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Abstract. Proportional symbol maps are a cartographic tool to assist
in the visualization and analysis of quantitative data associated with spe-
cific locations (earthquake magnitudes, oil well production, temperature
at weather stations, etc.). Symbol sizes are proportional to the magni-
tude of the quantities that they represent. We present a novel integer
programming model to draw opaque disks on a map with the objective
of maximizing the total visible border of all disks (an established measure
of quality). We focus on drawings obtained by layering symbols on top
of each other, known as stacking drawings. We introduce decomposition
techniques, and several new families of facet-defining inequalities, which
are implemented in a cut-and-branch algorithm. We assess the effective-
ness of our approach through a series of computational experiments using
real demographic and geophysical data. To the best of our knowledge,
we are the first to provide provably optimal solutions to some of those
problem instances.

Keywords: Computational Geometry, Symbol Maps, Integer Linear
Programming, Cartography.

1 Introduction

Proportional symbol maps (PSMs) are a cartographic tool to assist in the visual-
ization and analysis of quantitative data associated with specific locations (e.g.
earthquake magnitudes, oil well production, temperature at weather stations,
etc.). At each location, a symbol is drawn whose size is proportional to the nu-
merical data collected at that point on the map (see [1,2]). For our purposes, the
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symbols are scaled opaque disks (typically preferred by users [7]), and we focus
on drawings obtained by layering symbols on top of each other, also known as
stacking drawings. Because of overlapping, a drawing of the disks on a plane will
expose some of them (either completely or partially) and potentially obscure the
others. Although there have been studies about symbol sizing, it is unclear how
much the symbols on a PSM should overlap (see [5,12]). The quality of a drawing
is related to how easily the user is able to correctly judge the relative sizes of
the disks. Intuitively, the accuracy of such a judgment is proportional to how
much of the disk borders are visible. As a consequence, the objective function
consists of maximizing one of two alternative measures of quality: the minimum
visible border length of any disk (the Max-Min problem) – which emphasizes the
local perception, or the total visible border length over all disks (the Max-Total
problem) – which benefits the global awareness. For n disks, Cabello et al. [1]
show that the Max-Min problem can be solved in O(n2 log n) in general, or in
O(n log n) if no point on the plane is covered by more than O(1) disks. The
complexity of the Max-Total problem for stacking drawings is open.

The contributions of this work are: (i) proposing a novel integer linear pro-
gramming (ILP) formulation for the Max-Total problem; (ii) introducing decom-
position techniques, as well as several new families of facet-defining inequalities;
and (iii) implementing a cut-and-branch algorithm to assess the effectiveness
of our approach through a series of computational experiments on a set of in-
stances that includes real geophysical data from NOAA’s National Geophysical
Data Center [11]. To the best of our knowledge, we are the first to provide prov-
ably optimal solutions to some of the Max-Total instances studied in [1,2]. We
are unaware of other attempts at using ILP to solve this problem.

In Section 2, we describe the problem more formally and introduce some basic
terminology. We present the ILP model in Section 3, and perform a polyhedral
study of the formulation in Section 4. We describe new families of facet-defining
inequalities in Section 5, and introduce decomposition techniques in Section 6.
The computational results obtained with our cut-and-branch algorithm appear
in Section 7.

2 Problem Description and Terminology

Let S = {1, 2, . . . , n} be a set of disks with known radii and center coordinates
on the Euclidean plane. Let the arrangement A be defined as the picture formed
by the borders of all the disks in S. A point at which two or more disk borders
intersect is called a vertex of A. A portion of a disk border that connects two
vertices, with no other vertices in between, is called an arc. An area of A that
is delimited by arcs is called a face. A drawing of S is a subset of the arcs and
vertices of A that is drawn on top of the filled interiors of the disks in S (see
Figure 1).

A canonical face is a face that contains no arcs in its interior. A set of arcs
on the boundary of a canonical face that belong to the same disk constitutes a
canonical arc. In Figure 2, the boundary of face f is made up of canonical arcs



Optimizing the Layout of Proportional Symbol Maps 3

f
v

r

Fig. 1. Arrangement with vertex v, arc r,
and face f (left), and a drawing (right)
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Fig. 2. Three single-piece canonical arcs
r1, r2, r3; a multi-piece canonical arc r4

r1 and r2. The boundary of face g is made up of three canonical arcs: r2, r3 and
r4. Note that canonical arc r4 is composed of two pieces. From now on, arcs and
faces are assumed to be canonical, unless noted otherwise.

Given an arrangement, many drawings are possible, but not all of them rep-
resent a sensible, physically feasible, placement of symbols. A stacking drawing
is obtained by assigning disks to levels (a stacking order) and drawing them, in
sequence, from the lowest to the highest level.

3 An Integer Linear Programming Model

Let GS = (V, E) be an undirected graph with one vertex for every disk i ∈ S
(denoted V (i)) and one edge for every pair of vertices whose corresponding disks
overlap. Moreover, let m−1 be the length of the longest simple path in GS , and
let K be the set of all maximal cliques of GS .

