
Submitted for publication. Updated on June 19, 2015.

Modeling with Metaconstraints and
Semantic Typing of Variables

Andre A. Cire
Department of Management, University of Toronto Scarborough, acire@utsc.utoronto.ca

John N. Hooker
Tepper School of Business, Carnegie Mellon University, jh38@andrew.cmu.edu

Tallys Yunes
School of Business Administration, University of Miami, tallys@miami.edu

Recent research in hybrid optimization shows that a combination of technologies that exploits their

complementary strengths can significantly speed up computation. The use of high-level metaconstraints

in the problem formulation can achieve a substantial share of these computational gains by better

communicating problem structure to the solver. During the solution process, however, metaconstraints

give rise to reformulations or relaxations that introduce auxiliary variables, and some of the variables in

one metaconstraint’s reformulation may be functionally the same as or related to variables in another

metaconstraint’s reformulation. These relationships must be recognized to obtain a tight overall relaxation.

We propose a modeling scheme based on semantic typing that systematically addresses this problem while

providing simpler, self-documenting models. It organizes the model around predicates and declares variables

by associating each with a predicate through a keyword that is analogous to a database query. We present

a series of examples to illustrate this idea over a wide variety of applications.

Key words : modeling; hybrid methods; metaconstraints; semantics

1. Introduction

Recent research in the area of hybrid optimization shows that the right combination of

different technologies can simplify modeling and speed up computation substantially, over

a wide range of problem classes (surveyed in Hooker 2012). These gains come from the

complementary strengths of the techniques being combined, such as mathematical pro-

gramming, constraint programming, local search, and propositional satisfiability. Search,

inference, and relaxation lie at the heart of these techniques, and can be adjusted to

exploit the structure of a given problem. Exploiting structure, as a matter of fact, is a key

ingredient for successfully solving challenging optimization problems. The more structure

the user can communicate to the solver, the more it can take advantage of specialized

inference and relaxation techniques. A richer modeling environment, with an extended set

1

2 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

of constraint types, not only enables the expression of complex structures, but also results

in simpler models and that require less development and debugging time.

Highly structured subsets of constraints, as well as simpler constraints, can be written

as metaconstraints, which are similar to global constraints in constraint programming.

Syntactically, a metaconstraint is written much as linear or global constraints are written,

but it is accompanied by parameters that specify how the constraint behaves during the

solution process. For example, a metaconstraint can specify how it is to be relaxed, how it

will filter domains, and how the search procedure will branch in case it becomes violated

in the current problem relaxation. For example, let x∈Rn and consider a constraint given

by the following disjunction of two inequalities:(
a1x≤ b1

)
∨
(
a2x≤ b2

)
(1)

where a binary variable y controls which disjunct is enforced (the first if y = 1, the

second if y = 0). Assume the user wants the convex hull relaxation of this constraint to

be automatically added to the model’s overall linear relaxation. In a modeling language

supporting metaconstraints, the syntax to represent this disjunction and its treatment by

the solver might be

disj(y, a1*x <= b1, a2*x <= b2) : relax = convhull;

where the relax keyword specifies the type of relaxation (there could also be a branch

keyword to specify a way to branch on the disjunction).

When such parameters are omitted, a pre-specified default behavior is used. The

relaxation, inference, and branching techniques are devised for each constraint’s particular

structure. For example, a metaconstraint may be associated with a tight polyhedral

relaxation from the integer programming literature and/or an effective domain filter

from constraint programming. Because metaconstraints can also control the search, if

a branching method is explicitly indicated, the search will branch accordingly. Recent

versions of existing modeling languages and systems already provide some support for

metaconstraints as described above (see Section 5 for specific examples).

Although metaconstraint-based modeling offers several advantages, it raises a funda-

mental issue of variable management that must be addressed before its full potential can

be realized. As the solver relaxes and/or reformulates metaconstraints, it often creates

auxiliary variables. Variables created for different constraints may actually have the same

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 3

meaning, or they may relate in some more complicated way to each other and to variables in

the original model. The solver must recognize these relationships among variables if it is to

produce a tight overall relaxation of the problem. Going back to the disjunctive constraint

example above, the automatic convex hull relaxation of (1) would create auxiliary copies

of x, say x1 and x2, and use them to write

a1x1 ≤ b1y, a2x2 ≤ b2(1− y)

x= x1 +x2, 0≤ y≤ 1

Imagine, however, what would happen if this model contained another disjunction on x

that is controlled by the same y variable, such as

(
c1x≤ d1

)
∨
(
c2x≤ d2

)
(2)

To write the relaxation of (2), copies of x would have to be introduced, just as they were for

the relaxation of (1). But would you want the former copies of x to be related or unrelated

to the latter copies of x? (Answer: they should not only be related; they should be the

same.) The high-level modeler should not have to worry about this, and other kinds of,

low-level bookkeeping; the modeling language/system should do that automatically.

The primary purpose of this paper to address this problem with a semantic typing

scheme. We view a model as organized around user-defined multi-place predicates, whose

terms include one or more variables. A variable is declared by specifying a predicate with

which it is associated, which creates a semantic type for the variable. The user assigns

types to variables that are originally in the model, and the solver assigns types to auxiliary

variables it generates while processing metaconstraints. Relationships between variables

are then deduced from their semantic types.

In Section 2 we describe several frequently used relaxations and reformulations that

produce auxiliary variables. A complete example motivating the need for semantic typing is

included in Section 3. We formalize the relationship between semantic types and predicates

in Section 4, and review related work in Section 5. We then illustrate the use of semantic

typing on a wide range of situations in Section 6. Section 7 generalizes some of the

relationships between variables discussed earlier, and Section 8 concludes the paper.

4 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

2. Sources of Auxiliary Variables

Relaxation and reformulation are key elements of optimization methods (Hooker 2005,

2012), and both can introduce auxiliary variables. Some examples follow:

• A general integer variable xi can be reformulated as a collection of new binary variables

yij for each value of j in the domain of xi, so that xi =
∑

j jyij. The yijs may be equivalent

to variables that occur in the model or relaxations of other constraints.

• Disjunctions of linear systems such as
⋃

k∈K A
kx ≥ bk can be given a convex hull

relaxation:
Akxk ≥ bkyk, for all k ∈K

x=
∑
k∈K

xk,
∑
k∈K

yk = 1

yk ≥ 0, for all k ∈K

Note the introduction of the new variables xk and yk. Disjunctions of non-linear systems

are handled in a similar way. Frequently, different constraints are based on the same set

of alternatives (e.g., configurations of a factory), and the corresponding auxiliary variables

should be identified.

• Disjunctions can also be given big-M relaxations, which introduce binary variables

but no new continuous variables:

Akx≥ bk− (1− yk)Mk, for all k ∈K∑
k∈K

yk = 1, L≤ x≤U

yk ≥ 0, for all k ∈K

• A popular nonlinear optimization technique is McCormick factorization (McCormick

1983), which replaces nonlinear subexpressions with auxiliary variables to obtain a linear

relaxation. For example, the bilinear term xy can be linearized by replacing it with a new

variable z and adding the following constraints to the relaxation:

Lyx+Lxy−LxLy ≤ z ≤Lyx+Uxy−LxUy

Uyx+Uxy−UxUy ≤ z ≤Uyx+Lxy−UxLy

where x ∈ [Lx,Ux] and y ∈ [Ly,Uy]. Factorizations of different constraints may create

variables for identical subexpressions, and these variables must be identified to obtain a

tight relaxation.

