latter problem, whose computational complexity
remains open.

Kunigami et al. [5] propose two integer linear programming models for the Max-Total SDP. The one that
performs better, which is later referred to as Graph Orientation Model (GOM) [6], is extended in [4] to
solve both versions of PRDP. They are the first to find provably optimal solutions for these three variants.
The GOM model is based on two sets of binary variables: an arc variable xr for each r ∈ R (to indicate
whether r is visible in the solution) and an auxiliary ordering variable wij for each pair of disks i, j ∈ S
(to indicate the relative order between i and j). The authors also introduce decomposition techniques that
greatly contribute to reduce the size of input instances.

Two other papers address the Max-Total SDP from different perspectives. Cano et al. [7] develop a GRASP
heuristic, which is hybridized with path-relinking and variable neighborhood search. Both sequential and
parallel implementations are described and experimentally evaluated. Additionally, a set of instances is
presented that cannot be solved by either one of the models from [5]. In a more theoretical work, Nivasch
et al. [8] provide bounds on the Max-Total value for stacking drawings of unit disks whose centers form a
dense point set.

1.3. Our contribution

In this work, we address the three problem variants to which no polynomial time algorithm is known,
namely, the Max-Total SDP and PRDP, and the Max–Min PRDP. Our goal is to find provably optimal
solutions in reasonable time via integer linear programming (ILP). As mentioned in Section 1.2, the GOM
model is an extended formulation that uses O(n2) auxiliary wij variables. In spite of having a polynomial
number of constraints, the large number of extra variables increases the computation time needed to solve
its linear relaxations. Therefore, lighter models are required to solve the more challenging instances, such as
the ones from [7].

We propose a novel natural formulation, which is able to solve several instances that are beyond the
capabilities of existing state-of-the-art exact algorithms. Since it uses only arc variables, we refer to it
as Arc Model (AM). We prove that, for SDP, AM is a projection of GOM and, consequently, provides
the same dual bounds. As it often happens with natural formulations, the new model has an exponential
number of inequalities, so we also describe fast separation routines for both types of drawings. Thanks to
the effectiveness of these routines and to the reduction in the number of variables, the linear relaxations of
our model can be solved significantly faster.

Moreover, it is relatively straightforward to strengthen inequalities of the new formulation by applying
lifting procedures. This has a substantial impact on both the quality of the dual bounds and the number of
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Fig. 5. (a) An arrangement with four disks and (b) its graph GO.

nodes explored in the enumeration tree. This is an interesting development especially because none of the
inequalities in the GOM model can be lifted; as shown in [5,4], they are all facet-defining. To the best of
our knowledge, the improved model is currently the strongest known in the literature to deal with symbol
maps problems. Computational experiments show that it is up to 82 times faster than the GOM model for
some benchmark instances.

The remainder of the text is organized as follows. Section 2 describes the AM model and Section 3
contains some polyhedral results. In Section 4 we deal with the more practical issue of selecting an initial
set of inequalities to start solving the problem. Separation routines and lifting procedures are presented
in Sections 5 and 6, respectively. Computational results for several real-world instances are reported in
Section 7. Section 8 concludes the paper and gives some directions for future research.

2. Integer linear programming model

The following notation will be used in the description of the model. Given a set of disks S and the
associated arrangement A, let R and F be the set of arcs and faces of A. For each arc r ∈ R, we denote by
ℓr the length of r and by dr the disk in S whose boundary contains r. In addition, given an arc r (face f),
let Sr (Sf ) denote the set of disks that contain arc r (face f) in their interior.

For each arc r ∈ R, we define a binary variable xr that is equal to 1 if r is visible in the drawing, and
equal to 0 otherwise. For the Max-Total problem, the objective is to maximize


r∈R ℓrxr. As in [4], for

the Max–Min problem we must maximize an additional continuous variable z, which is added to the model
together with constraints (1).

z ≤


r∈R : dr=i
ℓrxr, ∀ i ∈ S. (1)

2.1. Inequalities for stacking drawings

We begin with the formulation for stacking drawings, which is conceptually simpler. Note that when
an arc r is visible in a drawing, it induces an order among dr and every disk in Sr, i.e., dr must be
drawn above every disk that contains r. To capture all of these relations, we define an induced order graph
GO = (V (GO), E(GO)) as a directed multigraph with a vertex vi ∈ V (GO) for each disk i ∈ S, and a
directed edge erj = (vdr , vj) for each arc r ∈ R and disk j ∈ Sr. Each edge indicates the required relative
order between pairs of disks when some arc is visible. An example is shown in Fig. 5.

Let C be the set of all directed cycles in GO. Given a cycle C ∈ C, let RC be the set of arcs that give
rise to the edges of C, i.e., RC = {r : erj ∈ C, for some j ∈ S}. If all the arcs in RC were simultaneously
visible in a solution, they would induce a cyclic order among the corresponding disks. But no (strict) total
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order may contain cycles, which implies that at least one arc from RC cannot be visible. Thus, (2) must be
satisfied. 

r∈RC

xr ≤ |C| − 1, ∀ C ∈ C. (2)

It should be noted that (2) are not only necessary but also sufficient to model the SDP constraints. To
see that, suppose we are given an optimal solution x∗ that satisfies (2). Let GO[x∗] denote the subgraph of
GO obtained by deleting the edges erj for which xr = 0. Note that GO[x∗] is acyclic, otherwise x∗ would
violate one of the inequalities (2). Therefore, we can run a topological sort on GO[x∗] and use the resulting
order of the vertices as the stacking order in a drawing of the disks. An arc r will be visible in this drawing
if and only if x∗r = 1.

2.2. Inequalities for physically realizable drawings

We now turn our attention to physically realizable drawings. Although some cycles are allowed, we still
have to guarantee that total orders exist for the faces of A and that they are all consistent. In particular,
this means that transitivity applies to (and only to) sets of disks that contain a common face. So, suppose
we are given a set of arcs T ⊆ R and we want to decide whether they can be visible together in a physically
realizable drawing. The most direct way of doing this is to start with the relative orders induced by the
arcs in T and then to enforce transitivity whenever it is applicable. Any conflicts in the orders among the
disks detected during this process are an indication that the arcs in T cannot be visible simultaneously. This
motivates the main definition of this section.

Let us first introduce some notation. We denote by GO[X] the subgraph of GO induced by the set of
objects X. For a set of vertices or edges, the standard definition applies. When X is a set of disks in S,
GO[X] is the subgraph induced by the vertices {vi : i ∈ X}. Finally, when X is a set of arcs in R, GO[X] is
the subgraph induced by the edges {erj : r ∈ X}.

Now, let HO = GO[T ], where T is the set of arcs mentioned previously. We define the face-transitive
closure H∗O of HO as its minimal supergraph such that for each face f ∈ F , H∗O[Sf ] is transitively closed.
The existence of a cycle in any subgraph H∗O[Sf ] implies that, if the arcs in T are all visible, it is not possible
to assign a total order to the disks that contain face f .

In order to describe the model, we are interested in determining which cycles are allowed in physically
realizable drawings. This way, we take HO to be a cycle C ∈ C and consider its face-transitive closure C∗.
Following the previous discussion, the arcs in RC can all be visible in a solution if and only if all subgraphs
C∗[Sf ] are acyclic. Let C ⊆ C be the set of cycles that do not satisfy this condition. For PRDP, we must
replace inequalities (2) by (3). 

r∈RC

xr ≤ |C| − 1, ∀ C ∈ C. (3)

Next, we show how to compute the face-transitive closure of a graph. Although the algorithm is not
required for actually solving real instances, it is the basis for the separation routine that will be presented in
Section 5. Initially, consider two faces f, f ′ ∈ F and suppose that Sf ⊂ Sf ′ . Note that HO[Sf ] is an induced
subgraph of HO[Sf ′ ]. Thus, if the latter is transitively closed, so is the former. It follows that we only need
to take a face f ∈ F into account if it is maximal with respect to this property, i.e., if there exists no other
face f ′ such that Sf ⊂ Sf ′ . The face-transitive closure of HO can be obtained by repeatedly computing the
transitive closure of the subgraphs HO[Sf ] for each maximal face f until all of them are transitively closed.