Proposition 1. The Max-Total problem for stacking drawings has an optimal
solution that uses at most m levels.

Proof. Assume that a given solution assigns levels to all disks using more than
m levels. Create a directed graph G′

S such that V (G′
S) = V (GS) and arc (i, j)

is directed from i to j if disk i is at a level below disk j. Because the given
solution is a stacking drawing, G′

S contains no directed cycles and hence admits
a topological ordering of its vertices. Note that this ordering induces the same
stacking order as the given solution. Because the length of the longest directed
path in G′

S is at most m− 1, the greatest label used in the topological ordering
is less than or equal to m. ��

Even though it may seem, at first glance, that an optimal solution might require
at most as many levels as the size of the largest clique in GS , it is easy to see
that in the case where GS is a simple path with n > 2 vertices, its largest clique
has size 2, while an optimal solution may require n levels.

Our ILP model uses the following data, which can be calculated in polynomial
time from the set S:

– R ≡ set of all arcs;
– �r ≡ length of arc r ∈ R (total length if r has multiple pieces);
– dr ≡ disk that contains arc r in its border;
– SI

r ≡ set of disks that contain arc r in their interior.
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For each r ∈ R, let the binary variable xr be equal to 1 if arc r is visible
in the drawing, and equal to 0 otherwise. Then, the objective is to maximize∑

r∈R �rxr. We assume that m ≥ 2 because it is trivial to find the optimal
solution when m = 1. For each disk i ∈ S, let the binary variable yip be equal
to 1 if disk i is at level p (1 ≤ p ≤ m), and equal to 0 otherwise. A stacking
drawing has to satisfy the following constraints:

m∑

p=1

yip ≤ 1, ∀ i ∈ S, (1)

xr −
m∑

p=1

ydrp ≤ 0, ∀ r ∈ R, (2)

∑

i : V (i)∈K

yip ≤ 1, ∀ 1 ≤ p ≤ m, K ∈ K, (3)

p∑

a=1

ydra +
m∑

b=p

yib + xr ≤ 2, ∀ r ∈ R, i ∈ SI
r , 1 ≤ p ≤ m, (4)

xr ∈ {0, 1}, ∀ r ∈ R, (5)
yip ∈ {0, 1}, ∀ i ∈ S, 1 ≤ p ≤ m. (6)

We refer to the convex hull of feasible integer solutions to (1)–(6) as P . Con-
straint (1) states that each disk is assigned to at most one level. Constraint (2)
states that a disk with a visible arc must be assigned to a level, and (3) says
that overlapping disks can not be at the same level. Constraint (4) ensures that
arc r is only visible if dr is above all other disks that contain r.

4 Polyhedral Study of P

In this section, we obtain the dimension of P and determine which inequalities in
the original formulation (1)–(6) define facets. For the sake of brevity, we omit the
proofs of Propositions 2 to 5, which are based on the direct method, that is, they
essentially enumerate affinely independent points belonging to a given polytope
to establish its dimension. For those proofs, see [8]. We include here, however,
the proofs that inequalities are facet-defining whenever they employ the indirect
method. Both direct and indirect methods are discussed in Theorem 3.6, Part I.4
of [10].

Proposition 2. The dimension of P is nm + |R|.
Proposition 3. Given an arc r ∈ R, the inequality xr ≥ 0 defines a facet of P ,
whereas the inequality xr ≤ 1 does not.

The inequality xr ≤ 1 is not facet-defining for P because it is implied by the
combination of (1) and (2).
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Proposition 4. Given a disk i ∈ S, and a level 1 ≤ p ≤ m, the inequality
yip ≥ 0 defines a facet of P , whereas the inequality yip ≤ 1 does not.

The inequality yip ≤ 1 does not define a facet of P because it is implied by (1).

Proposition 5. Given a disk i ∈ S, (1) defines a facet of P .

Proposition 6. Given an arc r ∈ R, (2) defines a facet of P .

Proof. We use the indirect method. Let x = (y, x) and let πx ≤ π0 be a valid
inequality for P whose induced face contains the face F induced by (2). We will
show that πx ≤ π0 is a scalar multiple of (2). Because the origin is a feasible
solution that satisfies (2) as an equality, we have that π0 = 0. Let 1 ≤ p ≤ m
and xrp satisfy ydrp = xr = 1, with all other variables equal to zero. It is easy
to see that xrp is feasible and satisfies (2) as an equality. Then,

πxrp = πdrp + πr = π0 = 0 , (7)

where πdrp is the component of vector π that multiplies variable ydrp in xrp, and
πr is the component that multiplies xr . Therefore, πdrp = −πr. By varying the
value of p, (7) implies that

πdr1 = πdr2 = · · · = πdrm = −πr = αr . (8)

To complete the proof, we need to show that all remaining components of π are
equal to zero.

