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Abstract. The global constraint sum can be used as a tool to imple-
ment summations over sets of variables whose indices are not known in
advance. This paper has two major contributions. On the theoretical side,
we present the convex hull relaxation for the sum constraint in terms of
linear inequalities, whose importance in the context of hybrid models is
then justified. On the practical side, we demonstrate the applicability
of the sum constraint in a scheduling problem that arises as part of the
development of new products in the pharmaceutical and agrochemical
industries. This problem can be modeled in two alternative ways: by us-
ing the sum constraint in a natural and straightforward manner, or by
using the element constraint in a trickier fashion. With the convex hull
relaxation developed earlier, we prove that the linear relaxation obtained
from the former model is tighter than the one obtained from the latter.
Moreover, our computational experiments indicate that the CP model
based on the sum constraint is significantly more efficient as well.

1 Introduction

The global constraint sum can be used as a tool to implement summations over
sets of variables whose indices are not known in advance. These are referred to
as variable index sets. When studying a scheduling problem in the context of
the development of new products in the agrochemical and pharmaceutical in-
dustries, we were faced with a subproblem where the sum constraint appears as
a natural modeling candidate. We baptize this problem as the Sequence Depen-
dent Cumulative Cost Problem (SDCCP), and we describe it in more detail in
Sect. 2.1. The difficulties faced by previous attempts to solve the original main
problem [5,9] indicate that a combination of Mathematical Programming and
Constraint Programming methodologies might produce improved results.

The contributions of this paper are twofold. Firstly, from a hybrid modeling
perspective, we give a first step toward better understanding the set of feasi-
ble solutions of the sum constraint by presenting its convex hull relaxation in
terms of linear inequalities. Building on this result, we look at two alternative
formulations of the SDCCP: one using the sum constraint and another using the
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element constraint. We then show that the former is better than the latter in a
well defined sense, i.e. its linear relaxation gives a tighter bound. Secondly, on the
purely Constraint Programming side, our computational results for the SDCCP
indicate that a model that uses the sum constraint also has the advantage of
being more natural, more concise and computationally more efficient than the
alternative model with the element constraint alone.

The remainder of this text is organized as follows. In Sect. 2, we describe
the semantics of the sum constraint and we present a real-world example of its
applicability. In Sect. 3, we analyze the importance of having a linear relax-
ation for the sum constraint, and for any global constraint in general, from the
viewpoint of a hybrid modeling paradigm. Given this motivation, in Sect. 4 we
present the best possible linear relaxation of the sum constraint, i.e. its convex
hull. Within the idea of obtaining better dual bounds for optimization problems
addressed by a combination of solvers, it then makes sense to assess the rela-
tive strengths of relaxations provided by alternative models of a given problem.
Section 5 presents such a comparison for the SDCCP. Computational results on
some randomly generated instances of that problem are given in Sect. 6. Finally,
Sect. 7 summarizes our main conclusions.

2 The Sum Constraint and Its Applications

The main purpose of the sum constraint is to implement variable index sets, as
defined below.

Definition 1. Let Sj1 , . . . , Sjd
be sets of indices in {1, . . . , n}, and let c1, . . . , cn

be constants. If y is a variable with domain Dy = {j1, . . . , jd}, the constraint
sum(y, (Sj1 , . . . , Sjd

), (c1, . . . , cn), z) states that

z =
∑
j∈Sy

cj . (1)

That is, the ci’s on the right hand side of (1) are not know a priori. They are
function of the variable y. An extended version of this constraint exists where
each constant ci is replaced by a variable xi. One can think of the well known
element constraint as a special case of the sum constraint in which we have Sj =
{j} for all j ∈ {1, . . . , n}. Algorithms for achieving hyper arc consistency for
the sum constraint with constant terms, and a slightly weaker version of bounds
consistency for the case with variable terms are presented in [6].

The next section introduces a scheduling problem that turns out to be a
natural application of the sum constraint.

