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We address the problem of designing appointment scheduling strategies in a stochastic environment account-

ing for patient no-shows, non-punctuality, general stochastic service times, and unscheduled emergency

walk-ins. A good appointment schedule seeks to help outpatient clinics to utilize their resources efficiently

while containing patients’ waiting times. The task of identifying an optimal schedule is modeled as a non-

linear integer program, where the objective function is the outcome of stochastic analysis in transient state.

We maintain the discrete nature of the appointment scheduling problem by considering arrival epochs with

discrete supports. By looking at discrete-time snapshots of the random evolution of a single-server queueing

model, we characterize probabilistically the system’s workload over time as a function of an appointment

schedule and we derive recursive expressions for the performance measures of interest. Subsequently, we

unfold discrete convexity properties of the optimization problem. We prove that under general conditions the

objective function is supermodular and componentwise convex. Under assumptions on patient punctuality,

we prove that the optimal scheduling strategy minimizes a multimodular function; a property which guar-

antees that a locally optimal schedule is also globally optimal. The size of the local neighborhood, however,

grows exponentially with the dimension of the problem. To the best of our knowledge, this study is the first

to develop and implement an algorithm for minimizing locally a multimodular function over nonnegative

integer vectors via submodular set-function minimization over ring families; a task that can be performed

in polynomial time.
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1. Introduction

Appointment scheduling is a ubiquitous endeavor across outpatient clinics in an effort to optimally

manage their patient arrivals. From an operational standpoint, a good schedule strikes the right

balance between efficient resource utilization and short waiting times. Outpatient clinics often face

various sources of variability that disrupt their daily operations, and which add layers of complexity

to the appointment scheduling problem. For example, there is variability and seasonality in the

daily demand for outpatient care, it is common for patients to not show up for their scheduled

services, patients who show up are not necessarily punctual, consultation times are stochastic, and

unscheduled emergency patients may need to be seen by their provider on short notice.

We address the problem of designing optimal appointment scheduling strategies so that outpa-

tient clinics utilize their resources efficiently, while containing patients’ waiting times, in a stochas-

tic environment. By looking at discrete-time snapshots of the random evolution of a single-server
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queueing model, we characterize probabilistically the system’s workload over time as a function

of an appointment schedule and we derive recursive expressions for the performance measures of

interest. We maintain the discrete nature of the appointment scheduling problem by considering

arrival epochs with discrete supports. The task of finding an optimal schedule is modeled as a

nonlinear integer program. We identify conditions under which the problem possesses discrete con-

vexity properties and propose an algorithm that solves the combinatorial problem effectively and

efficiently. Our three main contributions can be summarized as follows:

(i) Queueing: Our queueing model provides a unifying platform for addressing the well stud-

ied appointment scheduling problem, as many single-server models in the literature can be

considered as its special cases (e.g., Kaandorp and Koole (2007), Robinson and Chen (2010),

Zeng et al. (2010), LaGanga and Lawrence (2012), and Zacharias and Pinedo (2017) with

s = 1). This is a combined outcome from considering general stochastic service times, non-

punctuality, and our approach to characterize the random evolution of the workload process

of the system (as opposed to the queue-length process).

(ii) Discrete optimization: We prove that, under general conditions, the objective function is

supermodular and componentwise convex. While these structural properties have an intu-

itive interpretation about the interactions between the decision variables, and have served

as the basis for developing heuristic solutions in the literature (for example in LaGanga and

Lawrence (2012)), they are not enough to ensure that the problem can be solved to exact

optimality. When patients promptly arrive for their scheduled appointments with the same

show-up probability, we prove that the optimal scheduling strategy minimizes a multimodular

function. This property guarantees that a locally optimal schedule is also globally optimal.

The size of the local neighborhood, however, grows exponentially with the dimension of the

problem. To the best of our knowledge, this study is the first to develop and implement

an algorithm for minimizing locally (and eventually globally) a multimodular function over

nonnegative integer vectors in polynomial time. This allowed us to solve large problems up

to 96 slots. Our optimization framework bridges recent advances in discrete convex analysis

and submodular set-function minimization over ring families, and has the potential to help

address problems in other areas within and beyond the field of healthcare operations.