Fig. 6 illustrates the steps to compute the face-transitive closure of a cycle C formed by arcs b, f, l, and p
from the arrangement in Fig. 5(a). There are two maximal faces F1 and F2, and the algorithm must compute
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Fig. 6. (a) Cycle C formed by arcs b, f, l, and p from Fig. 5(a); result after computing the transitive closures of (b) C[SF1 ] and (c)
C[SF2 ]; (d) C∗ is completed after computing the transitive closure of C[SF1 ] for the last time.

the transitive closure of C[SF1 ] and C[SF2 ] until they are both transitively closed. The final result C∗ shows
that C is not physically realizable. In particular, this means that all feasible solutions to that arrangement
are stacking drawings.

3. Polyhedral study

We now prove some polyhedral results. The following notation will be used. Given a model M , we denote
by M -PRD and M -SD the specific variants designed to solve PRDP and SDP, respectively. Also, let PM
and PM be the polyhedra defined by the convex hull of all integer feasible solutions of M and by the linear
relaxation of M , respectively.

3.1. Relationship between AM-SD and GOM-SD

In the main theorem of this section, we prove that AM-SD is a projection of GOM-SD. Several other facial
results follow directly from that fact. For ease of reference, we start by reproducing the GOM-SD model.
For each r ∈ R, let the binary variable xr be equal to 1 if r is visible in the drawing, and to 0 otherwise.
Also, for every pair of distinct disks i, j ∈ S, let wij be a binary variable that is equal to 1 if i is placed
above j, and to 0 otherwise. The objective for each of the problem variants is the same as in AM. For SDP,
the following constraints must be satisfied:

xr ≤ wdrj , ∀ r ∈ R, j ∈ Sr (4)
wij + wji ≤ 1, ∀ i, j ∈ S, i < j (5)
wij + wjk − wik ≤ 1, ∀ i, j, k ∈ S, i ̸= j ̸= k ̸= i. (6)
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We now present two auxiliary results that will be useful for proving our propositions. Let D = (V,E)
be a complete directed graph. We associate a binary variable wuv with each directed edge (u, v) ∈ E. The
acyclic subgraph polytope [9], which we denote by PAC, is defined as the convex hull of the integer feasible
points that satisfy inequalities (7):

(u,v)∈C

wuv ≤ |C| − 1, ∀ directed cycles C in D. (7)

Similarly, the partial order polytope [10], which we denote by PPO, is defined as the convex hull of the
integer feasible points that satisfy inequalities (8) and (9):

wuv + wvu ≤ 1, ∀ u, v ∈ V, u ̸= v (8)
wtu + wuv − wtv ≤ 1, ∀ t, u, v ∈ V, t ̸= u ̸= v ̸= t. (9)

Proposition 1. Given w ∈ PAC, there exists a vector w′ ≥ w such that w′ ∈ PAC and w′ ∈ PPO.

Proof. We show how to transform the initial vector w into another vector w′ that satisfies the conditions
stated in the proposition. In particular, we will create a vector w′ that satisfies inequalities (8) at equality.

Initially, note that there can be no pair of vertices u and v such that wuv + wvu > 1, otherwise the
inequality (7) associated with the cycle {(u, v), (v, u)} would be violated. Thus, w satisfies all inequalities
(8). To guarantee that w′ ≥ w, we construct it by increasing the value of some elements of w. Let m be
the number of inequalities (8) that are not satisfied at equality by w. We will show by induction on m that,
given w ∈ PAC, w′ can always be constructed in such a way that it also belongs to PAC and satisfies (8) at
equality. Inequalities (9) will be addressed later to show that w′ ∈ PPO.

For m = 0, we can simply set w′ := w. For m > 0, there exist two vertices u and v such that
wuv+wvu < 1. Among all cycles in D that contain (u, v), let Cmin

uv be the one whose corresponding inequality
(7) has the smallest slack, i.e., such that suv := |Cmin

uv | − 1 −


(k,l)∈Cmin
uv
wkl is minimum. Analogously, let

Cmin
vu be the cycle that contains (v, u) with the smallest slack svu := |Cmin

vu | − 1 −


(k,l)∈Cmin
vu
wkl. Define

δuv := min{suv, 1− wuv − wvu} and δvu := 1− wuv − wvu − δuv.

Let w be the vector obtained from w by adding δuv to wuv and δvu to wvu, i.e., wuv = wuv + δuv, wvu =
wvu + δvu and wkl = wkl for all {k, l} ≠ {u, v}. Note that wuv + wvu = 1, so w still satisfies all inequalities
(8); also, m − 1 of them are not satisfied at equality. Therefore, if we show that w satisfies all inequalities
(7), we can apply the induction hypothesis to w and obtain the desired vector w′.

Vectors w and w differ only in wuv and wvu. Consequently, the only inequalities (7) that can be violated
by w are the ones that contain these variables. Due to our choice Cmin

uv and Cmin
vu , it suffices to show that

both of those associated with these cycles are satisfied by w. Clearly, the one associated with Cmin
uv remains

satisfied, so suppose the one for Cmin
vu is violated. Algebraically, that means

(k,l)∈Cmin
vu

wkl = δvu +


(k,l)∈Cmin
vu

wkl > |Cmin
vu | − 1.

The last inequality can be rewritten as δvu > svu ≥ 0, which implies δuv = suv (otherwise δvu would be 0).
Since wuv + wvu + δuv + δvu = 1, we get:

wuv + wvu + suv + svu < 1. (10)

Consider now the two paths πvu := Cmin
uv − (u, v) and πuv := Cmin

vu − (v, u) from v to u and from u to v,
respectively. As shown in Fig. 7, the union of these paths results in a closed walk, which may be decomposed
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Fig. 7. Closed walk produced by the union of the paths πvu and πuv. These paths are not always vertex-disjoint, so πvu ∪ πvu need
not be a cycle.

into a set Cwalk of one or more cycles. Each one of them is associated with one cycle inequality (7) that
must be satisfied by w (recall that w ∈ PAC). Adding these inequalities yields:

(k,l)∈πuv

wkl +


(k,l)∈πvu

wkl ≤ |Cmin
uv |+ |Cmin

vu | − |Cwalk| − 2. (11)

But the left-hand side of inequality (11) may be rewritten as follows:


(k,l)∈πuv

wkl +


(k,l)∈πvu

wkl =

 
(k,l)∈Cmin

uv

wkl

+

 
(k,l)∈Cmin

vu

wkl

− wuv − wvu
= |Cmin

uv |+ |Cmin
vu | − wuv − wvu − suv − svu − 2. (12)

Using expression (12) together with inequality (10) and the fact that |Cwalk| ≥ 1, we conclude that
inequality (11) cannot be satisfied. Therefore, there is at least one inequality (7) that is violated by w, con-
tradicting our initial assumption that w ∈ PAC. Thus, the inequality associated with Cmin

vu is also satisfied
by w and our induction proof is complete.