Let r′ ∈ R \ {r} with dr′ = dr. Consider the vector x = xrp + enm+r′, whose
components are all zero except ydrp, xr and xr′ which have value one. Clearly,
x is feasible and belongs to F . Therefore, we have πr′ = 0. From now on, let
us assume that dr′ 	= dr. For any p ∈ {1, . . . , m}, by setting ydr′p = 1 and all
other variables equal to zero, we obtain a feasible vector x that lies on F . As a
consequence, πx = π0, implying that πdr′p = 0 for all r′ 	= r and all p. Similarly,
choosing x such that ydr′p = xr′ = 1 with all the remaining components set to
zero, we generate a feasible point in F which yields πr′ = 0 for all r′ 	= r. ��
Proposition 7. Given 1 ≤ p ≤ m and K ∈ K, (3) defines a facet of P .

Proof. We use the indirect method. Let x = (y, x) and let πx ≤ π0 be a valid
inequality for P whose induced face F contains the face of P induced by (3). We
will show that πx ≤ π0 is a scalar multiple of (3). In this proof, the components
of vector π are identified as in Proposition 6.

First let us partition the variables into five classes: (i) yjp with V (j) ∈ K; (ii)
yjq with V (j) ∈ K, and q 	= p; (iii) yjq with V (j) /∈ K; (iv) xr with V (dr) ∈ K;
and (v) xr with V (dr) /∈ K. We now exhibit feasible points that satisfy (3) as
an equality to determine the values of the coefficients of vector π for each class
of variables defined above. For each choice of x given below, undefined variables
are assumed to be equal to zero. (i) Let x have yip = 1. Then, πx = πip = π0;
(ii) Let i ∈ S be such that V (i) ∈ K, and let x have yjq = yip = 1. Then,
πx = πjq + πip = π0, which implies πjq = 0 because of (i); (iii) There exists
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i ∈ S with V (i) ∈ K such that V (j) is not adjacent to V (i) (otherwise, V (j)
would be a vertex of K). For each 1 ≤ q ≤ m, let x have yjq = yip = 1. Then, as
in (ii), πjq = 0; (iv) If x satisfies ydrp = xr = 1, we have πx = πdrp + πr = π0,
which implies πr = 0; (v) As in (iii), we can find an i ∈ S with V (i) ∈ K such
that V (dr) is not adjacent to V (i). Let x have ydr1 = yip = xr = 1. Then,
πx = πdr1 + πip + πr = π0, which implies πr = 0. ��

Proposition 8. Given an arc r ∈ R, i ∈ SI
r and 1 ≤ p ≤ m, (4) does not define

a facet of P , but (9) does if 1 ≤ p < m.

p∑

a=1

ydra +
m∑

b=p

yib + xr ≤ 1 +
m∑

a=1

ydra (9)

Proof. We first show that inequality (4) does not define a facet of P . To this end,
let F denote the face defined by (4) in P . Now, we claim that all feasible points
in F satisfy inequality (1) at equality for i = dr (otherwise dr is not assigned to
a level, xr is zero because of (2), and the left-hand side of (4) is at most one).
Since the P is full-dimensional, F cannot be a facet of it.

Notice that, by defining the binary variable z =
∑m

a=1 ydra and lifting this
variable in (4), we obtain inequality (9). We now prove that the latter inequality
is facet defining for P under the assumptions made in the proposition.

Initially, we observe that (9) is not facet-defining for P when p = m because
it is clearly dominated by (11) or (14), depending on what kind of arc r is.
Moreover, for convenience, we rewrite (9) as:

m∑

b=p

yib −
m∑

a=p+1

ydra + xr ≤ 1 . (10)

We use the indirect method. Let x = (y, x) and let πx ≤ π0 be a valid
inequality for P whose induced face F contains the face of P induced by (10). We
will show that πx ≤ π0 is a scalar multiple of (10). In this proof, the components
of vector π are identified as in Proposition 6. We partition the variables into ten
classes and establish the appropriate corresponding coefficients in vector π. For
each choice of x given below, undefined variables are assumed to be equal to zero
and the vector is easily shown to be feasible and to lie on F . (i) yil for p ≤ l ≤ m:
Let x have yil = 1. Then, πx = πil = π0. (ii) yjm for all j ∈ S \ {dr, i}: Let
x have yi(m−1) = yjm = 1. Then, πx = πi(m−1) + πjm = π0 which, from
the previous result, implies that πjm = 0. (iii) yjl for all j ∈ S \ {dr, i} and
1 ≤ l ≤ m − 1: Let x have yim = yjl = 1. Then, πx = πim + πjl = π0

which, from (i), implies that πjl = 0. (iv) ydrl for 1 ≤ l ≤ p: Let x have
yim = ydrl = 1. Then, πx = πim + πdrl = π0 which, from (i), implies that
πdrl = 0. (v) xr: Let x have ydrp = xr = 1. Then, πx = πdrp + πr = π0