(iii) Managerial insights: Our stochastic model, in conjunction with our efficient optimization

procedure, allowed us to gain some novel insights into optimal appointment scheduling. For

example, how should outpatient clinics adjust their scheduling strategies in order to deal with

the various sources of uncertainty? What is the right timescale for an appointment schedule

so that it is practical and achieves our operational goals?
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2. Related Literature

The appointment scheduling problem has received much attention in the operations management

literature, and it is still an active area of academic research. Ahmadi-Javid et al. (2017) provide

a comprehensive review of analytical and numerical optimization studies (published between 2003

and 2016) for designing and planning outpatient appointment systems. Due to the inherent com-

plexity of the problem, and for the sake of analytical tractability, the existing literature often relies

on stylized assumptions. For example, it is common to assume that patients who show up are

punctual, and/or to assume that service times are either deterministic or follow an exponential

distribution (and thus leveraging its memoryless property), and/or to assume that there are no

emergency walk-ins. However, consultation times in practice are neither deterministic nor exponen-

tial (Cayirli et al. (2006)), patients are not always punctual (Kim et al. (2018)), and unscheduled

emergency walk-ins are often significant (Cayirli et al. (2012)). From the patient’s point of view,

Liu et al. (2018) study patient preferences and choice behavior to better understand how patients

value the various operational attributes when scheduling appointments.

2.1. Inter-day and Intra-day Models

Some papers in the literature seek to optimize the inter-day operations of outpatient clinics over

some finite scheduling horizon, without capturing the detailed intra-day dynamics. For example,

Patrick et al. (2008), Liu et al. (2010), Feldman et al. (2014), and Truong (2015) develop and

analyze dynamic models that deal with daily demand uncertainty and take into account the costs

of indirect delay (i.e., the time gap between the request for an appointment and the actual offered

appointment) in the scheduling decisions. Green and Savin (2008), Liu and Ziya (2014), Liu (2016),

and Zacharias and Armony (2017) analyze the appointment backlog and indirect delay with queue-

ing systems in steady state.

Another stream of literature seeks to optimize a single day’s operations by analyzing the detailed

intra-day dynamics. For example, in Green et al. (2006), Hassin and Mendel (2008), Robinson and

Chen (2010), Zeng et al. (2010), LaGanga and Lawrence (2012), Zacharias and Pinedo (2014),

Chen and Robinson (2014), and Zacharias and Pinedo (2017), it is assumed that there is enough

demand to fill any daily schedule with appointments, and the objective is to design an optimal

static schedule for a single day by properly managing patients’ appointment times. Green et al.

(2006) further establish dynamic priority rules that deal with unscheduled emergency patients.

Our work belongs to this stream of literature, and to the best of our knowledge, our stochastic

model is the first to consider jointly all main sources of variability: general stochastic service times,

no-shows, non-punctuality, and unscheduled emergency walk-ins.
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Feldman et al. (2014) have pointed out that the simultaneous consideration of appointment day

(inter-day) and time of day (intra-day) in the scheduling decisions is an important problem that

has not been studied adequately in the literature due to its large dimensionality.

2.2. Continuous and Discrete Static Models

The single day static appointment scheduling problem has been analyzed in the literature in a

variety of modeling approaches and optimization procedures. One way to classify the various models

is with respect to the type of decision variables: discrete, continuous, or a mixture. In continuous

settings (e.g., Wang (1997), Lau and Lau (2000), Hassin and Mendel (2008), Luo et al. (2012),

and Kuiper et al. (2015)) the main decision variables are the interarrival times of a fixed set of

patients. Luo et al. (2012) also consider the setting where the number of patients to be scheduled

is a decision variable. The optimization problem in these continuous models is solved via nonlinear

programming techniques (e.g., sequential quadratic programming, quasi-Newton method, interior

point methods) that identify local optima. If the objective function is assumed/believed/proved to

be convex, then local optima should also be global optima. Luo et al. (2012) have, in fact, shown

numerically that there might be multiple local optima. They mitigate this issue by choosing the

best solution for different starting points of interior-point algorithms. Kong et al. (2013), Mak et al.