So far, we have proved that we may indeed construct w′ ≥ w such that w′ ∈ PAC and w′ satisfies all in-
equalities (8) at equality. It remains to show that inequalities (9) are also satisfied by w′. Note that, since all
inequalities (7) are satisfied by w′, for any three distinct vertices t, u, v ∈ V we must have w′tu+w′uv+w′vt ≤ 2.
But w′tv + w′vt = 1, which leads to w′tu + w′uv − w′tv ≤ 1, that is the desired inequality. �

Proposition 2. PPO ⊆ PAC.

Proof. We must show that every point w ∈ PPO satisfies the cycle inequalities (7). Suppose that this is not
true and let w ∈ PPO be a point that violates at least one cycle inequality. Let C be the shortest cycle in D
whose corresponding inequality (7) is violated, i.e., such that

(k,l)∈C

wkl > |C| − 1. (13)

Note that, since all inequalities (8) are satisfied, |C| ≥ 3. Let t, u, v be three consecutive vertices in C.
Since w ∈ PPO, we must have

wtu + wuv − wtv ≤ 1. (14)
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Fig. 8. Cycle C′ obtained from C after replacing (t, u) and (u, v) by (t, v).

Consider now the cycle C ′ obtained by taking all the edges of C, except for (t, u) and (u, v) that are
replaced by (t, v), as shown in Fig. 8. Using (13) and (14) we get:

(k,l)∈C′
wkl > |C| − 1 + wtv − wtu − wuv ≥ |C ′| − 1. (15)

This shows that the cycle inequality associated with C ′ is also violated, which contradicts our initial
assumption and completes the proof. �

We can now prove the results stated in the main text. Given a polytope P , we denote its projection onto
the x-space by Projx(P ).

Theorem 3. The polyhedra PAM–SD and PAM–SD are the projections of PGOM–SD and PGOM–SD onto the
x-space, respectively.

Proof. We begin by proving that PAM–SD = Projx( PGOM–SD). It suffices to show that x ∈ PAM–SD if and
only if there exists a vector w such that (w, x) is a feasible point of PGOM–SD.

Suppose x ∈ PAM–SD. We build a vector w such that (w, x) ∈ PGOM–SD as follows. For each pair of
distinct disks i and j, let r be the arc with maximum xr among the ones that are in the boundary of i
and also contained in the interior of j. Each of the inequalities (4) can be satisfied by setting wij to xr. If
w violates any of the inequalities (7), there must also be an inequality (2) that is violated. However, since
x ∈ PAM–SD, we conclude that w ∈ PAC. Finally, by Proposition 1, there exists w′ ≥ w such that w′ belongs
to PPO. Since w′ ≥ w, all inequalities (4) are still satisfied by (w′, x). Also, inequalities (5) and (6) must be
satisfied, because w′ ∈ PPO. Thus, (w′, x) is a feasible point of PGOM–SD.

Conversely, suppose that x ̸∈ PAM–SD. We assume that 0 ≤ x ≤ 1, otherwise the proof is trivial. This
implies that at least one of the inequalities (2) is violated. Let C be a cycle in GO such that the associated
inequality (2) is not satisfied. In order to satisfy inequalities (4), for each arc xr ∈ RC , we must set wdrj ≥ xr
for every disk j ∈ Sr. But this means that w must violate at least one of the inequalities (7). Therefore,
there exists no w ∈ PAC such that (w, x) satisfies inequalities (4). We then apply Proposition 2 and conclude
that PAM–SD = Projx( PGOM–SD).

Now, we note that Projx(PGOM–SD) = PAM–SD ∩ Z|R| and the equality PAM–SD = Projx(PGOM–SD)
follows. �
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We now use the following results due to Balas and Oosten [11]. Consider the polytope Q := {(w, x) ∈
Rp ×Rq : Aw +Bx ≤ b}. We partition the rows of (A,B, b) into (A=, B=, b=) and (A≤, B≤, b≤), where the
former represents the equality subsystem of Q. Let F := {(w, x) ∈ Q : αw+ βx = β0} be a facet of Q. Also,
define r∗ := rank(A=) and r∗F = rank


α
A=


.

Theorem 4 (Balas and Oosten [11]). dim(Projx(Q)) = dim(Q)− p+ r∗.

Theorem 5 (Balas and Oosten [11]). Given a facet F of Q, Projx(F ) is a facet of Projx(Q) if and only if
r∗F = r∗.

Because the GOM models do not have an equality subsystem, A= is vacuous, so we have r∗ = 0 and
r∗F = rank(α). Thus, a facet of PGOM–SD projects into a facet of PAM–SD if and only if α = 0.

Proposition 6. The dimension of PAM–SD is |R|.

Proof. As showed by Kunigami et al. [4], the dimension of the polytopes defined by the GOM models is
|S|(|S| − 1) + |R|. We then use Theorem 4 and the result follows. �

The inequalities in the next propositions have all been proved to be facet-defining for the GOM models
by Kunigami et al. [4]. The results follow directly from this fact together with Theorem 5.

Proposition 7. Given an arc r ∈ R, the inequality xr ≥ 0 always defines a facet of PAM–SD. The inequality
xr ≤ 1 defines a facet if and only if Sr = ∅. �

Consider a pair of arcs r, s ∈ R that form a 2-cycle in GO (i.e., such that dr ∈ Ss and ds ∈ Sr). For both
SDP and PRDP, r and s cannot be visible simultaneously in a solution because either dr covers s or ds
covers r. Let GR be an undirected graph with a vertex vr for each arc r ∈ R and an edge {vr, vs} for each
pair of arcs r and s that form a 2-cycle in GO.

Proposition 8. Given a maximal clique K in GR, the inequality
r : vr∈K

xr ≤ 1

defines a facet of PAM–SD.

To conclude this section, it is not clear if the proof of Theorem 3 can be adapted for PRDP. To do that, we
would have to guarantee that all cycles used in Proposition 1 are in C, which does not seem trivial. However,
since PAM–SD is full-dimensional and PAM–SD ⊆ PAM–PRD, PAM–PRD is also full-dimensional. Moreover, the
inequalities in Propositions 7 and 8 are also valid for PRDP and, therefore, define facets of PAM–PRD.

3.2. Facet-defining cycle inequalities

Inequalities (2) and (3) are generally not facet-defining and lifting procedures to strengthen them are
discussed in Section 6. In this section, we present necessary and sufficient conditions under which these
inequalities are, indeed, facet-defining. The result is valid for both types of drawings.

Theorem 9. Consider a cycle C ∈ C (resp. C ∈ C). The following conditions are necessary and sufficient for
the cycle inequality associated to C to define a facet of PAM–SD (resp. PAM–PRD):

1. The subgraph GO[RC ] contains a single cycle from C (resp. C);
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2. For each arc s′ ̸∈ RC there exists an arc s ∈ RC such that the subgraph GO[RC−{s}+{s′}] has no cycles
from C (resp. C).

Proof. Necessity: Suppose condition 1 is not satisfied (see Fig. 9 for an example). Let C ′ ̸= C be another
cycle from C (resp. C) contained in GO[RC ]. Clearly, RC′ ⊆ RC and inequality (16) is valid.

r∈RC′

xr ≤ |C ′| − 1. (16)

Now, for each r ∈ RC −RC′ , we add inequality xr ≤ 1 to (16) to obtain
r∈RC′

xr +


r∈RC−RC′

xr ≤ |C ′| − 1 + |C| − |C ′|

which can be rewritten as 
r∈RC

xr ≤ |C| − 1.

The last inequality is precisely the one associated with cycle C. Since it was obtained by adding other valid
inequalities, it cannot be facet-defining.