2.1 The Sequence Dependent Cumulative Cost Problem

Let us define the Sequence Dependent Cumulative Cost Problem (SDCCP) as
follows. Suppose we are given a set of n tasks that have to be scheduled so
that each task is assigned a unique and distinct position in the set {1, . . . , n}.
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Let qi be the position assigned to task i ∈ {1, . . . , n}, and let pj contain an
arbitrary value associated to the task assigned to position j. We are interested
in computing

vi =
∑

1≤j<qi

pj , ∀ i ∈ {1, . . . , n} . (2)

Two possible ways of computing vi are: by using variable subscripts

vi =
n∑

j=1

pmax{0, qi−qj} (with p0 = 0) (3)

or by using variable index sets in a more natural way

vi =
qi−1∑
j=1

pj . (4)

Apart from these constraints, we also have upper and lower bounds on the value
of qi, for every i. In job-shop scheduling terminology, these can be thought of as
release dates and due dates. Finally, we are interested in minimizing

∑n
i=1 civi,

where ci is the cost of performing task i.
This problem appears in the context of scheduling safety/quality tests un-

der resource constraints. It is part of the New Product Development Problem
(NPDP), which arises in the pharmaceutical and agrochemical industries and
has been studied by many authors [3,5,9,10]. In the NPDP, a given set of prod-
ucts (e.g. newly created drugs) have to pass a series of tests enforced by law
before being allowed to reach the market. A stochastic component is present in
the sense that each test has a probability of failure. In case one of the tests for
a certain product fails, all subsequent tests for that same product are canceled
and rescheduling is often necessary in order to make better use of the available
resources. The expected cost of test i is given by the probability of executing the
test times the cost of performing it. In turn, this probability equals the product
of the success probabilities of every test that finishes before test i starts. An-
other relevant issue is that we usually have technological precedences among the
tests, which enforce an initial partial sequencing and contribute to the initial
lower and upper bounds on the qi variables, as mentioned earlier. The objective
function of the NPDP seeks to minimize the total cost of performing all the re-
quired tests, while satisfying constraints on the number of available laboratories
and capacitated personnel. The total cost also takes into account other factors
such as a decrease in income due to delays in product commercialization, and
the possibility of outsourcing the execution of some tests at a higher price. As
reported in [9], the NPDP is a very hard problem to solve, even when the number
of products is small.

Although the objective function of the NPDP turns out to be nonlinear, Jain
and Grossmann [9] show that it can be accurately approximated by a piecewise
linear function after using a logarithmic transformation. In this approximation,
which we are going to consider here, one needs to calculate, for each test i,
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an expression of the form (2), where pj equals the logarithm of the success
probability of the test assigned to position j. As was done in [9], an immediate
Mixed Integer Programming (MIP) formulation of (2) would look like

vi =
n∑

j=1, j �=i

yjipj , ∀ i ∈ {1, . . . , n} , (5)

where yji = 1 if test j precedes test i and yji = 0 otherwise. We are unaware
of any previous work that addresses the SDCCP alone via an MIP approach. In
this paper, we will only use CP to tackle the SDCCP and we will not explicitly
evaluate MIP models for it.

3 The Logic-Based Modeling Paradigm

The concept of logic-based modeling is far more general and powerful than what
is presented in this paper. In [6], Hooker gives a lot of illustrative examples and
develops the topic to a large extent. The basic philosophy of this paradigm is
very similar to the one behind the Branch-and-Infer [4], Mixed Logical/Linear
Programming [7] or Branch-and-Check [11] frameworks. That is, a problem can
be modeled with the Mixed Integer Programming (MIP) language of linear in-
equalities and also with the more expressive language of Constraint Program-
ming (CP). Then, each type of constraint is handled by its specific solver in a
collaborative effort to find an optimal solution to the original problem. That
collaboration can be done in a myriad of ways and the best choice will depend
on the structure of the problem being studied.

In real world situations, one can usually identify substructures or smaller
parts of a problem that possess nice or well studied properties. These can even
be parts of other known problems that, when put together, define the problem
under consideration. When trying to write an MIP model, the modeler is aware of
the structure of the problem and how its different parts are connected. However,
given the limited expressive power of the vocabulary of linear inequalities, much
of this structure will be lost during the translation phase. Many state-of-the-
art MIP softwares have algorithms that try to identify some structure inside the
linear programs in order to take advantage of them. For example, they can try to
use some valid cuts that have been developed for that particular class of problems
and improve the quality of the Linear Programming (LP) relaxation, or even
apply a different, more specialized, algorithm such as the Network Simplex. But
this is not always effective. The more localized view of the problem substructures
is usually lost or becomes unrecognizable, and the solver can only work with the
global picture of a linear (integer) program. Moreover, a significant portion of
the cutting plane theory developed so far is not a default component of current
MIP packages.