(2015), Qi (2017), and Jiang et al. (2017) use robust optimization techniques to provide tractable

and equivalent conic programming and linear programming formulations with exact solutions.

In discrete settings, typically (e.g., Kaandorp and Koole (2007), Zeng et al. (2010), Robinson

and Chen (2010), LaGanga and Lawrence (2012), Zacharias and Pinedo (2017)) a workday is

partitioned into an integer number of slots, and the decision variables become how many patients

to schedule in each slot (potentially zero). In some discrete models the total number of patients

is further allowed to be the outcome of optimization, as opposed to a fixed problem parameter.

The discrete non-linear optimization problem is solved via either some local search procedure,

complete enumeration on a combinatorially large solution space, or heuristics, depending on the

theoretical findings. For example, Kaandorp and Koole (2007) and Zeng et al. (2010) proved that

the objective function is multimodular in a single-server system with exponential service times.

Zacharias and Pinedo (2017) proved multimodularity of the objective for the multi-server system

with deterministic service times. Multimodularity guarantees the global optimality of solutions that

are optimal within some discrete local neighborhood. Wang et al. (2018) proved multimodularity

of the objective for the single-server system with deterministic service times and general walk-in

arrivals, and developed an equivalent two-stage stochastic linear programming formulation. Our

work is the first study to identify conditions on the arrival process (as a function of scheduled
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traffic) under which the objective is multimodular for general stochastic service times, and to

identify conditions under which the multimodularity property collapses.

A distinctive case of a static model is the one in Begen and Queyranne (2011), where the

optimization problem is to identify on a continuous space the optimal interarrival times of a given

set of heterogeneous patients. By considering independent discrete probability distributions for the

service times, they prove existence of an integer optimal schedule and, under a mild condition on

the objective coefficients, they prove that the objective function is L-convex. Begen et al. (2012)

extend the results of Begen and Queyranne (2011) to consider joint discrete distributions based

on independent random samples, and determine bounds on the number of independent samples

required to obtain a near-optimal solution with high probability. Ge et al. (2014) extend the

results of Begen and Queyranne (2011) and Begen et al. (2012) to account for piecewise linear cost

functions with integer break points.

2.3. Discrete Optimization

In discrete optimization it is pivotal to identify structures that guarantee the success of some

efficient optimization procedure; either to exact optimality or within some good approximation

factor. Various researchers have proposed discrete analogues of convex functions, all possessing

the following property: a local optimum is also a global optimum. Examples include “discretely-

convex” functions by Miller (1971), “multimodular” functions by Hajek (1985), “integrally convex”

functions by Favati and Tardella (1990), and “M/M\-convex” and “L/L\-convex” functions by

Murota (1998). Locality though is defined in different ways, according to the type of discrete

convexity considered. Multimodular functions and their properties were introduced by Hajek (1985)

in the context of optimal admission control to queues with no state information. Altman et al.

(2000) generalize some of Hajek (1985)’s results and present additional properties of multimodular

functions and asymptotically optimal admission control policies with no state information. In the

static appointment scheduling problem, an optimal schedule is established in advance without any

prior knowledge about the resulting arrival process or the workload of the system over time (i.e., no

future state information). Therefore, intuition suggests that the appointment scheduling problem

possesses multimodularity as well, under certain assumptions.

It is demonstrated in Murota (2005) that multimodularity and L\-convexity are related through

a linear transformation. Both properties guarantee the global optimality of local optima. Locality

though is defined differently under these two notions of discrete convexity. Both local neighborhoods

of a given vector x ∈ Zn contain 2n+1− 2 neighbors, a number that grows exponentially with the

dimension of the problem, but they are not identical. As an example, Figure 1 illustrates what

the local neighborhoods look like in three dimensions. Murota (2005) provides an algorithm for
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minimizing an unconstrained L\-convex function over Zn in polynomial time. The same algorithm

can be readily adjusted to minimize an unconstrained multimodular function over Zn through a

linear transformation. However, as we demonstrate in §4.2, minimizing a multimodular function

over Zn+ requires a more careful treatment, since the linear transformation results in minimization

of an L\-convex function subject to non-trivial constraints. By combining the results of Murota

(2005) and Schrijver (2000), we propose and implement the first polynomial time algorithm for

minimizing locally a multimodular function over nonnegative integer vectors via unconstrained

submodular set-function minimization.