Suppose now that condition 2 is not satisfied for some arc s′ ̸∈ RC (see Fig. 10 for an example). This
means that for every arc s ∈ RC , GO[RC −{s}+{s′}] contains a cycle from C (resp. C). Note that to satisfy
the cycle inequality associated with C at equality, C−1 arcs from RC must be visible simultaneously. Thus,
we conclude that equality will never be achieved if s′ is visible, which implies that the following inequality
is valid:

xs′ +

r∈RC

xr ≤ |C| − 1.

The latter inequality is stronger than the original cycle inequality which, therefore, cannot be facet-defining.

Sufficiency: Suppose that both conditions are satisfied. We will show that inequality (17) defines a facet
of PAM–SD (resp. PAM–PRD). 

r∈RC

xr ≤ |C| − 1. (17)

Consider inequality (18) and assume that it is valid for PAM–SD (resp. PAM–PRD).
r∈R
αrxr ≤ α0. (18)

Let FC and Fα be the faces of PAM–SD (resp. PAM–PRD) induced by (17) and (18), respectively. Suppose
that FC ⊆ Fα. We will show that (18) is a multiple of (17) and, therefore, (17) is facet-defining.

Note that, by condition 1, any subset of |C| − 1 arcs from RC can be visible simultaneously in a solution.
Thus, for each arc s ∈ RC we may create a valid solution that belongs to Fα by assigning xr = 1 for all
r ∈ RC−{s} and xr = 0 to all other variables. Each of these solutions can be replaced in (18) and we obtain

r∈RC−{s}

αr = α0. (19)

Adding all Eqs. (19) for each s ∈ RC yields:
r∈RC

αr = |C|
(|C| − 1)α0. (20)
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Fig. 9. (a) An arrangement with a cycle C ∈ C induced by arcs a–h; (b) the corresponding graph GO[RC ] that satisfies condition 2
but not 1 for stacking drawings.

Fig. 10. (a) An arrangement with a cycle C induced by arcs a–d and another arc s′ ̸∈ RC ; (b) the corresponding graph GO[RC+{s′}].
Although GO[RC ] satisfies condition 1, there exists no s ∈ RC such that GO[RC −{s}+ {s′}] satisfies condition 2 for either types
of drawings.

Now, for each s ∈ RC , we subtract the corresponding Eq. (19) from (20) to obtain

αs = α0
(|C| − 1) ,

which is the desired value for the coefficients.

We are left to show that for every other s′ ̸∈ RC , αs′ = 0. By condition 2, there exists an arc s ∈ RC
such that the subgraph GO[RC − {s} + {s′}] has no cycles from C (resp. C). A valid solution that belongs
to Fα can be created by setting xr = 1 for all r ∈ RC − {s}+ {s′} and assigning zero to all other variables.
We replace this new solution in (18) and obtain

r∈RC−{s}+{s′}

αr = α0. (21)

We can finally combine (21) with Eq. (19) and the result follows. �

4. Initial set of inequalities

Since there might be an exponential number of inequalities (2) and (3), it is necessary to select a subset
of them to form the initial model that will be loaded into the ILP solver. In our implementation, we use
those associated with 2-cycles, which only comprise a polynomial number of inequalities and are valid for
both types of drawings. However, graph GO is often quite dense and the number of 2-cycles is quadratic
in |R|, yielding O(n4) constraints. Thus, we cannot include them all because the model becomes too big.
Note that the simple alternative of starting with an empty model has the same effect: all 2-cycle inequalities
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Fig. 11. A non-degenerate vertex and four arcs incident to it.

will be violated and added by our separation routines. We next describe a way to select a subset of these
constraints that still provide good dual bounds.

Our strategy is based on the following inequalities studied by Kunigami et al. [5]. Consider a non-
degenerate vertex of the arrangement (i.e., one that is an intersection point of exactly two disks), as shown
in Fig. 11. Note that every disk that contains arc c must also contain arc a. Therefore, if a is visible in a
drawing, so is c. By symmetry, the same observation holds for arcs b and d. This allows us to write the
inequalities (22). We remark that both polyhedra PAM–SD and PAM–PRD are monotone and, consequently,
these inequalities are not valid in general. However, they must hold for any optimal solution and can be
used to speed up the resolution of the models.

xa ≤ xc
xb ≤ xd. (22)

We now examine the two disks i and j shown in Fig. 12 and the named arcs on their boundaries. Note
that any pair formed by a named arc from i and another from j corresponds to a 2-cycle in GO, potentially
leading to 49 inequalities. Nevertheless, only the ones associated with arcs r and s need to be included in
the model. Using constraints (22), we obtain:

xr ≥ xr1 ≥ xr3 ≥ xr5 ,
xr ≥ xr2 ≥ xr4 ≥ xr6 ,
xs ≥ xs1 ≥ xs3 ≥ xs5 ,
xs ≥ xs2 ≥ xs4 ≥ xs6 .

Thus, including the inequality xr + xs ≤ 1 together with (22) we guarantee that all 48 other constraints
will also be satisfied. We say that arcs r and s dominate arcs rk and sk (k = 1, 2, . . . , 6), respectively, because
in any feasible solution we must have xr ≥ xrk and xs ≥ xsk . We refer to arcs which are not dominated by
any other (such as r and s) as maximal arcs.

Each 2-cycle in GO corresponds to a 2-clique in GR (defined in Section 3). Therefore, using Proposition 8,
we conclude that an inequality associated with one of these cycles defines a facet if and only if the
corresponding cliqueK in graph GR is maximal. To take advantage of this fact, before inserting an inequality
into the solver, we run a fast greedy procedure that iteratively increasesK. This is done in two steps: initially,
only maximal arcs are inserted in K; after this is no longer possible, all other arcs are allowed. The algorithm
works by computing, at each iteration, the set VC of candidate vertices (i.e., those that are adjacent to every
member of K). Then, it chooses the candidate that has the largest number of neighbors in VC , updates K,
and continues until a maximal clique is obtained.
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Fig. 12. Two disks i and j and seven arcs on the boundary of each one of them, which give rise to 49 2-cycles in GO.

5. Separation routines

Let x∗ be the optimal solution to the linear relaxation of the arc model at some node in the branch-and-
bound tree. For each type of drawing, the objective of the separation routine is to find a cycle C ∈ C or
C ∈ C such that the corresponding cycle inequality (2) or (3) is violated, i.e., such that

r∈RC

x∗r > |C| − 1. (23)

Before we proceed, let us associate with each edge erj ∈ E(GO) a weight w(erj) = 1−x∗r . Also, to simplify
the notation, given a subgraph HO of GO, we define w(HO) :=


erj∈HO w(erj). We can rewrite (23) as (24).

w(C) < 1. (24)

For SDP, all cycles in GO lead to valid inequalities, so we simply need to find one that satisfies (24).
The algorithm we use was first presented by Grötschel et al. [9] for the acyclic subgraph polytope. We can
determine if such a cycle exists by using a shortest path algorithm. For each pair of vertices vi, vj ∈ V (GO),
we compute a shortest path from vi to vj and another from vj to vi. If the sum of the weights of the paths is
less than one, we join them to obtain the required cycle. If no such pair of vertices exist, all cycle inequalities
are satisfied. Thus, (2) can be separated in polynomial time.