On the other hand, the Constraint Programming (CP) community has done a
lot of work on special purpose algorithms tailored to solve Constraint Satisfaction
Problems [12] through local inference inside global constraints.
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Looking at the CP and Operations Research (OR) worlds, it is not hard to
see that they can benefit from each other if the local and global views are com-
bined properly. In the logic-based modeling framework, the modeler is able to
write the problem formulation with both linear inequalities and more expressive
global constraints or logic relations that can better capture and exploit some
local structure in the problem. Obviously, this hybrid formulation needs both an
LP solver and a constraint solver in order to be useful. But, in principle, this
would be transparent to the end-user. In essence, the whole mechanism works
as follows. The linear constraints in the logic-based formulation are posted to
the LP solver, as usual, and some of them may also be posted to the constraint
solver. The constraint solver handles the constraints that cannot be directly
posted to the LP solver (e.g. global constraints). When applicable, the contin-
uous relaxation of some global constraints is also sent to the LP solver so as
to strengthen the overall relaxation, providing better dual bounds. These linear
relaxations of global constraints are sometimes referred to as dynamic linear re-
laxations, because they are supposed to change according to the way the search
procedure evolves. This idea also plays a key role behind increasing the perfor-
mance of hybrid decomposition procedures like Benders decomposition [2] or,
more generally, Branch-and-Check, as argued by Thorsteinsson [11].

It is important to notice that some global constraints have known continuous
relaxations that can be added to the set of linear inequalities that are sent to the
LP solver. Nevertheless, there are also global constraints for which a continuous
relaxation is either not known or too large for practical purposes. In these cases,
when building the linear relaxation of the entire logic-based formulation, these
global constraints are simply removed and the LP solver ignores their existence.
The overall linear relaxation derived from a logic-based formulation is often
smaller and weaker than what would be obtained from a pure MIP formulation.
On one hand, this allows for a faster solution of the associated linear programs.
On the other hand, if we make use of an implicit enumeration algorithm like
branch-and-bound, the weaker bounds can result in a larger search tree. Domain
reductions resulting from constraint propagation at each node of the tree may
help compensate for that.

Given this motivation, the next two sections develop the strongest possible
linear relaxation for the sum constraint and theoretically assess its effectiveness
when applied to the SDCCP.

4 The Convex Hull Relaxation of the Sum Constraint

When dealing with linear optimization problems over disjunctions of polyhedra
(see [1]), the convex hull relaxation is the best that one can hope for. More
precisely, if Q is the union of a number of nonempty polyhedra and max{f(x) :
x ∈ Q} is attained at an extreme point x∗ of Q, there exists an extreme point x′

of the convex hull of Q such that f(x′) = f(x∗).
From now on, we assume that z ≥ 0, xi ≥ 0 for all i ∈ {1, . . . , n}, and y

is an integer variable whose domain has size |Dy| = d. For each j ∈ Dy, Sj ⊆
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{1, . . . , n} is a set of indices. We will denote by conv(Q) the convex hull of an
arbitrary set Q ∈ IRm, for any m ∈ IN. Also, x and x̄ are n-dimensional vectors
whose elements are referred to by subscripts, e.g. xi and x̄i.

4.1 The Constant Case

For all i ∈ {1, . . . , n}, let ci be integer constants. Then, the sum constraint

sum(y, (Sj1 , . . . , Sjd
), (c1, . . . , cn), z) (6)

represents the disjunction

∨
j∈Dy


z =

∑
i∈Sj

ci


 . (7)

Proposition 1. The convex hull of (7) is given by

min
j∈Dy




∑
i∈Sj

ci


 ≤ z ≤ max

j∈Dy




∑
i∈Sj

ci


 .

Proof. For each j ∈ Dy, let tj =
∑

i∈Sj
ci. Notice that (7) is a one-dimensional

problem in which z can take one of |Dy| possible values tj ∈ IR. The convex hull
of these points is simply the line segment connecting all of them. 	