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 5

• Piecewise-linear functions are commonly modeled with auxiliary variables. A

piecewise-linear function f(x) defined on a set of breakpoints {dk | k ∈K} can be modeled

x=
∑
k∈K

dkλk,
∑
k∈K

f(dk)λk∑
k∈K

λk = 1, λk ≥ 0, for all k ∈K

where the new variables λk form an SOS2 set (Beale and Tomlin 1970). When the problem

contains two functions f(x), g(x) based on the same break points, their reformulations

should use the same λks.

• Constraint programmers frequently model a problem using two or more related sets of

variables, only one of which is necessary to formulate the problem. The auxiliary variables

allow the user to write redundant constraints that result in more effective propagation and

therefore faster solution. For example, an assignment problem can use variables xi that

indicate which job is assigned to worker i, and variables yj that indicate which worker is

assigned to job j. The two sets of variables are related by channeling constraints j = xyj

and i= yxi
, which should be deduced by the solver if they are not explicitly written by the

modeler.

• The modeling languages of several modern optimization packages allow for convenience

statements, which may require the modeling system to introduce auxiliary variables. For

example, to index a vector v with a variable y, systems such as AMPL (Fourer et al. 2002),

OPL (Van Hentenryck et al. 1999), and Comet (Van Hentenryck and Michel 2005) allow

the user to write a variably indexed expression v[y] instead of having to explicitly use

the well-known element constraint (Van Hentenryck and Carillon 1988). The modeling

system replaces v[y] with a new variable z, which is then related to v and y through the

constraint element(y,v,z). This constraint sets z equal to the yth element of the array

v. When v[y] occurs repeatedly, it should be replaced by the same variable z, and only

one element constraint generated.

• Modeling systems, particularly in constraint programming, commonly provide high-

level statements for modeling temporal constraints in scheduling problems. For example,

global constraints may be written in terms of interval-valued variables that represent a

period of time (IBM 2009a). Constraints that use the same interval variables may give rise

to auxiliary variables that should be identified.

6 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

These and other situations can be accommodated by writing specialized code for each

one. However, semantic typing provides a general and principled method for managing

auxiliary variables. The typing mechanism can also help to structure the modeler’s thinking

and avoid modeling mistakes.

3. A Motivating Example

We begin with a simple modeling example that illustrates predicates and semantic typing.

We use a rudimentary modeling pseudo-language written in teletype font in which

reserved words appear underlined. We follow the convention that numbered pseudocode

statements are written by the user, while unnumbered statements are automatically

generated by the modeling system.

A company would like to determine how to allocate 10 advertising spots to 5 products,

with at most 4 spots for any one product. To concentrate resources, it will purchase spots

for at most 3 of the 5 products, and it will purchase 4 spots for at least one product.

Because the additional profit generated is nonlinearly related to the number of spots, we

will suppose the objective function is given in tabular form. Specifically, Pij is the additional

profit generated by allocating j spots to product i, and the objective is to maximize total

additional profit.

The problem can be formulated with a two-place predicate, allocate, that relates each

product to the number of spots allocated to it. The optimization model can begin as

follows:

1. spots in {0..4}; # Number of spots

2. product in {A,B,C,D,E}; # Product IDs

3. data P{product, spots}; # Matrix containing the profit data

4. x[i] is howmany spots allocate(product i);

Lines 1 and 2 associate sets with the user-defined concepts spots and product, and line 3

retrieves the profit data. Line 4 declares xi to be the number of spots allocated to product

i. The keyword is indicates that xi is a variable, and the phrase howmany spots indicates

that xi is an integer quantity connected with spots (howmuch would indicate a continuous

variable). We will see that such keywords as howmany, which, when, and whether provide

a great deal of flexibility for defining variable types in terms of predicates.

Variable indices can be used to model the objective max
∑3

i=1Pixi
:

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 7

5. maximize profit: sum{product j} P[i,x[i]];

To enforce the limit on the total number of spots, the user writes

6. maxspot: sum{product i} x[i] <= 10;

where maxspot is the name given to this constraint. To model the remaining constraints,

we will suppose that the modeler takes the traditional approach of using 0-1 variables. The

user lets binary variable yij be 1 when j spots are allocated to product i and declares yij

as follows:

y[i,j] is whether allocate(product i, spots j);

The predicate name allocate now occurs in two declarations, containing the keywords

which and whether. This tells the system how yij is related to xi and generates linking

constraints if the user forgets to write them explicitly:

assignment{product i}: sum{spots j} y[i,j] = 1;

link{product i}: x[i] = sum{spots j} j*y[i,j];

Now the user can write the remaining constraints:

7. choose3: sum{product i} y[i,0] >= 2;

8. choose1: sum{product i} y[i,4] >= 1;

Line 7 ensures that at most 3 products receive spots, and line 8 requires that at least one

product receive 4 spots.

When this model is loaded into the solver, the objective function in line 5 must be

linearized so that a linear relaxation, and a corresponding lower bound, is obtained. The

solver rewrites line 5 as

maximize profit: sum{product i} z[i];

and posts constraints that relate the new z[i] variables to x[i] and P:

elem{product i}: element(x[i],P[i,*],z[i]);

where P[i,*] represents the ith row of matrix P. To complete the linear relaxation of the

model, the solver relaxes the element constraint in line 12. One possible relaxation splits

xi into binary variables wij that indicate whether xi = j, and relates xi and zi to the wijs

as follows:
4∑

j=0

wij = 1, xi =

4∑
j=0

jwij , for all i (3)

zi =

4∑
j=0

Pijwij , for all i (4)

8 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

Note that wij is functionally the same variable as yij, which means the two should be

identified. Furthermore, (3) is equivalent to lines 9 and 10. Semantic typing allows the

modeling system to recognize these equivalences, resulting in a tighter linear relaxation.

When the solver generates relaxation (3)–(4), it assigns wij a semantic type as follows:

w[i,j] is whether allocate(product i, spots j);

Because this type exactly matches the one for yij in line 4, the solver replaces all occurrences

of wij in the relaxation with yij, for each pair (i, j). The solver also generates the linking

constraints in lines 7–8 if they are not already present. Examples in Section 6 illustrate

how semantic typing can deduce more complicated relationships among variables.

4. Semantic Types and Predicates

Optimization models typically declare a variable by giving it a name and a canonical type,

such as real, integer, binary, or string. However, stating that variable xi is integer does not

indicate whether that integer is the ID of a machine or the start time of an operation. In

other words, variable declarations say little about what the variable means. Some of its

meaning may be recovered by examining the constraints in which the variable appears, but

this is often ineffective. We argue that giving a more specific meaning to variables through

semantic typing can be beneficial for a number of reasons, including its ability to address

the variable management issue described above.

Semantic types can be supported by adding keywords and constructs to the grammar of

the modeling language, or through menus and a point-and-click interface. We follow the

modeling language approach throughout this paper.