Figure 1 Local neighborhoods under discrete convexity in three dimensions.

(a) L\-convex local neighborhood in Z3
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3. Queueing Model

In this section a single-server queueing model is introduced, based on which we characterize the

random evolution of the system’s workload over time and we derive recursive expressions for the

performance measures of interest. The model and assumptions are as follows:

• Queueing system: Single-server queue in transient state with discrete arrival epochs and

general stochastic service times. The queue is work conserving and the service discipline is first-in,

first-out (FIFO).

• Timescale: Time is measured in minutes, and the length of a regular workday is T minutes,

during which the scheduled appointments are allocated. The clinic, however, continues to work

overtime as well, beyond T , until the queue empties out. Time is continuous, yet a workday is

partitioned into n discrete time slots of equal duration d= T/n, e.g., slots of 30 mins, 15 mins, 10

mins, 5 mins, 1 min etc., depending on how refined we would like a schedule to be. We assume

that d is a positive integer such that n is also some positive integer. The discrete time slots are

denoted by t= 1,2, ..., n,n+ 1, where slot n+ 1 is the first overtime slot. Assuming that the first

regular slot starts at time zero, then time slot t occupies the time interval [(t− 1)d, td).
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• Arrival process: There are two arrival streams: one driven by scheduled appointments and

one from unscheduled emergency walk-ins. An appointment schedule is denoted by a vector

x = (x1, . . . , xn)∈Zn+,

where xt is the number of patients assigned to slot t, i.e., scheduled to arrive at time (t− 1)d. We

denote the partial schedule up to slot t with xt = (x1, x2, ..., xt)∈Zt+, t= 1,2, ..., n.

Patients are not necessarily punctual and may arrive either on time, earlier, later than their

scheduled appointment time, or not show up at all. We consider that no-show probabilities are

slot-dependent. In particular, we consider that each patient assigned to slot t independently shows

up with probability pt ∈ (0,1], i.e., a patient assigned to slot t showing up or not is an independent

Bernoulli(pt) trial. We also assume that the actual arrival slots of patients assigned to some slot

t, given that they show up, are i.i.d. random variables with discrete support on some subset of

{1,2, . . . , n}. We denote with qtτ the probability that a patient assigned to slot t will arrive at the

beginning of slot τ , and for notational convenience we denote the no-show probabilities as

qtn+1 = 1−
n∑
τ=1

qtτ = 1− pt, t= 1,2, ..., n.

The random vector Sx = (Sx
1 , S

x
2 , ..., S

x
n) ∈ Zn+ denotes the arrival process from scheduled appoint-

ments under x, where Sx
t is the number of scheduled patients that arrive right at the beginning

of slot t= 1,2, ..., n. Independently from the schedule x and the system’s workload, unscheduled

emergency walk-ins may arrive throughout the day. The random vector U = (U1,U2, ...,Un) ∈ Zn+
denotes the unscheduled arrivals and follows some multivariate distribution with finite mean. The

resulting arrival process from both schedule x and walk-ins is denoted by the random vector

Ax = (Ax
1 ,A

x
2 , ...,A

x
n) ∈ Zn+, where Ax

t = Sx
t + Ut is the total number of patients that arrive right

at the beginning of slot t = 1,2, ..., n. We denote the partial arrival process up to slot t with

Ax
t = (Ax

1 ,A
x
2 , ...,A

x
t )∈Zt+, t= 1,2, ..., n.

• Service times: Service times are i.i.d. random variables following some general distribution

(either continuous, discrete, or a mixture) with finite mean µ and variance σ2. Let R be the random

variable representing one service time. We denote the k-fold convolution of R as

R(k) =
k∑
i=1

Ri,

where Ri ∼R, and as a notational convention we consider that R(0) = 0 with probability one.

• New-workload process: Let the random vector Yx = (Y x
1 , Y

x
2 , ..., Y

x
n )∈Rn+ denote the new-

workload process under schedule x, i.e., Y x
t new workload arrives at the beginning of slot t with

distribution

Y x
t ∼R(Ax

t ), t= 1,2, ..., n.