4.2 The Variable Case

The interesting case is when the list of constants is replaced by a list of variables.
This other version of the sum constraint, sum(y, (Sj1 , . . . , Sjd

), (x1, . . . , xn), z),
represents the disjunction

∨
j∈Dy


z =

∑
i∈Sj

xi


 . (8)

Lemma 1. Let I =
⋂

j∈Dy
Sj and, for every j ∈ Dy, let S′

j = Sj \ I. If I �= ∅,
(8) is the projection of (9)–(10) onto the space of z and x. Moreover, the convex
hull of (9)–(10) is given by (9) and the convex hull of (10), together with the
non-negativity constraints z ≥ 0, x ≥ 0 and w ≥ 0.

z =
∑
i∈I

xi + w (9)

∨
j∈Dy


w =

∑
i∈S′

j

xi


 . (10)
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Proof. Clearly, for any point (z̄, x̄) ∈ IR1+n satisfying (8), it is easy to find a
w̄ ∈ IR such that (z̄, x̄, w̄) ∈ IR1+n+1 satisfies (9)–(10). For instance, if (z̄, x̄)
satisfies the rth disjunct in (8) (i.e. the one with j = r), take w̄ =

∑
i∈S′

r
xi.

Conversely, let (z̄, x̄, w̄) satisfy (9) and the rth disjunct in (10). Then, (z̄, x̄)
satisfies the rth disjunct in (8). For the last part, let conv(10) denote the convex
hull of (10). Also, let A be the set of points in IR1+n+1 defined by (9)–(10)
and let B be the set of points in IR1+n+1 defined by the intersection of (9) and
conv(10). We want to show that conv(A) = B.

conv(A) ⊆ B : Any point in A is built in the following way: pick a point (x̄, w̄)
that satisfies one of the disjuncts in (10) and then set z̄ =

∑
i∈I x̄i + w̄.

Any point p3 ∈ conv(A) can be written as p3 = λp1 + (1 − λ)p2, for some
λ ∈ [0, 1] and some p1 = (z̄1, x̄

1, w̄1) and p2 = (z̄2, x̄
2, w̄2) from A, built as

indicated before. To see that p3 = (z̄3, x̄
3, w̄3) ∈ B, notice that p3 ∈ conv(10)

because both p1 and p2 satisfy (10). Finally, p3 also satisfies (9) because
z̄3 = λz̄1 + (1 − λ)z̄2 =

∑
i∈I x̄

3
i + w̄3.

B ⊆ conv(A) : Any point in conv(10) can be written as (z̄, x̄, w̄)=λ(z̄1, x̄
1, w̄1)+

(1−λ)(z̄2, x̄
2, w̄2), where p1 = (z̄1, x̄

1, w̄1) and p2 = (z̄2, x̄
2, w̄2) satisfy some

disjuncts in (10). When z̄ =
∑

i∈I x̄i + w̄, then p = (z̄, x̄, w̄) ∈ B. To see
that p ∈ conv(A), simply notice that p1 and p2 can always be chosen with
z̄1 =

∑
i∈I x̄

1
i + w̄1 and z̄2 =

∑
i∈I x̄

2
i + w̄2, i.e. points in A. 	


Before stating the main theorem of this section, we mention an auxiliary result
that can be easily proved with standard arguments from Convex Analysis.

Lemma 2. Let S be an arbitrary set in IR�+m and let Proj�(S) be the projection
of S onto the IR� space. Then, Proj�(conv(S)) = conv(Proj�(S)).

Theorem 1. Let I and S′
j, for all j ∈ Dy, be defined as in Lemma 1. Let

U =
⋃

j∈Dy
S′

j. The convex hull of (8) is given by the projection of (9) and (11)
onto the space of z and x, with z ≥ 0 and x ≥ 0.

0 ≤ w ≤
∑
i∈U

xi . (11)

Proof. By lemmas 1 and 2, it suffices to show that (11) is the convex hull of
(10). Clearly, every point that satisfies (10) also satisfies (11). To complete the
proof, we need to show that any point that satisfies (11) is a convex combination
of points satisfying (10). Let (x̄, w̄) satisfy (11), and let K = |U | + 1. The role
of K is to ensure that the sum of the multipliers in (12) is equal to 1. From (11),
there exists α ∈ [0, 1] such that w̄ = α

∑
i∈U x̄i. We can write (x̄, w̄) as

(
x̄
w̄

)
=

α

K

∑
i∈U

(
Kx̄ie

i

Kx̄i

)
+

(1 − α)
K

∑
i∈U

(
Kx̄ie

i

0

)
+

1
K

(
Kū
0

)
, (12)

where ei is the ith unit vector, and ūi = x̄i for every i ∈ {1, . . . , n} \ U and
ūi = 0 otherwise. Notice that every point (Kx̄ie

i,Kx̄i) satisfies the jth disjunct
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for some j such that i ∈ S′
j . Also, since

⋂
j∈Dy

S′
j = ∅, for every i ∈ U there exists

a disjunct k that is satisfied by the point (Kx̄ie
i, 0). Namely, any k such that

i /∈ S′
k. Finally, (Kū, 0) trivially satisfies any disjunct in (10) by construction.