We propose defining a variable’s semantic type by associating it with a predicate,

generally a multi-place predicate. The variable is defined by relating it to the predicate

by means of a keyword. In the advertising example, declaring xi to be howmany spots

allocate(product i) creates a 2-place relation allocate(product,spots) and indicates

that xi is the number of spots.

A predicate denotes a relation, or set of tuples. For instance, the predicate allocate

denotes a set of pairs consisting of a product identifier and an assigned number of spots.

We schematically indicate this relation

product spots

i xi

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 9

The relation can be viewed as a matrix in which the two columns are labeled as above and

the rows are pairs (i, xi).

Keywords like howmany and whether pose queries to the relation, much as one might

query a relational database. For example, by declaring a variable xi to be howmany spots

allocate(product i), we ask what is the spots entry of the row whose product entry

is i. By declaring yij to be whether allocate(product i, spots j), we ask whether j

is the spots entry of the row whose product entry is i.

Normally, when a declaration identifies a column with a subscripted variable such as xi,

that column should be a function of the other columns. That is, no two rows should contain

different xi entries when the other entries are the same. Thus when xi is identified with

the spots column, spots should be a function of the product column. The same principle

is illustrated by the assignment problem mentioned earlier. The variable declarations are

1. x[i] is which job assign(worker i);

2. y[j] is which worker assign(job j);

Both declarations use the predicate assign, which denotes the relation

job worker

j, xi i, yj

Because either term of the relation is a function of the other, we have a bijection given

by j = xi or i= yj. Substituting the latter into the former yields the channeling constraint

j = xyj , and substututing the former into the latter yields i= yxi
.

If we wish to allow several jobs to be assigned to one worker, we can declare xi to be a

set-valued variable:

1. x[i] is whichset job assign(worker i)

This means that xi is the set of jobs assigned to worker i. In this case, the job column

need not be a function of the worker column. The channeling constraints are

j ∈ xyj , for all j

i= yj, for all i, j with j ∈ xi

In practice, it is sometimes convenient to name a predicate after one of its terms. For

example, the cost zi incurred by activity i could be declared by introducing a predicate

incurs(activity,cost):

10 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

z[i] is howmuch cost incurs(activity i)

However, there is no real need to introduce a separate predicate name in this context. A

simpler alternative is to name the predicate cost(activity,cost) and use the declaration

z[i] is howmuch cost(activity i)

which is shorthand for the formal declaration

z[i] is howmuch cost cost(activity i)

A special case is an unsubscripted cost variable z. We could introduce a predicate

incurs(cost) and declare z to be howmuch cost incurs. However, a simpler alternative

is to name the predicate cost and declare z to be simply howmuch cost, which is shorthand

for howmuch cost(cost).

When the relaxation of a constraint (or collection of constraints) introduces new auxiliary

variables, the semantics of the constraint, together with the semantic types of its variables,

are enough to create a semantic type for the new variables. Because all variables in the

model will have precise semantic types, their underlying relationships can be detected

automatically. Variables with identical semantic types can be identified, and variables with

nonidentical but related semantic types can be connected through channeling constraints.

Every time the system detects relationships between variables, an alert (e.g. a pop-up

window) can be displayed to the user asking for confirmation. This is useful both for error

detection and training the user in the practice of semantic typing. If two variables are

identified by mistake because the user assigned them (or other variables related to them)

incorrect semantic types, such an alert would aid the user in finding and correcting the

problem. Because omitting a semantic relationship does not make the model incorrect,

when in doubt about the validity of a proposed variable relationship, the user can always

choose not to enforce it. Similar types of alerts, or error messages, can be generated when

other kinds of inconsistencies are detected in the user’s model, such as assigning identical

semantic types to distinct variables.

5. Related Work

The idea of communicating problem structure to a solver is not new; it is underexploited.

Modern linear and integer programming software such as CPLEX (IBM 2009b) and Xpress-

Optimizer (Fair Isaac Corporation 2009) can detect network structure in an optimization

model and use the more efficient network simplex method (Dantzig 1951). Special ordered

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 11

sets of type 1 or 2 (Beale and Tomlin 1970) convey additional information to a solver with

the intent of improving performance.

Metaconstraints, however, provide a more general mechanism for exploiting specific

problem structure within a model. They are a standard feature of constraint programming,

where they are known as global constraints (Beldiceanu et al. 2011) and are key to the

success of the field. Metaconstraints are also supported in one form or another by several

high-level modeling systems that go beyond constraint programming. These include AMPL

(Fourer et al. 2002), ECLiPSe (Ajili and Wallace 2003), SIMPL (Yunes et al. 2010)

(prototype), Xpress-Kalis (Heipcke 2009), and Zinc (Marriott et al. 2008). For example,

when using Gecode (Gecode Team 2006) as the constraint programming solver in AMPL,

the user can impose an alldifferent constraint on a vector of variables x and pick a bounds-

consistent propagation algorithm by using a suffix notation as follows:

alldiff{i in 1..n} x[i] suffix icl icl bnd;

In ECLiPSe the user can write

[eplex,ic]:(x + 2 >= y)

to indicate that the constraint x+ 2≥ y should be sent to both the linear programming

solver (eplex) and the constraint programming solver (ic). In Zinc, the code

var int: x :: bounds

constraint(x >= y) :: solver(lp) :: solver(fd)

indicates that bounds propagation is to be performed on the domain of variable x, and the

constraint x≥ y will be handled by an LP and a finite domain (FD) solver. In SIMPL’s

prototype modeling language, the user writes

knapsack means {

sum i a[i]*x[i] <= C

relaxation = {lp, cp}

inference = {cover}

}

to declare a metaconstraint named knapsack that consists of a knapsack constraint whose

relaxation will be handled by an LP and a CP solver, and that will infer cover inequalities

during search.

Typed modeling languages have been proposed as an approach to model management,

which is inspired by concepts from object-oriented programming. The primary goal of

12 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

model management is to allow one to combine models or use inheritance as in C++.

In an early study (Bradley and Clemence 1988), the authors present straightforward

object-oriented modeling and use types to manage variables. In Bhargava et al. (1998),

the authors give formal semantics for Ascend, which is a strongly-typed object-oriented

modeling language. SML (Geoffrion 1992a,b) is an implementation of the structured-

modeling framework that exploits the advantages of strong typing in detecting numerous

kinds of errors and inconsistencies in models. Semantic types are analyzed in Bhargava

et al. (1991) under the name of quiddity, a concept from medieval philosophy. This work

addresses the basic issue of how variable typing can allow synonymous variables to be

identified when models are combined. They show how difficult it is to design valid sufficient

conditions for identification, and they in fact do not attempt to provide valid conditions.

They only flag variables that the user may want to identify. The key idea is to describe

the quiddity of a variable with nested functions, such as cost(labor(production(truck))).

Indices are given quiddities as well as variables.

Our goal is more general than model management in one sense, and more restricted in

another. It is more general because we want to identify relations between variables other

than simple identities. It is more restricted because we are not interested in combining

models. We assume that the user writes a single model and takes care that a single

name and declaration are used for each variable. We are primarily concerned with the

management of auxiliary variables introduced by metaconstraints.