For PRDP, care must be taken to ensure that only cycles from C are prohibited. We do this with a weighted
version of the algorithm that computes face-transitive closures. Recall that in the original procedure, given
a subgraph HO of GO, we repeatedly compute the transitive closure of HO[Sf ] for each maximal face f ∈ F .
This is equivalent to the following: given two vertices vi, vj ∈ V (HO), if there is a path πij from vi to vj in
a subgraph HO[Sf ], we must add an edge (vi, vj). For the separation routine, we do exactly the same, with
the additional detail that the newly created edge is assigned a weight w(i, j) := w(πij). If the edge already
exists, we need only update its weight, choosing the smallest value between the current w(i, j) and w(πij).
This procedure is repeated until there are no more changes in the weights of the edges. It is not clear how
many iterations might be necessary until this happens, so the computational complexity of this algorithm
is open. Nevertheless, our experiments showed that it performs very well in practice.

We can determine that a cycle C is not physically realizable if some subgraph C[Sf ] has a cycle. Note that
this implies that the transitive closure of C[Sf ] must also contain a 2-cycle, because the transitive closure of
a cycle is a complete graph and at least a pair of reverse edges will occur. Similarly, in the separation routine,
we can identify a violated inequality if there is a 2-cycle with weight less than 1. To recover the original set
of arcs that gave rise to the cycle, we store, with each new edge (vi, vj), the set of arcs in the path πij that
led us to create it. Naturally, this set must be updated whenever the weight of an edge changes.
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Fig. 13. (a) An arrangement with four arcs b, f, l, and p, and the values of the associated variables; (b) the weighted graph obtained
after running the separation routine for PRDP.

The procedure is illustrated in Fig. 13. The arrangement of four disks is the same as in Fig. 5(a). For the
sake of clarity, this example only takes into account the arcs that give rise to the new inequality. Nevertheless,
the actual algorithm must be applied to all arcs of the arrangement. The graph on the right shows the weights
obtained after running the separation routine. We may take any 2-cycle to create a valid constraint, so for
this example we choose the one between disks 2 and 4. Its weight is 0.6, so the associated inequality is indeed
violated. Arcs f and l induce the path 2–3–4, which leads us to create edge (2, 4). Likewise, edge (4, 2) was
created due to arcs p and b. This yields the inequality xb + xf + xl + xp ≤ 3.

During the execution of the branch and cut algorithm, we often come across several inequalities that are
satisfied with a very small slack. When this is the case, it is possible that these inequalities become violated
after the execution of lifting procedures. To take advantage of this fact, we replace the right hand side of
(23) by |C| − 2 and modify the separation routines so that they look for cycles of weight w(C) < 2. All
inequalities found are subjected to lifting procedures (described in Section 6) and are added to the ILP
solver only if they are violated. This strategy led to a significant improvement in both dual bounds and
execution times.

6. Lifting

In this section, we present efficient methods to strengthen inequalities (2) and (3). The discussion that
follows is applicable for both types of drawings. Consider a cycle C in GO formed by a set of arcs RC (as
defined in Section 2.1). We assume that C ∈ C or C ∈ C depending on the problem variant being addressed,
so the cycle inequality


r∈RC xr ≤ |C| − 1 is valid. Let Rl := R − RC be the set of candidates for lifting.

A lifting procedure must compute, for each arc r ∈ Rl, a non-negative integral coefficient αr, such that
inequality (25) is satisfied by all feasible solutions x.

r∈RC

xr +

r∈Rl

αrxr ≤ |C| − 1. (25)

Lifting procedures usually have two main concerns. Firstly, one wishes to make the coefficients as large as
possible, so the resulting inequalities become stronger. However, computing the absolute best values is often
a difficult problem. Secondly, there may be many different sets of coefficients that lead to strong inequalities.
To deal with the first issue, we use two fast heuristics that guarantee the validity of the lifted inequalities
but not the optimality of the coefficients. As for the second issue, we opt to speed up the process by creating
a single constraint for each cycle C. Our heuristics rely mainly on identifying pairs of arcs r, s ∈ R that form
2-cycles in GO. Setting any of them visible automatically forces the other one to be covered, so we say that
r blocks s, and vice versa.
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Fig. 14. A cycle formed by arcs a, b, c and d, and two other arcs e and f whose coefficients can be lifted with the first heuristic.

The first heuristic is based on the following observation: if two arcs cannot be visible simultaneously,
their coefficients can be determined independently. Therefore, we can compute each αr as if xr were the
only lifted variable. More precisely, we want to assign a value to αr such that

αrxr +

r′∈RC

xr′ ≤ |C| − 1 (26)

is satisfied by every feasible solution x. This clearly holds if xr = 0, so suppose xr = 1. There must be at
least αr + 1 arcs from RC covered in x. Let BrC be the set of arcs in RC that are blocked by r. We can
guarantee that inequality (26) is valid by setting αr := |BrC | − 1.

After this is done for all arcs in Rl, we need to choose a subset of arcs such that at most one of them
is visible in any solution. Recall that graph GR (defined in Section 3) has a vertex for each arc of the
arrangement and its edges indicate pairs that block each other. It follows that a clique in GR leads to a
set of arcs with unrelated lifting coefficients. We then apply the greedy algorithm from Section 4 to find a
clique K in GR, taking care to include a vertex vr only if αr > 0. Finally, we are able to generate the lifted
inequality


r∈RC xr +


vr∈K αrxr ≤ |C| − 1.

The procedure is illustrated in Fig. 14. Arcs a through d induce a cycle between disks 1–4, which are
shown with solid boundary. The dashed disks 5 and 6 introduce two arcs e and f that block each other
and, thus, have unrelated lifting coefficients. We have BeC = {b, c} and BfC = {a, c, d}, which yields the valid
lifted inequality xa + xb + xc + xd + xe + 2xf ≤ 3.

In the second heuristic, we try to lift the coefficients of arcs that do not necessarily block each other. Let
us rewrite (25) as (27). 

r∈Rl

αrxr ≤

r∈RC

(1− xr)− 1. (27)

We start by showing how to assign values to each αr in such a way that the relaxed inequality
r∈Rl

αrxr ≤

r∈RC

(1− xr) (28)

is satisfied by every feasible solution. Once this is done, a valid constraint can be obtained by decrementing
the values of (some) coefficients.

Two points should be noted about inequality (28). Firstly, the summation on its right-hand side is simply
the number of arcs from RC that are hidden in a given solution x. Secondly, each visible arc r ∈ Rl contributes
with αr units to its left-hand side. Thus, to satisfy (28), each visible arc r ∈ Rl must be compensated by at
least αr covered arcs from RC .

The main idea behind our heuristic is to select, for each r ∈ Rl, a set of arcs from RC that are blocked
by r (and, therefore, hidden whenever r is visible). We refer to this set as the compensating set of r and
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denote it by MrC . The value of each coefficient αr is then set to |MrC |. If two lifting candidates can be visible
simultaneously, their compensating sets must be disjoint; otherwise, they may share some common elements.
Next, we show that if this condition is obeyed, our choice of coefficients guarantees that (28) holds for all
feasible solutions.

Initially, observe that if an arc r ∈ Rl is visible, at least the arcs inMrC must be covered. Hence, inequality
(29) is always satisfied.  

r∈Rl
xr=1

MrC

 ≤ 
r∈RC

(1− xr) . (29)

We now analyze the left-hand side of (29). Since we assume that the preceding condition is obeyed, all
sets in the union are disjoint. This allows us to write 

r∈Rl
xr=1

MrC

 = 
r∈Rl
xr=1

|MrC |.