	

After Fourier-Motzkin elimination of w, we get∑

i∈I

xi ≤ z ≤
∑

i∈I∪ U

xi .

For the special case when I = ∅, we have z = w and the previous proof shows
that the convex hull of (8) is given by (11) with w replaced by z, and the non-
negativity constraints z ≥ 0 and x ≥ 0.

5 Comparing Alternative Formulations for the SDCCP

Some parts of the NPDP described in Sect. 2.1 present clearly recognizable
substructures that could be explored in the context of a logic-based modeling
framework. For instance, besides the SDCCP, it is possible to model the influence
of the resource limitations on the final schedule of tests by using the global
constraint cumulative in a very natural way. In this paper, however, we will only
concentrate on the role of the sum constraint as a tool to model the SDCCP.

Let p0 = 0. We can implement the variable subscripts in (3) with (13)–(15).

yij = qi − qj + n, ∀ j = 1, . . . , n, j �= i (13)

element(yij , [
n times︷ ︸︸ ︷

p0, . . . , p0, p1, . . . , pn−1], zij), ∀ j = 1, . . . , n, j �= i (14)

vi =
n∑

j=1, j �=i

zij . (15)

From (13), the domain of yij is Dyij ⊆ {1, . . . , 2n − 1}. The values between 1
and n represent the situations when qi ≤ qj , which are of no interest. That is
why the first n variables in the second argument of (14) are set to zero. The
variable index sets in (4) can be implemented as

sum(qi, [{1}, {2}, {2, 3}, {2, 3, 4}, . . . , {2, . . . , n}], [p0, p1, . . . , pn−1], vi) . (16)

The next result states that, from the viewpoint of a Linear Programming relax-
ation, we only need to consider the variable index set formulation (16).

Theorem 2. For each i ∈ {1, . . . , n}, let the initial domain of qi be Di =
{1, . . . , n}. If we impose the constraint alldifferent(q1, . . . , qn), the bounds on vi

given by the relaxation of (16) are at least as tight as the bounds given by the
relaxation of (13)–(15).

To prove this theorem, we need an auxiliary result that follows from the pigeon-
hole principle.
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Lemma 3. Let A = {a1, . . . , ak} ⊆ {1, . . . , n}, and let q1, . . . , qn have initial
domains D1 = · · · = Dn = {1, . . . , n}, respectively. When we require the con-
straint alldifferent(q1, . . . , qn), there exist at least k distinct variables qi1 , . . . , qik

such that a1 ∈ Di1 , . . . , ak ∈ Dik
.

Proof of Theorem 2. The convex hull relaxation of (14) gives 0 ≤ zij ≤∑
k∈Dyij

, k≥n pk−n, for all j = 1, . . . , n, j �= i (see [6] for a proof). Therefore, we
can write

0 ≤ vi ≤
n∑

j=1


 ∑

k∈Dyij
, k≥n

pk−n


 . (17)

Let S1 = {0} and Sj = {1, . . . , j − 1}, for all j = 2, . . . , n. As before, let
U =

⋃
j∈Di

Sj . By Theorem 1, the convex hull relaxation of (16) is given by

0 ≤ vi ≤
∑
k∈U

pk . (18)

We want to show that the RHS of (18) is always less than or equal to the RHS
of (17). We divide the proof in 3 sub-cases.

qi = 1 : Clearly, both (17) and (18) give vi = 0.
qi = b > 1 : In this case, the RHS of (18) reduces to

∑b−1
k=1 pk. Notice that, for

any j, Dyij will contain values larger than n if and only if Dj contains values
smaller than b. But, by Lemma 3, for every number a ∈ {1, . . . , b− 1} there
exists at least one variable qj such that a ∈ Dj. Hence, the RHS of (17)
reduces to

∑b−1
k=1 ckpk, where ck ≥ 1.