A few attempts to convey variable semantics to the solver already exist in high-

level modeling languages. In AIMMS (Bisschop and Entriken 1993, Heerink 2012), the

declaration of a set includes the declaration of an indexing variable for that set that cannot

be used elsewhere. Therefore, by stating that J is a set of jobs with index j, AIMMS

tells the solver that j is not only an integer, but also the ID of a job. When modeling

job scheduling problems, OPL (Van Hentenryck et al. 1999), Comet (Van Hentenryck and

Michel 2005), IBM ILOG CP Optimizer (IBM 2009a), and Xpress-Kalis (Heipcke 2009)

(among others) have a special entity known as an activity, which possesses special variables

named start, and end. Hence, if a is an activity, the variable a.start is not only an integer

or rational number, it represents the start time of a in the schedule. The extent to which

this specific meaning is exploited by the solver in each of the above systems is not always

clear, but the developers certainly found them to be useful in some way. In the AIMMS

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 13

example, using j for something other than indexing J would trigger an error, which helps

the user. In the activity example, the start and end variables can trigger the use of efficient

scheduling-specific algorithms such as edge-finding (Carlier and Pinson 1990). In SymChaff

(Sabharwal 2005, 2009), a SAT solver especially designed to efficiently handle symmetries,

high-level descriptions of AI planning problems written in a Planning Domain Description

Language (PDDL) can be annotated with special tags to indicate which variables (or

variable groups) are symmetric or interchangeable. These symmetries are then used by the

solver to improve branching decisions, enable symmetric learning, and reduce the search

space. In (Sabharwal 2009), the author also uses the term “semantic meaning” to refer to

the association between variables and the high-level objects they represent, which is lost

when a formula is converted to the input format of a SAT solver (e.g. the DIMACS format).

In the F# programming language, the user can declare units of measure and attach them

to variables or constants (Kennedy 2010). For example, we can define the units m (meter)

and s (second) and then write the declaration let gravityOnEarth = 9.808<m/s^2>.

In Lopes and Fourer (2009), the authors propose a graphical modeling language based

on the Unified Modeling Language (Object Management Group, Inc. 2010) to facilitate

the communication of multistage stochastic linear programs with recourse between diverse

stakeholders in an OR project. Their extended diagrams allow the modeler to achieve a

significant level of detail by using adornments, which are optional graphical markers that

“add semantic value” to the representation of elements in the model. With the aid of

adornments, many algebraic expressions can be easily derived from the model’s diagrams.

Another, secondary, role of adornments is to make it easy to spot inconsistencies between

the graphical and algebraic descriptions of the problem.

From a certain perspective, the kind of modeling language we propose would be, to a

traditional modeling language, what XML (Bray et al. 2004) is to HTML: it introduces new

grammar in a way that allows users to create their own predicates (their own sub-language).

This perspective is similar to the meta-language idea behind the embedded-languages

approach in Bhargava and Kimbrough (1993).

Several past innovations in modeling have been about how to better communicate

with a solver using a modeling language. In addition to contributing toward this goal,

metaconstraints and semantic typing also contribute to another, related and equally

important goal: better translating what resides in the modeler’s head to a modeling

14 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

language representation. Semantic typing as presented here differs from earlier work in that

it provides semantic information necessary for managing auxiliary variables in the context

of metaconstraint-based modeling. It supports the thoroughgoing use of metaconstraints

as a mechanism to convey problem structure to the solver.

6. Additional Modeling Examples
6.1. Latin Squares

A Latin Square of order n is an n× n square of numbers ranging from 1 to n such that

the numbers in each row and column are distinct. Latin Squares (a.k.a. Euler squares of

degree 1) were first proposed by Euler (Euler 1849). They have many practical applications

such as experimental design, error-correcting codes, and parallel processor scheduling. The

problem can be formulated in at least three ways: by assigning numbers xij to row-column

pairs (i, j), by assigning columns yik to row-number pairs (i, k), and by assigning rows zjk to

column-number pairs (j, k). To obtain stronger propagation, we will formulate the problem

in all three ways simultaneously and allow the solver to deduce channeling constraints. For

this we need only one 3-place predicate assign. The declarations are:

1. row, column, number in {1..n};

2. x[i,j] is which number assign(row i, column j);

3. y[i,k] is which column assign(row i, number k);

4. z[j,k] is which row assign(column j, number k);

The three formulations can now be written using the well-known all-different constraint:

5. numrow{row i}: alldiff(x[i,*]); numcol{column j}: alldiff(x[*,j]);

6. colrow{row i}: alldiff(y[i,*]); colnum{number k}: alldiff(y[*,k]);

7. rowcol{column j}: alldiff(z[j,*]); rownum{number k}: alldiff(z[*,k]);

The assign predicate denotes the relation

row column number

i, zjk j, yik k,xij

Because the three terms correspond to which variables, channeling constraints connect all

three variables. For example, substituting j = yik and k = xij into i = zjk yields the first

channeling constraint below:

i= zyikxij
, j = yzjkxij

, k= xzjkyik , for all i, j, k

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 15

The remaining constraints are similarly derived. To create a linear relaxation of the

channeling constraints, the system introduces three new sets of binary variables, δxijk, δ
y
ijk,

δzijk, as well as the following additional constraints:

xij =
∑
k

kδxijk and
∑
k

δxijk = 1, for all i, j

yik =
∑
j

jδyijk and
∑
j

δyijk = 1, for all i, k

zjk =
∑
i

iδzijk and
∑
i

δzijk = 1, for all j, k.

Here is where semantic typing makes a difference. Given the semantic types of x, y, and

z, together with the semantics of the variable-indexing constraints being relaxed, variables

δxijk, δ
y
ijk, and δzijk automatically receive the same semantic type whether assign(row

i, column j, number k). Hence, the system infers that the problem relaxation can be

strengthened by adding

δxijk = δyijk = δzijk, for all i, j, k.

6.2. Nurse Scheduling

This example was taken from Section 4.6 of Hooker (2011). Nurses are to be assigned to

shifts on each day of the week. The assignments can be indicated with variables wsd that

indicate which nurse to assign to shift s on day d, or variables tid that indicate which shift

to assign to nurse i on day d. Some of the constraints can be written with standard global

constraints using wsd, some using tid, and some using either set of variables. The global

constraints are therefore combined in a single model that contains both types of variables,

which are declared:

1. nurse in {a,b,c,...}; shift in {1,2,3}; day in {Mon,...,Sun};

2. w[s,d] is which nurse assign(shift s, day d);

3. t[i,d] is which shift assign(nurse i, day d);

The assign predicate denotes the relation

nurse shift day

i,wsd s, tid d

Because only two columns are associated with which variables, the system deduces two

sets of channeling constraints:

i=wtidd, for all i, d

16 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

s= twsdd, for all s, d

The first is obtained by substituting s= tid into i=wsd, and similarly for the second. When

relaxing these constraints, the system creates auxiliary binary variables δtsid for tid and δwisd

for wsd and infers the semantic types

deltat[s,i,d] is whether assign(nurse i, day d, shift s);

deltaw[i,s,d] is whether assign(shift i, day d, nurse i);

The variables δtsid and δwisd receive the same semantic type and are therefore identified.