which, from (iv), implies that πr = π0. (vi) yil for 1 ≤ l ≤ p − 1: Let x have
ydrp = xr = yil = 1. Then, πx = πdrp + πr + πil = π0 which, from (iv) and (v),
implies that πil = 0. (vii) xq for all j ∈ S \ {dr, i} and all arcs q of disk j: Let
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x have yi(m−1) = yjm = xq = 1. Then, πx = πi(m−1) + πjm + πq = π0 which,
from (i) and (ii), implies that πq = 0. (viii) xq for all arcs q of disk i: Let x have
yim = xq = 1. Then, πx = πim + πq = π0 which, from (i), implies that πq = 0.
(ix) xq for all arcs q of disk dr except arc r: Let x have ydrp = xr = xq = 1. Then,
πx = πdrp + πr + πq = π0 which, from (iv) and (v), implies that πq = 0. (x) ydrl

for p+1 ≤ l ≤ m: Let x have yip = ydrl = xr = 1. Then, πx = πip+πdrl+πr = π0

which, from (i) and (ix), implies that πdrl = −π0. ��

5 Strengthening the ILP Formulation

The geometric nature of PSMs enables us to obtain new valid inequalities by
observing that certain groups of arcs cannot be visible simultaneously due to a
physical impossibility. In the sequel, A is an arrangement of disks on a plane.
We use the following additional data sets:

– Df ≡ set of disks that contain face f .
– Bf ≡ set of arcs that form the boundary of face f . B+

f = {r ∈ Bf | dr ∈ Df}
and B−

f = Bf \ B+
f .

– If ≡ set of disks whose borders contain an arc in Bf .
– Cf ≡ set of disks that contain face f in their interior (Cf = Df \ If ).

Consider the arrangement in Figure 2. The boundary of face g is formed by arcs
r2, r3, and r4. We have Bg = {r2, r3, r4}, Dg = {dr4}, B+

g = {r4}, B−
g = {r2, r3},

Ig = {dr2 , dr3 , dr4}, and Cg = ∅. In the arrangement of Figure 3, the boundary of
face f is formed by arcs r1, r2, and r3. Therefore, we have Bf = B+

f = {r1, r2, r3},
Df = {dr1 , dr2 , dr3 , dr4}, If = {dr1 , dr2 , dr3}, and Cf = {dr4}. If one of the arcs
in Bf is visible in a drawing, the other two cannot appear. Moreover, if dr4 is
assigned to the topmost level, f will not appear. This leads to the valid inequality
ydr4m + xr1 + xr2 + xr3 ≤ 1. In general, we have the following result:

r1

r2 r3

r4

f

Fig. 3. Arcs r1, r2, and r3 of face f cannot be visible simultaneously

Proposition 9. Let f be a face of A with |B+
f | ≥ 1. If |Cf | ≥ 1 or |B+

f | ≥ 2,
then (11) defines a facet of P .

∑

i∈Cf

yim +
∑

r∈B+
f

xr ≤ 1 (11)
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Proof. To prove validity, note that for every arc r ∈ B+
f , all the arcs in B+

f \ {r}
are in the interior of dr. Therefore, if r is visible, no other arc of B+

f \{r} can be
visible, which implies

∑
r∈B+

f
xr ≤ 1. Moreover, if a disk in Cf is at the top level

(m), we must have
∑

r∈B+
f

xr = 0, so it suffices to show that
∑

i∈Cf
yim ≤ 1.

Because all the disks in Cf contain f , the corresponding vertices in GS form a
clique. Hence, at most one of those disks can be assigned to level m because of
(3). If |B+

f | = 0, (11) is dominated by (3). If |Cf | = 0 and |B+
f | = 1, (11) reduces

to xr ≤ 1, which is not facet-defining due to Proposition 3.
To prove that (11) is facet-defining for P under the assumptions stated above,

we use the indirect method. Let x = (y, x) and let πx ≤ π0 be a valid inequality
for P whose induced face contains the face F induced by (11). We will show that
πx ≤ π0 is a scalar multiple of (11). As usual, this is done by exhibiting several
vectors that can be easily shown to be feasible and lying on F . Moreover, the
components of vector π are also identified as in Proposition 6.

Let r ∈ B+
f , 1 ≤ p ≤ m, and let xrp satisfy ydrp = xr = 1, with all other

variables equal to zero. Clearly, xrp satisfies (11) as an equality, xrp ∈ P , and

πxrp = πdrp + πr = π0 . (12)

By varying the value of p, (12) implies that, for any r ∈ B+
f ,

πdr1 = πdr2 = · · · = πdrm = αr . (13)

Let r ∈ B+
f and q /∈ B+

f . If pq < pr ≤ m, let xrqprpq satisfy ydrpr = ydqpq =
xr = 1, with all other variables equal to zero. This gives πxrqprpq = πdrpr +
πdqpq + πr = π0 + πdqpq (using (12)), which implies πdqpq = 0. If pr < pq = m,
there are two cases: (i) dq /∈ Cf : we can still set ydrpr = ydqm = xr = 1, which
yields πdqm = 0 as above; (ii) dq ∈ Cf : setting ydqm = 1 and all remaining
variables equal to zero, we conclude that πdqm = π0.