But the last summation just adds the coefficients of visible arcs. Thus, it is equal to

r∈Rl αrxr and the

result follows.
So far we are able to satisfy only (28) but not (27). A straightforward solution would be to decrement all

positive coefficients by one. However, it is possible to do better than this. If we can make sure that equality
never occurs in (29), inequality (27) will be automatically satisfied. One way to do this is to prohibit one
arc from each BrC from being included in any compensating set. This way, each time arc r is visible, there
is at least one hidden arc that is not accounted for in the left-hand side of (29). More precisely, we want to
select a set of arcs HC ⊆ RC such that HC ∩BrC ̸= ∅ for all r ∈ Rl. This is simply the statement of a hitting
set problem.

We are now able to describe our algorithm. We first select the arcs r ∈ Rl such that |BrC | ≥ 2. There is
no need to consider the others because our heuristic cannot assign a positive coefficient to any of them. We
then construct the set BrC for each selected arc r. A hitting set HC is found using a greedy heuristic that
selects, at each stage, the element that is contained in the largest number of sets that have not yet been hit.
We make HC minimal by excluding unnecessary elements.

Next, we start building the compensating sets. Given an arc s ∈ RC −HC , let Bsl denote the set of arcs
from Rl that block s. We need to choose an arc from Bsl and insert s into its compensating set. We wish
to create an inequality with a large violation, so our strategy is to select the arc r with largest xr. Recall
that we are allowed to insert s in more than one compensating set as long as the associated arcs cannot
be visible together in a feasible solution. So, instead of picking a single arc from Bsl , we select a set of arcs
such that any two of them block each other. Again, such a set of arcs corresponds to a clique in graph GR
and we can compute it the same way we did in the first heuristic. Finally, we generate the lifted inequality
r∈RC xr +


r∈Rl |M

r
C |xr ≤ |C| − 1.

The procedure is depicted in Fig. 15. Arcs a through d induce a cycle between disks 1–4, which are shown
with solid boundary. The dashed disks 5, 6 and 7 introduce three arcs e, f and g whose coefficients we want
to lift. We have BeC = {a, b, c}, BfC = {c, d} and BgC = {b, c}. Thus, a possible hitting set is HC = {c}. For
the remaining arcs, we have Bal = {e}, Bbl = {e, g} and Bdl = {f}. We can now create the compensating
sets. Arcs a and d can only be inserted in MeC and MfC , respectively. Arc b can be inserted in either MeC or
MgC , but not both because e and g do not block each other. For this example, we choose to insert it into
MgC . Finally, the compensating sets are MeC = {a},MfC = {d} and MgC = {b}, which results in the lifted
inequality xa + xb + xc + xd + xe + xf + xg ≤ 3.

As we show in Section 7, these lifting heuristics contribute a great deal to improving the dual bounds
generated by our formulations. Although no guarantees are given in general as for the dimension of the faces
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Fig. 15. A cycle formed by arcs a, b, c and d, and three other arcs e, f and g whose coefficients can be lifted with the second heuristic.

induced by the lifted inequalities, it can be easily shown that those obtained for Figs. 14 and 15 are, indeed,
facet-defining (the proof is omitted for the sake of brevity).

7. Computational experiments

We assess the effectiveness of our solution approach through a series of computational experiments with
60 real-world instances. Firstly, we evaluate the performance of our strategy to select the initial set of
inequalities. Secondly, we measure the impact of lifting on both the dual bounds and the total running
times. Finally, we compare models AM and GOM for the three problem variants addressed in this paper.
For the sake of brevity, the tables show the results for the most challenging instances. Our complete set of
instances is available in our web page [12].

7.1. Implementation details

The procedures were implemented in C++ and compiled with GCC 4.4.3. We build the arrangements
with CGAL 4.0 using exact arithmetic. The ILPs are solved with CPLEX 12.4. We apply a branch-and-cut
algorithm and use the conventional search supplied by CPLEX. We limit the time spent by the solver to at
most five hours per component. The experiments were run on an Intel Xeon X3430, 2.40 GHz CPU with
8 GB RAM.

All instances are decomposed in a preprocessing phase with the techniques from [4]. We solve all
components and then recombine them to create an optimal solution for the whole instance. For the Max-
Total variants, solution values and gaps are calculated disregarding arcs that are visible in every feasible
drawing. Primal solutions for the Max-Total and the Max–Min problems are generated with the GRASP
heuristic from [7] and with the greedy algorithm from [3], respectively.

As observed by Kunigami et al. [4], it is sometimes possible to bypass the resolution of integer programs
when solving the Max–Min PRDP. If an instance (or a component thereof) has a face that is contained
in every disk, all physically realizable solutions must also be stacking drawings. This allows us to use the
polynomial time algorithm from Cabello et al. [3]. Besides that, not all components need to be solved
optimally. We just need an optimal solution to the one that determines the Max–Min value. For the others,
it often suffices to find a good heuristic solution, which can once again be done with the algorithm from [3].

7.2. Problem instances

We test our model on three sets of instances. The first set was presented by Cabello et al. [3] and
contains four instances: City 156 and City 538, which represent the 156 and 538 largest American cities,
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Table 1
Results for the initial linear relaxation using the model with all 2-cycle inequalities and the reduced one based on maximal arcs.
Times are given in seconds.

Instance |S| |R| % Gaps Number of inequalities Relaxation times
All Max. All Max. Ratio All Max. Ratio

City 538 538 7,516 0.26% 0.87% 870,660 54,037 16.1 9878 68 145.3
Magnitudes 602 13,289 0.13% 0.79% 597,763 47,520 12.6 98 4 24.5
Brazil-S1 150 2,568 0.00% 0.47% 147,597 9,975 14.8 54 1 54.0
France-S1 135 3,230 0.55% 2.57% 735,188 24,256 30.3 4226 17 248.6
Greece-S1 102 3,482 0.87% 4.85% 694,198 27,412 25.3 5341 19 281.1
Italy-S1 300 4,366 0.00% 0.35% 246,154 20,036 12.3 206 4 51.5
Japan-S1 150 3,544 0.00% 0.79% 269,272 18,101 14.9 231 4 57.8
Portugal-S1 150 5,070 0.01% 0.72% 636,866 36,380 17.5 1691 21 80.5
USA(West)-S1 87 3,717 0.00% 0.84% 559,128 27,880 20.1 2992 20 149.6
Brazil-S2 150 3,294 0.02% 0.20% 265,447 13,697 19.4 97 2 48.5
France-S2 135 3,354 0.77% 1.32% 769,642 21,661 35.5 >5 h 14 >1285.7
Germany-S2 150 3,299 0.00% 0.32% 241,062 21,506 11.2 276 10 27.6
Greece-S2 102 3,335 0.17% 3.67% 587,597 21,048 27.9 4140 12 345.0
Italy-S2 300 6,725 0.04% 0.30% 580,512 34,109 17.0 962 14 68.7
Japan-S2 150 4,954 0.00% 0.23% 592,618 36,592 16.2 3520 29 121.4
Poland-S2 300 4,736 0.01% 0.21% 293,886 25,358 11.6 372 8 46.5
Portugal-S2 150 6,656 0.00% 0.15% 1,306,159 55,218 23.7 9083 56 162.2
Spain-S2 300 6,497 0.06% 0.58% 297,607 25,093 11.9 82 3 27.3
Switzerland-S2 186 4,945 0.04% 0.61% 259,127 24,870 10.4 553 12 46.1
USA(West)-S2 87 4,465 0.00% 0.88% 871,332 33,588 25.9 4698 32 146.8

respectively; and Deaths and Magnitudes, which represent the death count and the Richter scale magnitude
of 602 earthquakes worldwide, respectively.

The two other sets were used in [4,7] and contain 28 instances each. They were generated from data on
the population of cities from several countries. We refer to them as Population-S1 and Population-S2. They
are both based on the same data, but with different proportionality constants between the area of the disks
and the numerical values they represent. The instances in Population-S2 are scaled in such a way that the
area of each disk is twice as large as that in the analogous instance from Population-S1.