|Di| = d ≥ 2 : Let Di = {b1, . . . , bd}, with b1 < · · · < bd. The RHS of (18)
reduces to

∑n
k=1 ckpk, where ck = 1 if k ∈ U , and ck = 0 otherwise. We

will show that the RHS of (17) reduces to
∑n

k=1 c̄kpk, with c̄k ≥ ck for
every k = 1, . . . , n. Let us start by calculating c̄1, that is, the number of
variables qj for which n+ 1 ∈ Dyij . Notice that, for every j, n+ 1 ∈ Dyij if
and only if Dj contains at least one of b1−1, b2−1, . . . , bd−1. By Lemma 3,
there exist at least d such Dj ’s (d − 1 if b1 = 1). Hence, c̄1 ≥ d (d − 1
if b1 = 1). Analogously, for k = 2, . . . , b1 − 1, we want to know how many
distinct Dj ’s contain at least one of the numbers b1 − k, b2 − k, . . . , bd − k.
This will be equal to the number of distinct Dyij ’s that contain the value
n + k. By the same reasoning, we have that c̄k ≥ d whenever 1 ≤ k < b1.
If b1 ≤ k < b2, b1 − k ≤ 0 and we need only consider the d − 1 positive
numbers b2 − k, b3 − k, . . . , bd − k. Again, there are at least d− 1 distinct qj

variables whose domains contain at least one of these numbers. So, c̄k ≥ d−1
for k = b1, . . . , b2−1. We can now repeat this argument until k = bd −1. 	

To see that (18) can be strictly stronger than (17), let us consider the fol-

lowing example. Let n = 3 and q1, q2, q3 ∈ {1, 2, 3}. Then, when we look
at v1, y12, y13 ∈ {1, . . . , 5}. From (17) we get v1 ≤ 2p1 + 2p2, whereas from
(18) we get the inequality v1 ≤ p1 + p2, which strictly dominates the previous
one, since p1 and p2 are non-negative.
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6 Implementation of the Alternative Models

In order to describe the two CP models for the SDCCP, we will recall some
of the notation introduced in Sect. 2.1. Let prob(i) denote the probability of
success of task i ∈ {1, . . . , n}. Since we have been assuming that all variables are
non-negative, the variable pj will represent − log(prob(task assigned to position
j)), for every j ∈ {1, . . . , n}. In this fashion, we can state the SDCCP as a
maximization problem with vi ≥ 0 for each task i. Let qi represent the position
assigned to task i and let ci be the cost of performing it. The CP formulation of
the SDCCP can be written as

max
n∑

i=1

civi (19)

element(qi, [p1, . . . , pn],− log(prob(i))), ∀ i ∈ {1, . . . , n} (20)
< relationship between pi, qi and vi > (21)

Li ≤ qi ≤ Ui, ∀ i ∈ {1, . . . , n} , (22)

where Li and Ui are, respectively, lower and upper bounds on the value of qi.
The two alternative models differ in the way they represent constraints (21).

In the element constraint model (Model 1), we replace (21) by (13)–(15). In the
sum constraint model (Model 2), we replace (21) by (16), for all i ∈ {1, . . . , n}.

Using the ECLiPSe [8] constraint logic programming system version 5.3, we
implemented an algorithm that achieves a slightly weaker version of bounds
consistency for the sum constraint with variable terms. We also implemented a
hyper arc consistency algorithm for the version of the element constraint that
indexes a list of variables, as needed for (20). For the details regarding the
propagation algorithms and the strategies for incremental maintenance, we refer
the reader to [6]. The computational times reported in this section are given in
CPU seconds of a Sun UltraSPARC-II 360MHz running SunOS 5.7.

6.1 Computational Results

To test the performance of the two models described above, we generated random
instances of the SDCCP1. The size of the instances n, given as the number of
tasks, varies from 5 to 10. The values of ci are randomly picked from a discrete
uniform distribution in the interval [10, 100]. To control the percentage of tasks
with uncertainty in the completion, as well as the percentage of tasks with release
dates and due dates, we divided the instances in four classes. Each class is
characterized by two numbers a and b that denote, respectively, the percentage
of tasks with prob(i) < 1, and the percentage of tasks with non-trivial release
dates and due dates. The (a, b) pairs chosen for our experiments are: (33%, 33%),
(50%, 33%), (50%, 50%) and (75%, 50%). The rationale behind this choice is to
try to evaluate the behavior of the models under different problem configurations.
1 The instance generator can be made available upon request.
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Table 1. Comparison of the two CP models for the SDCCP (33%, 33%)