We now deal with coefficients of π corresponding to x variables associated
with arcs outside B+

f . Let q /∈ B+
f . There are two cases to consider: (i) dq ∈ Cf :

let xqm satisfy ydqm = xq = 1, with all other variables equal to zero. Then,
πxqm = πdqm +πq = π0 +πq = π0. Therefore, πq = 0; (ii) dq /∈ Cf : Take r ∈ B+

f

and let xqr21 satisfy ydq2 = ydr1 = xq = xr = 1 (even if q ∈ B−
f , both q and r

will be visible). Then, πxqr21 = πdq2 + πdr1 + πq + πr = π0 + πq = π0. Hence,
πq = 0.

If |B+
f | ≥ 2, let p1 > p2, r1 and r2 ∈ B+

f , and let xr1r2p1p2 satisfy ydr1p1 =
ydr2p2 = xr1 = 1, with all other variables equal to zero. Then, πxr1r2p1p2 =
πdr1p1 +πdr2p2 +πr1 = αr1 +αr2 +πr1 = π0, yielding αr = 0 for all r, because of
(12) and (13). Consequently, πr = π0 for all r ∈ B+

f . To achieve the same results
when |B+

f | = 1, we assume |Cf | ≥ 1. Let xqrm satisfy ydqm = ydr(m−1) = 1,
where dq ∈ Cf and B+

f = {r}. Then, πxqrm = πdqm +πdr(m−1) = π0 +πdr(m−1),
which implies πdr(m−1) = 0. Consequently, because of (13), πdrp = 0 for all p,
and πr = π0. ��
Proposition 10. Let f be a face of A with |B−

f | ≥ 1. For each r ∈ B−
f , (14)

defines a facet of P .
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∑

i∈Df

yim + xr ≤ 1 (14)

Proof. The inequality is clearly valid. To prove that (14) is facet-defining for P
under the assumptions stated above, we use the indirect method as in the proof
of Proposition 9. Let 1 ≤ p ≤ m, and let xrp satisfy ydrp = xr = 1, with all
other variables equal to zero. Clearly, xrp satisfies (14) as an equality, xrp ∈ P ,
and

πxrp = πdrp + πr = π0 . (15)

By varying the value of p, (15) implies that

πdr1 = πdr2 = · · · = πdrm = αr . (16)

Let q 	= r. If pq < pr ≤ m, let xrqprpq satisfy ydrpr = ydqpq = xr = 1, with all
other variables equal to zero. This gives πxrqprpq = πdrpr +πdqpq +πr = π0+πdqpq

(using (15)), which implies πdqpq = 0. If pr < pq = m, there are two cases: (i)
dq /∈ Df : we can still set ydrpr = ydqm = xr = 1, which yields πdqm = 0 as
above; (ii) dq ∈ Df : setting ydqm = 1 and all remaining variables equal to zero,
we conclude that πdqm = π0.

We now deal with coefficients of π corresponding to x variables associated with
arcs q 	= r. There are two cases to consider: (i) dq ∈ Df : let xqm satisfy ydqm =
xq = 1, with all other variables equal to zero. Then, πxqm = πdqm+πq = π0+πq.
Therefore, πq = 0; (ii) dq /∈ Df : Let xqr21 satisfy ydq2 = ydr1 = xq = xr = 1.
Then, πxqr21 = πdq2 + πdr1 + πq + πr = π0 + πq. Hence, πq = 0.

Finally, let dq ∈ Df and let xqrm satisfy ydqm = ydr(m−1) = 1. Then, πxqrm =
πdqm + πdr(m−1) = π0 + πdr(m−1), which implies πdr(m−1) = 0. Consequently,
because of (16), αr = 0 and πr = π0. ��
A vertex of an arrangement is non-degenerate if it is an intersection point of
exactly two disks or, equivalently, four arcs, as shown in Figure 4(i). Since each
arc can be either visible or not, there are 16 potential assignments of values
to their respective x variables. In a feasible solution, however, only the five
assignments shown in Figure 4(ii)–(vi) are possible (dashed arcs are obscured).
This observation gives rise to Proposition 11.

Proposition 11. Given a non-degenerate vertex of an arrangement as shown
in Figure 4(i), (17)–(20) are valid and define facets of P .

xr1 ≥ xr3 (17)
xr2 ≥ xr4 (18)

xr3 + xr4 ≥ xr1 (19)
xr3 + xr4 ≥ xr2 (20)
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r1 r2

r3r4

r1 r2

r3

(i) (ii)

r1 r2

r4

(iii)

r1 r2

r3r4

(iv)

r1 r2

r3r4

(v)

r1 r2

r3r4

(vi)

r1 r2

r3r4

(vii)

r1 r2

r3r4

(viii)

r4 r3

Fig. 4. A non-degenerate vertex (i), five feasible arc configurations: (ii)–(vi), and two
infeasible ones: (vii) and (viii)

Proof. It is easy to see that the five feasible configurations shown in Figure 4(ii)–
(vi) satisfy (17)–(20). In addition, because of symmetry, it suffices to show that
(17) and (19) are facet defining. We will use the indirect method and define
πx ≤ π0 as usual (see the proof of Proposition 9).