The terms of the predicate assign are listed in a different order, but it is nonetheless the

same predicate because the same multiset of terms appears. The system posts the linking

constraints

tid =
∑
s

sδtsid and
∑
s

δtsid = 1, for all i, d

wsd =
∑
i

iδwisd and
∑
i

δwisd = 1, for all s, d

6.3. Piecewise-Linear Optimization

Because of their importance and wide-ranging applicability, piecewise-linear meta/global

constraints are already present in many modern modeling systems. To exemplify the

usefulness of semantic typing in this context, we consider two relaxations of piecewise-

linear constraints: one for the continuous case, and another for the discontinuous case. In

both cases, we analyze a model with two piecewise-linear constraints that share variables.

Continuous Functions Suppose that cost f(x) is a continuous piecewise-linear function

of output x. The breakpoints are given in the array A= (a1, . . . , an), and the corresponding

values of f(x) are given in the array C = (c1, . . . , cn). Thus f(x) is linear on each interval

[ai, ai+1], with f(ai) = ci and f(ai+1) = ci+1. We use a metaconstraint piecewise to model

the function and write

1. index in {1..2};

2. data A{i in index}, C{i in index};

3. x is howmuch output;

4. z is howmuch cost;

5. piecewise(x,z,A,C);

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 17

where z is a new variable that plays the role of f(x). This piecewise constraint can be

relaxed as follows:

x= a1 +

n−1∑
i=1

x̄i, z = c1 +

n−1∑
i=1

ci+1− ci
ai+1− ai

x̄i

(ai+1− ai)δi+1 ≤ x̄i ≤ (ai+1− ai)δi , δi ∈ {0,1} , for i= 1, . . . , n− 1

(5)

where δi indicates whether x≥ ai, and x̄1, . . . , x̄n−1 is a disaggregation of x corresponding

to the break points in A.

The piecewise constraint induces the system to create a 2-place predicate output.A

and declare auxiliary variables x̄i, δi as follows:

xbar[i] is howmuch output.A(index i);

delta[i] is whether lastpositive output.A(index i);

The predicate name output.A is inherited from the original predicate name and the array

A of breakpoints. The declaration of x̄i says that x̄i is the amount of the value of x allocated

to x̄i. Formally, it creates the new predicate output.A(index,output) from the original

predicate output(output) and declares x̄i to be howmuch output output.A(index i). The

new keyword lastpositive queries output.A to determine the last interval that receives

a positive allocation. Thus δi indicates whether i is the last such interval. One could also

define a variable ε with the declaration

epsilon is which lastpositive output.A

to indicate which is the last interval to receive a positive allocation, but such a variable is

not used in the relaxation.

Now let us assume the model contains another piecewise-linear constraint on x that uses

the same breakpoints, such as piecewise(x,z’,A,C’). When this constraint is relaxed, it

introduces auxiliary variables x̄′i and δ′i, as well as a linear relaxation that is analogous to

(5). The semantic types of x̄′i and δ′i will match the semantic types above, and the system

will automatically infer that x̄i = x̄′i and δi = δ′i, for all i.

Discontinuous Functions Let f(x) be a piecewise-linear cost function of flow variable

x. The function is linear on possibly disjoint intervals [`1, u1], . . . [`n, un], where ci = f(`i),

di = f(ui), and di = ci+1 when uu = `i+1. We let L= (`1, . . . , `n), and similarly for U , C, and

D. We use a metaconstraint piecewise2 that accommodates this kind of discontinuity:

18 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

1. index in {1..m};

2. data L{i in index}, U{i in index}, C{i in index}, D{i in index};

3. x is howmuch flow;

4. z is howmuch cost;

5. piecewise2(x,z,L,U,C,D);

One possible linear relaxation of this constraint is

x=
n∑

i=1

(λi`i +µiui), z =

n∑
i=1

(λici +µidi)

λi +µi = δi , for i= 1, . . . , n

n∑
i=1

δi = 1

λi, µi ∈ [0,1] and δi ∈ {0,1} , for i= 1, . . . , n

(6)

where λi, µi, and δi are new auxiliary variables. To implement this relaxation, the

piecewise2 constraint introduces a predicate flow.L.U(index,flow). The new predicate

could be used to define a variable

xbar[i] is howmuch flow.L.U(index i)

but no such variable is used in the relaxation. Rather, the system declares auxiliary

variables

lambda[i] is lowermult flow.L.U(index i);

mu[i] is uppermult flow.L.U(index i);

delta[i] is whether positive flow.L.U(index i);

The keywords lowermult and uppermult query the values of multipliers that yield the

flow allocated to interval i. The keyword positive queries which interval receives positive

flow.

Now if the same variable x appears in another piecewise-linear constraint

piecewise2(x,z’,L,U,C’,D’) defined on the same intervals, new auxiliary variables λ′i,

µ′i, and δ′i are created, as well as a new set of constraints resembling (6). These auxiliary

variables receive the same semantic types as λi, µi, and δi, respectively, and the variables

are identified.

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 19

6.4. Disjunctions of Linear Systems

Let x be a vector of decision variables, and let {1, . . . , n} index a set of mutually exclusive

scenarios in an optimization problem. Assume that a model for this problem contains the

following two constraints: ∨
i

(
Aix≥ bi

)
(7)∨

i

(
Cix≥ di

)
(8)

where both constraints depend on the same choice of scenario from the same set. While

the user could have combined both constraints into a single disjunctive statement, there is

no such guarantee. Therefore, we will assume (7) and (8) appear as separate constraints to

exemplify the benefits of semantic typing. Another case in which (7) and (8) might appear

as separate disjuncts arises when the system itself creates disjunctive representations of

metaconstraints (for example, as an intermediate step toward a linear relaxation).

To make the example more concrete, assume that x = (x1, . . . , xm), where xj is the

production level of a given product j, and that {1, . . . , n} indexes a set of configurations

of the production environment. Therefore, we can write

1. product in {1..m};

2. config in {1..n};

3. x[j] is howmuch output(product j);

4. disjunction1: or{config i} (A[i,*]x >= b[i]);

5. disjunction2: or{config i} (C[i,*]x >= d[i]);

Because the disjunctions in lines 4 and 5 are over the same set of alternatives (config),

the solver assumes that the same disjunct is selected in each.

Using the standard convex hull formulation shown in Section 2, the solver would

reformulate lines 4 and 5 as (9) and (10), respectively:

x=
∑
i

xAi , A
ixiA ≥ biδAi ,

∑
i

δAi = 1, δAi ∈ {0,1} , all i (9)

x=
∑
i

xCi , C
ixCi ≥ diδCi ,

∑
i

δCi = 1, δCi ∈ {0,1} , all i (10)

The corresponding relaxations are obtained by making δi nonnegative rather than binary.