Model 1 Model 2
Size Optimum Backtracks Time Backtracks Time

5 312.88 2 0.10 2 0.04
6 427.04 14 1.58 7 0.37
7 572.93 67 7.75 36 1.22
8 1,163.76 149 79.10 63 8.18
9 1,183.07 1,304 518.38 328 44.33
10 1,102.39 31,152 6,293.25 4,648 308.60

For example, for problems of size 6 in class (50%, 33%), 50% of the tasks have
prob(i) chosen randomly from a uniform distribution in the interval [0, 1]. The
other half of the prob(i) values are set to 1. Also, for 33% of the tasks, Li and Ui

are randomly chosen from a discrete uniform distribution in the interval [1, 6].
For the remaining 67% of the tasks, Li = 1 and Ui = 6.

For each one of the four classes of instances, the numbers reported in tables 1
through 4 are the average values over 10 different runs for each instance size
ranging from 5 to 9, and average values over 3 runs for instances of size 10.

Our results indicate that, as the instance size increases, Model 1, which is
based on the element constraint, requires a significantly larger number of back-
tracks than Model 2, which uses the sum constraint. In terms of computational
time, solving Model 2 tends to be roughly one order of magnitude faster than
solving Model 1. One reason for this behavior can be attributed to the fact that
Model 2, besides being more compact, also provides more efficient pruning, since
Model 1 is essentially simulating the sum constraint with a number of element
constraints.

Table 2. Comparison of the two CP models for the SDCCP (50%, 33%)

Model 1 Model 2
Size Optimum Backtracks Time Backtracks Time

5 180.39 4 0.15 3 0.05
6 367.76 18 1.07 10 0.24
7 898.01 41 6.25 24 1.06
8 1,435.72 303 52.47 91 4.96
9 1,595.03 1,803 187.27 881 19.41
10 1,505.62 67,272 8,605.18 15,345 561.90
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Table 3. Comparison of the two CP models for the SDCCP (50%, 50%)

Model 1 Model 2
Size Optimum Backtracks Time Backtracks Time

5 330.01 3 0.13 3 0.04
6 444.10 7 0.67 5 0.17
7 995.88 28 6.44 14 0.94
8 1,488.54 121 68.04 48 6.28
9 995.72 1,216 293.11 358 31.74
10 2,207.05 973 524.69 121 21.15

Table 4. Comparison of the two CP models for the SDCCP (75%, 50%)

Model 1 Model 2
Size Optimum Backtracks Time Backtracks Time

5 670.65 5 0.20 4 0.05
6 825.83 8 0.47 4 0.10
7 1,241.32 46 4.05 23 0.59
8 1,713.76 96 24.19 46 3.14
9 2,346.90 1,943 233.54 869 19.86
10 2,512.04 4,025 1,794.19 1,311 155.76

7 Conclusions

We study a scheduling problem that appears as a substructure of a real-world
problem in the agrochemical and pharmaceutical industries called the New Prod-
uct Development Problem (NPDP) [5,9]. We refer to that subproblem as the
Sequence Dependent Cumulative Cost Problem (SDCCP).

Given the description of the SDCCP, the sum constraint is identified as
a natural tool, simplifying the modeling effort and making it more intuitive.
Apart from these advantages, our computational experiments show that the
sum constraint exhibits a significantly improved performance over an alternative
model that uses the element constraint. From a more theoretical point of view,
we study the characteristics of the set of feasible solutions of the sum constraint.
We provide the representation of the convex hull of this set of feasible solutions
and we prove that this linear relaxation gives tighter bounds than the linear
relaxation of the aforementioned alternative model. The relevance of this result is
related to hybrid modeling efforts. One promising idea is to use linear relaxations
of global constraints to help in the process of solving optimization problems
through a combination of solvers. These linear relaxations, or at least some
of their valid inequalities, may contribute to speed up the solution process by
improving the bounds on the optimal solution value.

As an extension of this work, one can try to look at different contexts in
which the sum constraint also fits well as a modeling device, and then compare its
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performance against other modeling possibilities. Finally, the impact of modeling
the SDCCP with the sum constraint while solving the more general NPDP is
another topic that deserves further investigation.
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