The zero vector satisfies (17) as an equality, which yields π0 = 0. Given i ∈ S
and 1 ≤ p ≤ m, let xip be such that yip = 1 and all other variables are equal
to zero. Clearly, xip belongs to P and satisfies (17) as an equality. Because
πxip = πip = π0, we have that πip = 0 for all i and p. Given 1 ≤ p ≤ m and
r ∈ R \ {r1, r3}, let xrp satisfy ydrp = xr = 1 and have zeroes everywhere else.
Again, xrp satisfies (17) as an equality and xrp ∈ P . Since πxrp = πdrp+πr = π0,
we have πr = 0. Finally, given 1 ≤ p ≤ m, let xr1r3 be such that xr1 = xr3 =
ydr1p = 1 (note that dr1 = dr3). Then, πxr1r3 = πr1 + πr3 + πdr1p = π0. Because
πdr1p = π0 = 0, we have that πr1 = −πr3 , as desired.

We now show that (19) is facet defining. By repeating the arguments of the
previous paragraph, we can show that π0 = 0, πip = 0 for all i and p, and πr = 0
for all r ∈ R \ {r1, r3, r4}. Let xr1r3 be such that xr1 = xr3 = ydr11 = 1 and all
other variables are equal to zero. Then, πxr1r3 = πr1 + πr3 + πdr11 = π0, which
implies πr1 = −πr3 . Finally, let xr1r4 be such that xr1 = xr4 = ydr11 = ydr42 = 1,
with all other variables equal to zero. Then, πxr1r4 = πr1 +πr4 +πdr11 +πdr42 =
π0, which also implies that πr1 = −πr4 . ��

6 Decomposition Techniques

To reduce the size of the ILP model, we introduce decomposition techniques that
allow us to consider smaller sets of disks at a time.

Without loss of generality, we assume that GS is connected. Otherwise, each
of its connected components can be treated separately. In addition, we can de-
compose a connected component around articulation points of GS . Consider the
example in Figure 5(i), in which S = {a, b, c, d, e, v}. The node corresponding to
disk v, i.e. V (v), is an articulation point of GS because its removal disconnects
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the graph into three connected components: {a, b}, {c, d}, and {e}. By adding
v to each of these components, we get instances (ii), (iii), and (iv) of Figure 5,
which are solved independently. Those three optimal solutions can be combined
into an optimal solution for the entire set S by preserving the relative order of
the disks in each solution. Proposition 12 formalizes this idea.

a

e

c

b
d

v

(i) (ii) (iii) (iv)

a

b

v

e

v c

d

v

Fig. 5. An instance that allows for decomposition

Proposition 12. Let S be a set of disks such that GS is not 2-connected and let
v be a disk corresponding to an articulation point of GS. Let Sk contain v plus
the disk set of the k-th connected component obtained after the removal of V (v)
from GS. The optimal solutions for each Sk can be combined into an optimal
solution for S in polynomial time.

Proof. Let V (v) be an articulation point of GS and let v be its corresponding
disk in S (note that articulation points can be found in O(|E|) time [3]). Using
the notation introduced in the proposition, consider the disk subsets Si and
Sj corresponding to any two distinct connected components of GS − V (v). By
definition, the pieces of v’s border contained in Si \ {v} and in Sj \ {v} are
disjoint. Hence, the optimal solutions of the problems defined over Si and Sj

do not influence each other. In other words, the relative order imposed by those
solutions onto the disks of each such subset is optimal for the complete set of
disks S. If we consider these orders as representing an orientation of the arcs of
GS , we have a directed acyclic graph G′

S . The optimal assignment of disks to
levels can be obtained in polynomial time from a topological ordering of G′

S . ��

If the graph of a connected component (GSk
) is not 2-connected and has an

articulation point, the above procedure can be applied recursively.
From Figure 5(ii), it is clear that there exists an optimal solution in which

a and b are drawn above v. Hence, we can consider the pair a, b as a separate
instance, and v as another. Proposition 13, whose proof can be seen in [8],
formalizes this idea.