7.3. Numerical results

We first address the issue of selecting the initial set of inequalities that are loaded into the ILP solver.
We compare the technique based on maximal arcs with the alternative of using all 2-cycle inequalities. We
remark that, as mentioned in Section 4, the latter is similar to starting with an empty model. It should also
be noted that the techniques are the same for both stacking and physically realizable drawings. For this
reason, it is not necessary to show the results for each problem variant. In the text that follows, duality gaps
are calculated with respect to Max-Total SDP optimal values.

Table 1 shows the results obtained after solving the linear relaxation of the initial set of inequalities. For
each instance, we report the number of disks and arcs, the duality gap, the number of inequalities in the
linear program and the time spent solving the relaxation. Columns All and Max refer to the model with all
2-cycle inequalities and to the reduced one based on maximal arcs, respectively. We also present the ratios
between the results of the two alternatives.

Using the reduced set of constraints increased the duality gaps by only 0.60% on average. The largest
increase occurred for instance Greece-S1 and, still, it was less than 4.00%. On average, the reduced model
has 8.5 times fewer inequalities and the relaxation is solved 23.2 times faster. The most remarkable reduction
occurs for instance France-S2, which runs more than 1285 times faster with an increase of only 0.55% in
the duality gap. Due to the effectiveness of this strategy, all experiments that follow use this reduced set of
inequalities.

In the next experiment, we evaluate the impact of lifting on the dual bounds produced by our model.
For each instance, we solve the root node of the branch-and-bound tree, which involves solving a linear
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Table 2
Duality gaps after solving the root node of the branch-and-bound tree with and without lifting.

Instance |S| |R| Max-Total SDP Max-Total PRDP Max–Min PRDP
GOM/AM AM++ AM AM++ AM AM++

City 538 538 7,516 0.57% 0.02% 0.56% 0.02% 60.18% 59.20%
Magnitudes 602 13,289 0.59% 0.04% 0.59% 0.05% 109.42% 107.17%
Egypt-S1 98 2,033 0.95% 0.04% 0.95% 0.11% 62.51% 60.95%
France-S1 135 3,230 2.40% 0.00% 2.40% 0.00% 83.77% 75.45%
Greece-S1 102 3,482 3.81% 0.00% 3.81% 0.00% 81.91% 74.21%
Italy-S1 300 4,366 0.23% 0.01% 0.23% 0.01% 58.15% 55.72%
Japan-S1 150 3,544 0.24% 0.00% 0.24% 0.00% 71.10% 68.44%
Portugal-S1 150 5,070 0.60% 0.00% 0.60% 0.00% 49.22% 46.90%
USA(West)-S1 87 3,717 0.38% 0.00% 0.38% 0.00% 50.63% 47.30%
Canada-S2 150 2,790 0.57% 0.05% 0.57% 0.05% 35.36% 34.57%
France-S2 135 3,354 1.08% 0.01% 1.08% 0.01% 97.60% 87.39%
Greece-S2 102 3,335 2.99% 0.00% 2.99% 0.00% 86.20% 80.59%
Israel-S2 150 4,222 1.03% 0.26% 1.03% 0.25% 44.48% 44.48%
Italy-S2 300 6,725 0.15% 0.06% 0.21% 0.12% 75.57% 70.82%
Poland-S2 300 4,736 0.11% 0.02% 0.11% 0.01% 45.75% 14.59%
Russia-S2 150 3,145 0.36% 0.02% 0.36% 0.02% 39.49% 0.00%
Switzerland-S2 186 4,945 0.45% 0.00% 0.45% 0.00% 67.54% 64.52%

relaxation and then executing our separation routines. This procedure is repeated until no more violated
inequalities are found. Automatic cut generation routines were disabled during this experiment. The results
are shown in Table 2. The original arc model is denoted by AM, whereas the improved formulation obtained
after the inclusion of lifting is denoted by AM++. We report the duality gaps after solving the root node of
the enumeration tree.

The results show that the behavior for both Max-Total problems is very similar. Although AM leaves a
small gap, it can still lead to a relatively costly branching. The addition of lifting makes all gaps drop to
less than 0.26% and 18 instances that would otherwise need branching can be optimally solved at the root
node. As for the Max–Min PRDP, due to the need of a continuous variable to model the objective function,
duality gaps are significantly larger. Nevertheless, the lifting procedures are still able to reduce the gaps for
many instances.

In the final experiment, we run models GOM, AM and AM++ on all instances for the three problem
variants. We enable automatic cut generation routines to evaluate the performance of the models in
conjunction with the most advanced features provided by the solver. The results are shown in Tables 3–5.
Optimal values are given in column Opt. For each model, we report the total running time (in seconds), the
number of cuts NC added by our separation routines and the number of nodes NN solved in the branch-
and-bound tree. Some preliminary tests indicated that the GOM model also benefits from the inclusion of
the initial set of inequalities described in this work. To establish a fair comparison between the models, the
results that follow incorporate these improvements.

To further analyze the speedup enabled by each model, Table 6 shows, for each pair of models, the
average, maximum and minimum ratio of their running times. To focus on the hardest instances, the results
disregard those that can be solved in less than 10 s by both models. Average values are computed as the
geometric mean of the running time ratios.

For both Max-Total variants, the results show that AM performs better than GOM for all instances. The
reduction in the number of variables compensates for the exponential number of inequalities and the arc-
based formulation achieves a (geometric) average speedup of 5.9 and 6.0 for the SDP and PRDP variants,
respectively. The addition of lifting allows AM++ to run 1.9 times faster than AM for both types of
drawings. Besides, all but two instances are solved in the root node of the branch-and-bound tree. The
greatest improvements occurred for instances France-S1 and Greece-S1, for which AM++ is over 82 times
faster than GOM for SDP.

It is interesting to note that, as shown in Table 2, AM is never able to completely solve the problem
on the root node of the search tree. However, in this experiment, this was possible due to the inclusion of
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Table 3
Comparison of models GOM, AM and AM++ for the Max-Total SDP. Times are given in seconds.

Instance |S| |R| Opt. GOM AM AM++
Time NN Time NC NN Time NC NN

City 538 538 7 516 503.27 15 725 612 3851 4194 336 332 2753 1
Magnitudes 602 13 289 12 174.09 315 126 42 298 25 22 991 1
France-S1 135 3 230 964.07 5 039 276 435 596 50 61 1531 1
Greece-S1 102 3 482 1102.55 5 755 244 495 885 68 70 2361 1
Japan-S1 150 3 544 1911.18 249 20 17 479 1 12 896 1
Portugal-S1 150 5 070 1707.01 304 12 39 122 12 29 425 1
USA(West)-S1 87 3 717 1290.14 709 34 124 416 4 37 694 1
Denmark-S2 310 3 942 4289.57 120 32 30 1033 10 13 1433 1
Egypt-S2 98 3 043 2316.98 208 10 39 312 3 17 834 1
France-S2 135 3 354 1821.45 1 618 50 177 311 16 39 1177 1
Greece-S2 102 3 335 1806.11 3 024 285 418 891 195 43 1927 1
Israel-S2 150 4 222 2935.95 299 91 30 420 4 16 1276 1
Italy-S2 300 6 725 4775.34 262 8 53 433 18 37 1041 1
Japan-S2 150 4 954 3096.87 362 1 52 223 1 50 839 1
Norway-S2 150 2 881 2090.14 144 49 36 1828 43 15 2840 1
Poland-S2 300 4 736 9045.2 157 1 27 968 1 22 4518 1
Portugal-S2 150 6 656 2727.82 577 1 72 56 1 70 321 1
Switzerland-S2 186 4 945 5818.56 545 28 48 141 1 27 514 1
USA(East)-S2 150 4 524 3508.58 119 20 6 206 1 6 584 1
USA(West)-S2 87 4 465 1953.22 506 1 67 847 1 57 992 1

Table 4
Comparison of models GOM, AM and AM++ for the Max-Total PRDP. Times are given in seconds.