Because the set of scenarios is the same in both cases, it is correct (and beneficial) to set

20 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

xAi = xCi and δAi = δCi for all i. Semantically, xA and xC are associated with a new predicate

output.config that is inherited from the predicate output and the index set config:

xA[i,j] is howmuch output.config(config i, product j);

xC[i,j] is howmuch output.config(config i, product j);

Because the types are the same, xA and xC are identified, as desired. To declare semantic

types for δAi and δCi , the system creates a predicate choice.config that is inherited from

config but not from output. This is because the same set config of alternatives may

appear in disjunctions that use different variables than x. The declarations are

deltaA[i] is whether choice.config(config i);

deltaC[i] is whether choice.config(config i);

This results in the identification of δAi and δCi .

In some modeling contexts, the user may wish to enforce additional constraints Ci when

configuration i is chosen in disjunctions (Hooker 2011). The user need only introduce

variables yi, declare them whether choice.config(config i), and write constraints of

the form yi→Ci. The modeling system will identify yi with δi and enforce Ci appropriately.

6.5. Temporal Modeling with Interval Variables

Variables that represent time intervals have proved useful for the formulation of scheduling

problems (IBM 2009a). Interval variables can give rise to auxiliary variables, which can

then be managed by their semantic types.

Suppose, for example, we wish to formulate a scheduling problem in which the processing

of job j must occur entirely within a time interval Wj. Each job has duration Dj and

consumes resource at the rate Rj. The jobs running at any one time must consume resources

at a rate no greater than L. If xj is the time interval occupied by the processing of job j,

the model is

1. job in {1..n};

2. time in {1..T};

3. data W{job j}, D{job}, R{job}, L;

4. running in [time,time];

5. x[j] is when running schedule(job j) subset W[j];

6. cumulative(x,D,R,L);

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 21

where [time,time] in line 4 is the set of intervals [i, j] with i < j and i, j ∈ time. Because

running is an interval, the declaration in line 5 implies that xj is an interval-valued variable.

The declaration also sets an initial domain Wj for xj and so imposes a time window. The

cumulative constraint in line 6 is well known in constraint programming and requires that

the resource consumption at any one time be at most L.

Let us assume that the solver reformulates the cumulative constraint as a mixed integer

program. One formulation uses binary variable δjt to indicate whether job j starts at time

t, and φjt to indicate whether job j is running at time t. Variables δjt, φjt for t 6∈Wj do

not appear. The the problem can be formulated∑
t

δjt = 1, all j

φjt ≥ δjt′ , all t, t′ with 0≤ t− t′ <Dj, all j∑
j

Rjφjt ≤L, all t

(11)

The new variables are linked to the old ones by

δjt =

1 if x[j].start = t

0 otherwise
φjt =

1 if t∈ xj
0 otherwise

where x[j].start is the start time of interval xj. The new variables are declared as follows:

delta[j,t] is whether running.start schedule(job j, time t);

phi[j,t] is whether running schedule(job j, time t);

These declarations introduce two new 3-place predicates that are denoted by schedule

but distinguished by the terms they relate.

So far, there is no need for these semantic types. But suppose we want job finish times

to be separated by at least T0 minutes, to allow employees to unload the jobs. This can be

modeled

unload{job j, job k}: j < k implies |x[j].end - x[k].end| >= T0;

A possible mixed integer formulation introduces a binary variable εjt to indicate whether

job j ends at time t. The constraint becomes

εjt + εkt′ ≤ 1, all t, t′ with 0< t′− t < L0, all j, k with j 6= k. (12)

22 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

These new variables are linked to the old ones by

εjt =

1 if x[j].end = t

0 otherwise

However, when (11) and (12) are combined to obtain a mixed integer formulation of the

entire problem, nothing in the formulation captures the relationship between εjt and the

other variables. This is remedied when the solver generates a semantic type for εjt:

epsilon[j,t] is whether running.end schedule(job j, time t);

The solver associates the predicate schedule(running.end, job j, time t) with the

predicate schedule(running.start, job j, time t) in the type declaration of δjt and

deduces that

εj,t+Dj
= δjt, all j, t. (13)

It also associates schedule(running.end, job j, time t) with the predicate

schedule(running, job j, time t) in the declaration of φjt and deduces the redundant

constraints

φjt ≥ εjt′ , all t, t′ with 0≤ t′− t <Dj, all j. (14)

Constraints (13)–(14) can now be added to the mixed integer formulation.

6.6. Traveling Salesman with Side Constraints

Consider a traveling salesman problem (TSP) defined over a graph G = (V,A) with

distances Dij between every pair of cities i, j ∈ V . As our final example, we model this TSP

with two additional side constraints: some cities must precede other cities in the tour, and

some arcs are missing from A (i.e. G is not a complete graph).

The problem data are declared as

1. data D{city, city}; # Distance between cities

2. data Prec{city, city}; # Prec[i,j]=1 if i must precede j

3. data Succ{city}; # Set of possible successors of each city

A city j is omitted from the set Succ[i] to indicate that arc (i, j) is missing from G. Given

a city i, let variables xi and si represent, respectively, the position of city i and the successor

of city i in the tour. Their semantic types introduce a predicate ordering(city,position)

that relates each city to its position in the ordering:

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 23

4. city in {1..n}; position in {1..n};

5. x[i] is which position ordering(city i) in {1..n};

6. s[i] is successor city ordering(city i) in Succ[i];

The keyword successor queries the predicate ordering for the city that follows city i. The

keyword presupposes that the predicate is introduced in another declaration and therefore

assumes it has the form ordering(city,position) rather than ordering(city,city).

By initializing si to belong to Succ[i], line 6 requires that the tour avoid missing arcs.

We are now ready to write the constraints.

7. prec{city i, city j | Prec[i,j] = 1}: x[i] < x[j];

8. alldiff(x);

9. circuit(s);

Line 7 imposes the precedence constraints. It is not possible to represent the precedence

constraints using only si variables and, conversely, it is not possible to restrict the successors

of a city using only xi variables. Therefore, this model requires the dual viewpoint provided

by the two sets of variables. The constraint in line 8 states that each city must have a

distinct position in the tour, and the global constraint circuit (Laurière 1978) in line

9 ensures that the collection of successor values assigned to the si variables represents a

single closed tour. To complete the model, we write the objective function as

10. minimize dist: sum{city i} D[i,s[i]];

The solver can give the alldiff a conventional assignment model by introducing 0-1

variables zik to represent whether city i is in position k:
n∑

k=1

zik = 1 for all i,
n∑

i=1

zik = 1 for all k, xi =
n∑

k=1

kzik for all i.

The third set of constraints links xi to the new variables, which are declared

z[i,k] is whether ordering(city i, position k);

The solver can model the circuit constraint by introducing 0-1 variables wij to represent

whether city j immediately follows city i, and then generating valid inequalities for the

TSP (Ruland and Rodin 1998), as well as cuts in the s-space that are specific to the

circuit constraint (Genç-Kaya and Hooker 2014). The new variables are linked to si by the

constraints

si =

n∑
j=1

jwij for all i

and are declared

24 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

w[i,j] is whether successor ordering(city i, city j);

The variables zik and wij are not identified because they have different semantic types.