We denote the new-workload process up to slot t with Yx
t = (Y x

1 , Y
x

2 , ..., Y
x
t )∈Rt+, t= 1,2, ..., n.
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• Workload process: The workload of the system right at the end of slot t, i.e., the unfinished

workload carried forward from slot t to slot t+ 1, is denoted by Zx
t . The workload process Zx =

(Zx
1 ,Z

x
2 , ...,Z

x
n)∈Rn+ satisfies the Lindley recursion

Zx
t = max{Zx

t−1 +Y x
t − d,0}, for t= 1,2, . . . , n, (1)

where Zx
0 = 0 with probability one, and Zx

n corresponds to the overtime workload. We denote the

partial workload process up to slot t with Zx
t = (Zx

1 ,Z
x
2 , ...,Z

x
t )∈Rt+, t= 1,2, ..., n.

• Idle-time process: Finally, we define the idle-time process as the vector Lx =

(Lx
1 ,L

x
2 , ...,L

x
n)∈ [0, d]n, where Lx

t denotes the idle time during slot t and

Lx
t = max{d−Zx

t−1−Y x
t ,0}, for t= 1,2, . . . , n. (2)

From (1), (2), and the identity x+−x− = x ∀x∈R, we also get the relationship

Zx
t −Lx

t =Zx
t−1 +Y x

t − d, for t= 1,2, ..., n. (3)

3.1. Transient Analysis

Variants of the recursion in (1) have been analyzed in the literature for performance analysis

of either a workload process or a queue-length process in transient state. For example, Janssen

and van Leeuwaarden (2005) analyze the expected waiting time for the discrete D/G/1 queue in

transient state and its rate of convergence to steady state. Zeng et al. (2010), Robinson and Chen

(2010), and Zacharias and Pinedo (2017), by assuming that patients are punctual, make use of

the dynamics captured in a Lindley recursion in order to provide recursive expressions for the

probability distribution of a queue-length process in transient state, and consequently recursive

expressions for the performance measures of interest. In our setting, a recursive derivation for the

probability distribution of Zx
t based on (1) requires that Yx

t be a sequence of independent random

variables; a condition which does not hold when patients are non-punctual and/or when the walk-in

arrival process follows some multivariate distribution. We overcome this obstacle as follows:

(a) First, we derive recursively the conditional cumulative distribution function (CDF) of Zx
t given

a realization of Ax
t (the random vector Yx

t |Ax
t is indeed a sequence of independent random

variables) for all t= 1,2, ..., n.

(b) Second, we derive the conditional expectation of Zx
t given a realization of Ax

t .

(c) Third, we express the conditional expectation of all performance measures (idle time, overtime,

waiting time) in terms of the conditional expectation of Zx
t .

(d) Finally, we apply the law of total expectation to get the unconditional expectation of all

performance measures of interest.
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Let

Gat(z), FZx
t |A

x
t
(z|at) = P(Zx

t ≤ z|Ax
t = at), z ≥ 0

denote the conditional CDF of Zx
t , given a partial realization of the arrival process at =

(a1, a2, ..., at)∈Zt+ up to some slot t= 1,2, ...n. As a notational convention we let Ga0(z) = 1 for all

z ≥ 0, by assuming that the system is empty at the beginning of the workday. Let also

Hat(y), F
Y x
t |A

x
t
(y|at) = FR(at)(y) = P(R(at) ≤ y), y≥ 0

denote the conditional CDF of the new workload Y x
t , given a realization at of the number of new

arrivals at slot t= 1,2, ...n. Then Gat(z) can be expressed recursively for t= 1,2, ..., n as

Gat(z) = P(Zx
t ≤ z|Ax

t = at)

=

∫ d+z

0

P(Zx
t ≤ z|Ax

t = at, Y
x
t = y) dHat(y)

=

∫ d+z

0

P(max{Zx
t−1 +Y x

t − d,0} ≤ z|Ax
t = at, Y

x
t = y) dHat(y)