Instance |S| |R| Opt. GOM AM AM++
Time NN Time NC NN Time NC NN

City 538 538 7 516 503.27 15 378 538 2326 4882 377 260 3984 1
Magnitudes 602 13 289 12 174.09 439 315 42 654 12 24 1482 1
France-S1 135 3 230 964.07 5 034 276 369 954 50 63 2722 1
Greece-S1 102 3 482 1102.55 5 475 290 546 1488 100 70 3028 1
Japan-S1 150 3 544 1911.18 219 10 17 642 1 12 818 1
Portugal-S1 150 5 070 1707.01 306 24 40 224 28 29 544 1
USA(West)-S1 87 3 717 1290.14 709 34 123 556 4 37 804 1
Canada-S2 150 2 790 2922.57 108 37 9 360 8 6 756 1
France-S2 135 3 354 1821.45 1 366 22 142 436 14 39 1858 1
Germany-S2 150 3 299 2894.92 151 4 18 258 1 18 616 1
Greece-S2 102 3 335 1806.11 2 877 285 221 688 138 43 2678 1
Israel-S2 150 4 222 2935.95 402 94 32 440 8 16 988 1
Italy-S2 300 6 725 4775.34 259 16 40 444 1 34 986 1
Japan-S2 150 4 954 3096.87 340 1 53 340 1 50 1118 1
Norway-S2 150 2 881 2090.16 153 44 21 382 8 9 804 1
Poland-S2 300 4 736 9045.2 117 1 23 314 1 21 476 1
Portugal-S2 150 6 656 2727.82 542 1 72 100 1 70 366 1
Switzerland-S2 186 4 945 5818.56 630 32 61 220 1 26 640 1
USA(East)-S2 150 4 524 3508.58 97 10 7 226 1 7 534 1
USA(West)-S2 87 4 465 1953.22 512 1 63 660 1 58 1208 1

automatic cut generation routines. Nevertheless, it can be seen in Tables 3 and 4 that even when the number
of nodes is one for both AM and AM++, the latter is still faster. This happens because our specialized lifting
procedures are more effective than the generic cuts added by the solver.

As for the Max–Min PRDP, the arc models also perform better, though not as much as in the other
variants. Models AM and AM++ achieve faster running times than GOM in 48 and 47 instances out of
60, respectively. On average, AM is 1.99 times faster than GOM and AM++ is 1.04 times faster than AM.
This shows that using lifted inequalities is not always worthwhile. The reason is that the dual bounds for
this version of the problem are a lot weaker than the ones for the Max-Total variants. As a consequence,
the algorithm is highly dependent on branching and many linear relaxations must be solved. Since lifting
increases the number of non-zeros in the ILP matrix, it might be better to use the weaker but sparser AM
model.
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Table 5
Comparison of models GOM, AM and AM++ for the Max–Min PRDP. Times are given in seconds.

Instance |S| |R| Opt. GOM AM AM++
Time NN Time NC NN Time NC NN

City 538 538 7516 0.76 6929 449 1607 1066 1 437 1469 1148 1 028
Egypt-S1 98 2033 9.44 184 705 971 180 18 584 923 460 7 854
France-S1 135 3230 6.45 >5 h 13 488 3319 400 18 120 1507 2932 8 382
Greece-S1 102 3482 8.88 >5 h 466 15 722 478 54 531 3754 3092 12 490
Italy-S1 300 4366 6.18 1890 1 021 1662 154 9 120 450 956 1 782
Japan-S1 150 3544 8.73 2216 1 091 403 518 799 672 958 2 873
Switzerland-S1 186 3047 15.94 1170 1 901 242 80 1 944 1223 352 10 809
USA(West)-S1 87 3717 9.31 >5 h 715 678 360 756 3463 1262 2 498
Brazil-S2 150 3294 15.82 473 44 35 256 18 45 590 48
Canada-S2 150 2790 10.68 131 27 11 256 1 11 374 1
Egypt-S2 98 3043 13.92 943 458 2099 588 3 155 1788 676 3 710
France-S2 135 3354 8.34 >5 h 3 897 7286 682 12 208 912 3766 1 107
Germany-S2 150 3299 12.36 5144 2 900 13 088 878 49 253 >5 h 1746 56 016
Greece-S2 102 3335 11.75 4314 11 942 970 556 2 735 >5 h 2116 144 981
Indonesia-S2 150 3478 8.43 663 1 284 2498 422 21 540 1320 1050 8 083
Israel-S2 150 4222 11.16 883 11 578 66 206 804 92 224 2 059
Italy-S2 300 6725 7.33 16 941 2 485 5956 712 3 918 2552 1656 1 216
Japan-S2 150 4954 13.64 522 1 103 188 1 153 762 1
Switzerland-S2 186 4945 17.78 >5 h 9 123 >5 h 754 15,859 >5 h 2166 11 743
USA(West)-S2 87 4465 12.05 13 205 5 057 17 916 532 39 147 >5 h 1674 8 803

Table 6
Summary of the results for all models and problem variants.

Problem GOM/AM AM/AM++ GOM/AM++
Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

Max-Total SDP 5.85 19.58 1.56 1.92 11.61 0.45 9.21 82.23 1.22
Max-Total PRDP 5.95 14.95 1.28 1.89 8.95 0.66 9.40 80.38 1.14
Max–Min PRDP 1.99 26.54 0.19 1.04 7.99 0.05 2.09 19.74 0.20

A single instance (Switzerland-S2) could not be solved by any of the models within the imposed time
limit. The optimal value shown in Table 5 was verified after almost 54 h of computation with the AM model,
which is the one that presented the best prospects after the initial five hours.

For the three problem variants, the number of cuts added by our separation routines range from a couple
of hundreds to a few thousands. A comparison with the initial number of inequalities reported in Table 1
indicates that the size of the models is not significantly affected by the inclusion of these constraints. For most
instances, AM++ adds considerably more cuts than AM. This behavior is expected because, as explained
in Section 5, our lifting heuristics are applied not only to violated inequalities (2) and (3), but also to those
that are satisfied with a small slack.

8. Conclusion

We study three variants of a proportional symbol maps problem and propose a novel ILP model in terms
of arc variables only. We show that our model for stacking drawings is a projection of another one previously
described in the literature. In addition, we describe a strategy to select the initial set of inequalities that
greatly improves computation times not only with our models but also with another one from the literature.
We also describe fast separation routines and effective lifting procedures. When compared with state-of-the-
art models, our formulations significantly reduce computation times for most instances. In particular, for
the Max-Total variants, 57 out of 60 instances can now be solved in less than a minute.

Several directions exist for future research. From a theoretical perspective, two interesting possibilities are
deciding on the computational complexity of the Max-Total SDP and determining whether the AM model
for PRDP is also a projection of GOM for that variant. Other ideas include the study of new facet-defining
inequalities and the development of branching techniques based on geometric properties of the problem.



110 R.G. Cano et al. / Discrete Optimization 18 (2015) 87–110

Finally, current methods still require large computation times to solve the Max–Min PRDP exactly, so there
is still a lot of room for improvement.
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