However, the successor keyword in the declaration of wij allows the system to detect that

they are related by the linking constraints

(
zik = 1 ∧ zj,k+1 = 1

)
⇒ wij = 1, for all i, j, k,

which can be linearized to zik + zj,k+1−wij ≤ 1. Moreover, the system also detects a link

between the auxiliary variables wij and the original variables xi:(
xj −xi = 1

)
⇒ wij = 1, for all i, j

which can also be linearized, treated directly by a CP solver, and/or used during branching.

The variable index in the objective function of line 11 is treated in a similar

fashion to the one in Section 3: (i) an element constraint is created for every i:

element(s[i],D[i,*],r[i]); (ii) the objective function is replaced with
∑

i ri; and

(iii) the relaxation of the element constraints introduces auxiliary variables w′ij that are

identified with wij.

To further illustrate the power of semantic typing, suppose the user wishes to write

constraints in terms of a variable yk that represents the city that occupies position k. Its

declaration is simply

11. y[k] is which city ordering(position k);

The system deduces the standard channeling constraints, namely xyk = k for all k, and

yxi
= i for all i. Moreover, the yk variables allow the user to write an alternative objective

function

12. minimize dist2: sum{position k} D[y[k],y[k+1]];

provided yn+1 is identified with y1. The objective function is unpacked by replacing it with∑
k dk,k+1 and adding element constraints

elem{position k}: element((y[k],y[k+1]),D,d[k,k+1]);

Although the objective functions in lines 10 and 12 are theoretically equivalent, including

both of them in the model might be beneficial. Depending on how branching and variable

domain propagation evolve, one objective value might increase faster than the other, and

the lower bound at any point during the search can be taken as the maximum of the two.

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 25

7. Some General Channeling Constraints

We can generalize the procedures for deriving channeling constraints for multiple which,

whichset, and whether variables that are associated with the same predicate.

Multiple which variables occur when a predicate has terms term1, . . . , termn, and

some of the terms correspond to which variables. Let us say that the first k terms

correspond to which variables x1i(1), . . . , x
k
i(k), where i(j) is shorthand for i1 · · · ij−1ij+1 · · · in.

The corresponding relation is

term1 . . . termk termk+1 . . . termn

i1, x
1
i(1) ik, x

k
i(k) ik+1 in

For example, k= 2 in the above nurse scheduling problem, where term1, term2, and term3

are nurse, shift, and day, respectively, and variables x1i(1) and x2i(2) are wsd and sid.

The derivation of channeling constraints follows the pattern illustrated by this and the

Latin squares problems. For any given j ∈ {1, . . . , k} we have ij = xji(j). For each subscript

i` of i(j) we substitute i` = x`i(`) to obtain the channeling constraints

ij = xj
x1
i(1)
···xj−1

i(j−1)
xj+1
i(j+1)

···xk
i(k)

ik+1···in
, for all i1, . . . , in, j = 1, . . . , k (15)

The whichset keyword can be viewed as specialized projection operator. Suppose, for

example, that exactly one worker wjt is assigned to make products of type j on day d.

However, a worker may make several product types on a given day, or a given product

type on several days. We have the relation

worker producttype day

i,wjd j d

with declarations

1. w[j,d] is which worker make(producttype j, day d);

2. p[i,d] is whichset producttype make(worker i, day d);

3. t[i,j] is whichset day make(worker i, producttype j);

Thus pid is the set of product types made by worker i on day d, and tij is the set of days on

which worker i makes product type j. We can view pid as the projection, onto the second

26 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

term of the relation, of all tuples in the relation for which the first and third terms have

values (i, d), and similarly for tij. The channeling constraints are

i=wjd, for all i, j, d with j ∈ pid, d∈ tij

j ∈ pwjdd, for all j, d with d∈ twjdj

d∈ twjdj, for all j, d with j ∈ pwjdd

In general, we can suppose we have a predicate pred denoting a relation of the form

term0 term1 . . . termn

i, x0j1···jn j1 jn

where x0j1···jn is a which variable corresponding to term0. Let x1ij(1), . . . , x
n
ij(n) be whichset

variables corresponding to term1, . . . ,termn. Then the channeling constraints are

i= x0j1···jn, for all i, j1, . . . , jn such that jk ∈ xkj(k) for k= 1, . . . , n

jk ∈ xkx0
j1···jn

j(k)
, for all k, j1, . . . , jn such that j` ∈ x`x0

j1···jn
j(`)

for all `∈ {1, . . . , n} \ {k}

Projections can also be defined by specifying a proper subset of a variable’s indices. For

example, we can let p1i be the set of product types made by worker i on any day, or we can

let t1j be the set of days on which product type j is made by any worker. They are declared

p1[i] is whichset producttype make(worker i);

t1[j] is whichset day make(producttype j);

These declarations have the intended effect only if the full 3-place predicate make appears

in the model, as in any of the above declarations of x[j,d], p[i,d], or t[i,j]. The

channeling constraints that relate variables wjd, p
1
i and t1j are

i=wjd, for all i, j, d with j ∈ p1i , d∈ t1j
j ∈ p1wjd

, for all j, d with d∈ t1j
d∈ t1j , for all j, d with j ∈ p1wjd

The pattern is generalized along lines similar to the above.

Multiple whether variables can be associated with the same predicate if some of the

indices are omitted. Using the above example, let δwijd indicate whether worker i makes

product type j on day d. The declaration is

deltaw[i,j,t] is whether make(worker i, producttype j, day d);

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 27

We could also define a variable δpjid that indicates whether product type j is made by

worker i on day d, and a variable δtdij that indicates whether day d is a day on which worker

i makes product type j. But as in the nurse scheduling example, these variables have the

same declaration and therefore the same meaning as δwijd.

However, we can obtain distinct whether variables by specifying fewer indices and

projecting onto those indices. For example, we can let δp1id indicate whether worker i makes

a product of some type on day d, and δt1ij whether worker i makes product type j on some

day. This results in declarations

deltap1[i,d] is whether product make(worker i, day d);

deltat1[i,j] is whether day make(worker i, producttype j)

The channeling constraints that relate δwijd, δ
p1
id , and δt1it are

for all i and d, δp1id = 1 if and only if δwijd = 1 for some j

for all i and j, δt1ij = 1 if and only if δwijd = 1 for some d

It is straightforward to generalize this pattern. We can use as few indices as desired, as in

the declaration

deltap2[i] is whether product make(worker i);

This defines a variable δp2i that indicates whether worker i makes any type of product on

any day. The channeling constraints are analogous to the above.

8. Final Remarks

We show how the concept of semantic typing of variables can work as a generic solution to

a problem that arises in the context of modeling with metaconstraints. Namely, semantic

typing enables a modeling system to identify relationships between auxiliary variables

created by constraint relaxations in a generic fashion, without pre-defining or hard-coding

the possible ways in which the user can write a particular model. The generality of this

relationship detection is very important because it is impossible to predict how each user

will represent constraints in a modeling language. Moreover, the specific meaning intended

for decision variables cannot always be recovered automatically from the model by current

modeling systems, which justifies the need for such meaning to be provided by the user.

In addition to the above main benefit, semantic typing serves other important purposes.

The inclusion of semantics in variable declarations enables the system to detect new kinds

of errors and inconsistencies. Furthermore, variable semantics can help with structure

28 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

detection such as the identification of symmetries and other kinds of inefficiencies in a

model. For example, the use of a weak collection of constraints to model a problem structure

that is known to have a stronger polyhedral representation.