Proposition 13. Let S be a set of disks and let HS be a directed graph with one
node for every disk in S and an arc from node i to node j whenever a portion of
the border of i’s disk is contained in the interior of j’s disk. Let Sk be the disk
set of the k-th strongly connected component of HS . The optimal solutions for
each Sk can be combined into an optimal solution for S in polynomial time.
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7 Computational Experiments

Our experiments are performed on the same set of instances used in the paper
by Cabello et al. [1]. Instances City 156 and City 538 represent the 156 and 538
largest American cities, respectively, in which the area of each disk is propor-
tional to the city’s population. Instances Deaths and Magnitudes represent the
death count and Richter scale magnitude of 602 earthquakes worldwide, respec-
tively. Disks are placed at the epicenters of each earthquake, and disk areas are
proportional to the corresponding quantities [11]. When disks in an instance co-
incide, we replace them by a single disk whose border is the total border length of
the original disks. This is possible because we can assume that such disks would
occupy adjacent levels in an optimal solution. This pre-processing step reduces
the number of disks in Deaths and Magnitudes to 573 and 491, respectively.

In Table 1, column Connected shows the number of connected components
in GS for each instance, with the number of disks in the largest component in
parentheses. Column Strongly Connected shows the resulting number of com-
ponents (and largest component) after we apply the decomposition of Propo-
sition 13. Proposition 12 yields further decomposition, as shown under column
2-Connected. The reductions in problem size are remarkable. City 538 can now
be solved by optimizing over sets of disks no larger than one tenth of its original
size. Solving the original instances is now equivalent to solving 671 significantly
smaller instances. Overall, the size of our largest instance dropped from 573 to
116 disks.

Table 1. Number of components and largest component before/after decomposition

Instance # Disks Connected Strongly Connected 2-Connected

City 156 156 38 (57) 45 (56) 53 (29)
City 538 538 185 (98) 213 (94) 240 (53)
Deaths 573 134 (141) 317 (85) 333 (70)
Magnitudes 491 31 (155) 31 (155) 45 (116)

Our cut-and-branch algorithm uses the ILP model of Section 3, modeling (1)
as SOS1, substituting (9) for (4), and adding (11), (17)–(20) at the root node.
(Inequalities (14) did not help computationally.) Because |K| can be exponen-
tially large, rather than including all of (3), we heuristically look for an edge
covering of GS by maximal cliques [9]. Alternatively, we also tried replacing (3)
with yip + yjp ≤ 1 for each level p and all (i, j) ∈ E. Although theoretically
weaker, the latter formulation performed better in our experiments. This might
be explained by the sparser coefficient matrix of the weaker model, which typ-
ically yields easier-to-solve linear relaxations. Finally, instead of computing the
exact value of m as in Proposition 1, which is NP-Hard [6], we use m = n in
every run because the exact m is equal to n in many of the large components.

Our model was implemented in C++, using CGAL [13] for data extraction.
We use XPRESS-Optimizer [4] version 20.00 to solve each problem on a 2.4GHz
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Intel R© CoreTM2 Quad processor, with 4GB of RAM. We limit each run to five
hours of CPU time.

7.1 Numerical Results

For comparison purposes, we use the O(n2 log n) heuristic from [1,2] to find good
feasible solutions. Despite being a Max-Min heuristic, its solutions also perform
well in terms of the Max-Total objective.

Out of the 671 components obtained through decomposition, all but the five
or six largest ones from each original instance are easily handled by our strength-
ened ILP model. We will focus on them first.

For components with |Sk| ≤ 2, the solution is trivial. For the remaining easy-
to-solve components, we summarize our results in Table 2. Column Comp. w/
|Sk| > 2 indicates how many easy components from the corresponding original
instance have more than two disks. The next nine columns indicate the mini-
mum, average, and maximum values of component size, followed by the number
of search nodes and CPU time required to find an optimal solution, respec-
tively. When compared to the heuristic solutions, the optimal solutions to the
67 problems from Table 2 are 13.2% better on average (min = 0.0% and max =
158.4%).

Table 2. Average results over smallest non-trivial components of each instance

Original Comp. w/ |Sk| Nodes Time (in sec.)
Instance |Sk| > 2 Min Avg Max Min Avg Max Min Avg Max

City 156 11 3 5.3 14 1 20.8 213 0 3.5 38
City 538 20 3 5.4 12 1 11.9 145 0 0.4 5
Deaths 22 3 4.7 10 1 5.8 93 0 0.1 1
Magnitudes 14 3 4.7 10 1 1.8 7 0 0.1 1

The results obtained with the five (or six) most challenging components of
each original instance appear in Table 3. Component names are written as “α-
β-γ (δ)”, where α identifies the instance, β-γ indicates that this is the γ-th
component generated by Proposition 12 when applied to the β-th component
generated by Proposition 13, and δ is the number of disks. In Table 3, Base
Value represents the total border length of arcs r that are visible in any feasible
solution (SI

r = ∅). This value is subtracted from the solution values in the
remaining columns. Best Feasible and Best UB are the best lower and upper
bounds on the optimal value found within the time limit, respectively (optimal
solutions appear in bold). Column % Gap shows the relative difference between
the lower and upper bounds, and % Above Heur. indicates how much better the
best known lower bound is with respect to the heuristic solution discussed above.