One might wonder whether or not writing semantic types is harder than writing the

model itself or, in other words, whether it is reasonable to expect users to correctly write

semantic types. We believe that this is a matter of having enough practice. If modeling

is taught with semantic typing in mind to begin with, it may become a natural way of

thinking about the role of decision variables in a model. That is, semantic types would

not be harder to master than traditional modeling already is. To confirm this hypothesis,

however, it would be necessary to experiment with these ideas in a classroom setting.

References

Ajili, F., M. Wallace. 2003. Hybrid problem solving in ECLiPSe. M. Milano, ed., Constraint and Integer

Programming: Toward a Unified Methodology . Kluwer, 169–201.

Beale, E. M. L., J. A. Tomlin. 1970. Special facilities in a general mathematical programming system

for nonconvex problems using ordered sets of variables. J. Lawrence, ed., Proceedings of the 5th

International Conference on Operations Research. Tavistock Publications, 447–454.

Beldiceanu, N., M. Carlsson, J.-X. Rampon. 2011. Global constraint catalog. Working version of SICS Tech-

nical Report 2010-07. ISSN: 1100-3154. Downloaded from http://www.emn.fr/z-info/sdemasse/

gccat/.

Bhargava, H. K., S. O. Kimbrough. 1993. Model management: An embedded languages approach. Decision

Support Systems 10 277–299.

Bhargava, H. K., S. O. Kimbrough, R. Krishnan. 1991. Unique names violations, a problem for model

integration or you say tomato, I say tomahto. ORSA Journal on Computing 3 107–120.

Bhargava, H. K., R. Krishnan, P. Piela. 1998. On formal semantics and analysis of typed modeling languages:

An analysis of Ascend. INFORMS Journal on Computing 10 189–208.

Bisschop, J., R. Entriken. 1993. AIMMS: The Modeling System. Paragon Decision Technology.

Bradley, G. H., R. D. Clemence. 1988. Model integration with a typed executable modeling language.

Proceedings of the 21st Hawaii International Conference on System Sciences, vol. III. IEEE Computer

Society, 403–410.

Bray, T., J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, eds. 2004. Extensible Markup Language

(XML) 1.0 . W3C, Boston. Retrieved from http://www.w3.org/TR/REC-xml/.

Carlier, J., E. Pinson. 1990. A practical use of Jackson’s preemptive schedule for solving the job-shop

problem. Annals of Operations Research 26 269–287.

Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables 29

Dantzig, G. B. 1951. Application of the Simplex method to a transportation problem. T. C. Koopmans, ed.,

Activity Analysis of Production and Allocation. Wiley, New York, 359–373.

Euler, L. 1849. Recherches sur une espèce de carrés magiques. Commentationes Arithmeticae Collectae II

302–361.

Fair Isaac Corporation. 2009. Xpress Optimizer Reference Manual .

Fourer, R., D. M. Gay, B. W. Kernighan. 2002. AMPL: A Modeling Language for Mathematical Programming .

2nd ed. Duxbury Press.

Gecode Team. 2006. Gecode: Generic constraint development environment. Available from

http://www.gecode.org.

Genç-Kaya, L., J. N. Hooker. 2014. The hamiltonian circuit polytope. Technical report, Carnegie Mellon

University.

Geoffrion, A. M. 1992a. The SML language for structured modeling: Levels 1 and 2. Operations Research

40 38–57.

Geoffrion, A. M. 1992b. The SML language for structured modeling: Levels 3 and 4. Operations Research

40 58–75.

Heerink, K. 2012. AIMMS: Tutorial for Professionals. Paragon Decision Technology.

Http://www.aimms.com/aimms/download/manuals/aimms tutorial professional.pdf.

Heipcke, S. 2009. Hybrid MIP/CP solving with Xpress-Optimizer and Xpress-Kalis. FICO Xpress

Optimization Suite whitepaper.

Hooker, J. N. 2005. A search-infer-and-relax framework for integrating solution methods. R. Barták,

M. Milano, eds., Proceedings of the Conference on Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems (CP-AI-OR), Lecture Notes in Computer

Science, vol. 3709. Springer-Verlag, 314–327.

Hooker, J. N. 2011. Hybrid modeling. M. Milano, P. Van Hentenryck, eds., Hybrid Optimization — The Ten

Years of CPAIOR, Springer Optimization and Its Applications, vol. 45. Springer, 11–62.

Hooker, J. N. 2012. Integrated Methods for Optimization, 2nd ed.. Springer.

IBM. 2009a. IBM ILOG CP Optimizer V2.3 User’s Manual .

IBM. 2009b. IBM ILOG CPLEX Optimizer User’s Manual .

Kennedy, A. 2010. Types for units-of-measure: Theory and practice. Z. Horváth, R. Plasmeijer, V. Zsók,

eds., Third Central European Functional Programming School , Lecture Notes in Computer Science, vol.

6299. Springer-Verlag, 268–305.

Laurière, J.-L. 1978. A language and a program for stating and solving combinatorial problems. Artificial

Intelligence 1 29–127.

30 Cire, Hooker, and Yunes: Modeling with Metaconstraints and Semantic Typing of Variables

Lopes, L., R. Fourer. 2009. Object oriented modeling of multistage stochastic linear programs. J. W.

Chinneck, B. Kristjansson, M. J. Saltzman, eds., Operations Research and Cyber-Infrastructure,

Operations Research/Computer Science Interfaces Series, vol. 47. Springer US, 21–41.

Marriott, K. G., N. Nethercote, R. Rafeh, P. J. Stuckey, M. J. Garcia De La Banda, M. Wallace. 2008. The

design of the Zinc modelling language. Constraints 13 229–267.

McCormick, G. P. 1983. Nonlinear Programming: Theory, Algorithms, and Applications. Wiley Interscience,

New York.

Object Management Group, Inc. 2010. OMG Unified Modeling Language (UML) Superstructure Speficica-

tion, version 2.3. http://www.uml.org.

Ruland, K. S., E. Y. Rodin. 1998. Survey of facial results for the traveling salesman polytope. Mathematical

and Computer Modelling 27 11 – 27.

Sabharwal, A. 2005. SymChaff: a structure-aware satisfiability solver. Proceedings of the 20th National

Conference on Artificial Intelligence (AAAI). AAAI Press, 467–474.

Sabharwal, A. 2009. SymChaff: exploiting symmetry in a structure-aware satisfiability solver. Constraints

14 478–505.

Van Hentenryck, P., J.-P. Carillon. 1988. Generality versus specificity: an experience with AI and OR

techniques. Proceedings of the 7th National Conference on Artificial Intelligence (AAAI). AAAI Press,

660–664.

Van Hentenryck, P., I. Lustig, L. Michel, J. F. Puget. 1999. The OPL Optimization Programming Language.

MIT Press.

Van Hentenryck, P., L. Michel. 2005. Constraint-Based Local Search. The MIT Press.

Yunes, T., I. D. Aron, J. N. Hooker. 2010. An integrated solver for optimization problems. Operations

Research 58 342–356.