Instance City 156 presented no difficulties, having all of its five largest com-
ponents solved in less than 8 minutes. In Figure 6, we can perceive subtle dif-
ferences, highlighted in light gray, between the optimal solutions for Max-Min
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Table 3. Results on largest components from each original problem instance

Base Best Best % % Above
Component Value Feasible UB Gap Heur. Nodes Time (s)

156-18-0 (7) 63.97 12.91 12.91 0 0 1 0
156-3-2 (8) 39.84 40.99 40.99 0 8.5 7 0
156-3-0 (14) 66.15 71.17 71.17 0 7.8 213 39
156-2-0 (26) 167.22 138.05 138.05 0 3.1 5949 381
156-2-1 (29) 219.36 153.85 153.85 0 1.4 117 10

538-47-2 (17) 26.75 25.27 25.27 0 2.0 2463 1259
538-3-0 (26) 34.27 39.19 39.19 0 15.0 23589 9562
538-29-1 (26) 46.48 36.40 36.40 0 4.3 1143 1260
538-1-6 (29) 21.98 43.51 47.05 8.0 9.6 2399 18000
538-1-0 (51) 77.37 82.13 107.35 30.7 0.0 22 18000
538-24-0 (53) 18.98 58.50 186.23 218.3 0.0 1 18000

death-6-0 (12) 953.08 60.16 60.16 0 0.0 51 1
death-8-0 (14) 68.05 39.65 39.65 0 3.1 87 0
death-0-0 (24) 175.78 145.74 145.74 0 5.7 4925 199
death-3-0 (24) 441.75 323.18 323.18 0 1.3 3919 210
death-2-0 (70) 725.28 964.66 1652.02 71.2 0.0 1 18000

mag-5-1 (25) 214.92 593.74 593.74 0 3.7 965 9609
mag-6-0 (26) 217.21 579.58 610.99 5.4 5.0 3385 18000
mag-1-1 (39) 417.32 919.28 1350.23 46.9 0.0 3 18000
mag-5-0 (81) 601.79 1741.24 2317.66 33.1 0.0 1 18000
mag-1-0 (113) 581.41 2743.68 - - 0.0 1 18000
mag-7-0 (116) 700.37 2622.46 - - 0.0 1 18000

and Max-Total problems for this instance. We found optimal or near optimal
solutions to the first four of the largest components of City 538, with significant
improvements in quality with respect to the heuristic solutions. The two largest

Fig. 6. Optimal solutions for City 156 to Max-Min [2] and Max-Total problems,
respectively
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components of City 538 turned out to be more challenging, with sizable gaps
remaining after five hours of computation. All but one of the largest earthquake
death components were solved to optimality.

As was the case with component 538-24-0, the time limit was exhausted during
the solution of death-2-0 even before branching started. The largest components
obtained from the decomposition of earthquake magnitudes turned out to be
the most challenging ones. Note that we do not have valid upper bounds for
instances mag-1-0 and mag-7-0 because the time limit was not even enough to
solve their first linear relaxation. Overall, we were able to find optimal solutions
to 662 out of the 671 components derived from our original four instances.

Cutting planes (11) and (17)–(20) were essential in achieving the results in
tables 2 and 3. With those cuts, the number of search nodes was 54 times smaller
on average, with some cases achieving reductions of almost three orders of mag-
nitude. (Five of the 21 hardest components — six overall — would not have been
solved to optimality without cuts.) As a consequence, computation times were
also drastically reduced.

Because of its direct relationship to the amount of overlapping between disks,
the number of arcs in an instance/component is a better measure of difficulty
than the number of disks. Our strengthened ILP model appears to be capable of
handling about 600 to 700 arcs in five hours of CPU which, for our benchmark
set, roughly corresponds to instances having between 24 and 26 disks. Table 4
contains more details about the size of our five largest components and how
big their ILP formulation is before and after the inclusion of cuts. Because the
number of cuts is small, we opted not to implement a branch-and-cut algorithm.

Table 4. Number of arcs and size of ILP formulation for the 5 largest components

# Rows # Rows
Component # Disks # Arcs # Cols. before cuts after cuts

538-24-0 53 3753 6562 3026565 3035839
death-2-0 70 1366 6266 620970 624115
mag-5-0 81 2059 8620 914490 919623
mag-1-0 113 4318 17087 3733407 3744116
mag-7-0 116 3759 17215 2792468 2801845

8 Conclusion

We propose a novel ILP formulation to optimize stacking drawings of propor-
tional symbol maps (PSMs) with the objective of maximizing the total visible
border of its symbols (opaque disks, in our case). By studying structural and
polyhedral aspects of PSMs, we devised effective decomposition techniques and
new families of facet-defining inequalities that greatly reduce the computational
effort required to solve the problem. These improvements enabled us to find
the first provably optimal solutions to some of the real-world instances stud-
ied in [1,2]. Because solving PSM instances still pose great challenges when the
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number of arcs exceeds 1000 or so, we continue to study the PSM polyhedron in
search of new families of cutting planes and/or alternative formulations.
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