=

∫ d+z

0

P(max{Zx
t−1 + y− d,0} ≤ z|Ax

t−1 = at−1) dHat(y)

=

∫ d+z

0

P(Zx
t−1 ≤ z+ d− y|Ax

t−1 = at−1) dHat(y)

=

∫ d+z

0

Gat−1
(z+ d− y) dHat(y), z ≥ 0. (4)

The conditional expected workload over time, given a realization of the arrival process, is

E[Zx
t |Ax

t = at] =

∫ ∞
0

z dGat(z). (5)

Based on (5) we can now express the performance measures of interest. Let the random variables

I(x), O(x), Ws(x), and Wu(x) denote the system’s total idle time, overtime, scheduled patients’

aggregate waiting time, and unscheduled patients’ aggregate waiting time, respectively, associated

with schedule x.

The overtime workload is equal to the workload at the end of the regular workday, and therefore

E[O(x)] =E
Ax

[
E[O(x)|Ax]

]
=E

Ax

[
E[Zx

n |Ax]
]
. (6)

By rearranging terms in (3) we get

Lx
t +Y x

t =Zx
t −Zx

t−1 + d, for t= 1,2, ..., n

⇒
n∑
t=1

(Lx
t +Y x

t ) =
n∑
t=1

(Zx
t −Zx

t−1 + d)

⇒I(x) +
n∑
t=1

Y x
t =O(x) +nd. (7)
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We note that (7) can be interpreted intuitively as

(total idle time) + (total workload) = (overtime workload) + (length of regular workday).

Now the total expected idle time can be expressed as

E[I(x)] =E[O(x)] +nd−
n∑
t=1

E[Y x
t ]

=E[O(x)] +nd−
n∑
t=1

µE[Ax
t ]

=E[O(x)] +nd−µ
n∑
t=1

(ptxt +E[Ut]). (8)

Patients’ waiting times require a more careful treatment. While the derivation of system’s idle

time and overtime are based only on the assumption of a work-conserving queue, we need additional

assumptions on the service discipline in order to express the waiting time for the two patient groups

(scheduled and unscheduled walk-in patients). We assume that the service discipline is FIFO, and

that scheduled patients have priority over unscheduled walk-in patients when they show up at the

same time slot (we reckon that unscheduled walk-in patients are less sensitive to waiting, given the

opportunity to see their provider on short notice). Under these two assumptions, we can express

the waiting times for the two patient groups based on the workload process and the number of new

arrivals. In our setting, a service discipline that prioritizes scheduled patients over all unscheduled

patients (e.g., Wang et al. (2018)), would require to keep track of two separate queue length

processes and two separate workload processes (one for each patient group); a task that would

have complicated the analysis significantly and potentially would have led to an intractable model.

In Wang et al. (2018) this service discipline is tractable, since queue length implies workload when

service times are deterministic.

Let st and ut denote a partial realization of the arrival process from scheduled appointments

and from emergency walk-ins, respectively, up to some slot t. Let also

W x
t,i(st−1,ut−1)

d
=
[
Zx
t−1 +R(i−1)|Sx

t−1 = st−1,U
x
t−1 = ut−1

]
=
[
Zx
t−1 +R(i−1)|Ax

t−1 = st−1 + ut−1

]
denote the waiting time of the ith patient that receives service who arrives at slot t, given a

realization of the arrival process, 1≤ t≤ n and 1≤ i≤ st+ut. Based on the assumption that service

times are i.i.d. random variables and independent of the arrival process, we get

E[W x
t,i(st−1,ut−1)] =E[Zx

t−1|Ax
t−1 = st−1 + ut−1] +E[R(i−1)]

=E[Zx
t−1|Ax

t−1 = st−1 + ut−1] + (i− 1)µ.
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Therefore, the expected aggregate sum of all scheduled patients’ waiting times across all slots is

E[Ws(x)] =E
Sx,U

[
E[Ws(x)|Sx,U]

]
=E

Sx,U

 n∑
t=1

Sx
t∑

i=1

E[W x
t,i(S

x
t−1,Ut−1)]


=E

Sx,U

 n∑
t=1

Sx
t∑

i=1

[
E[Zx

t−1|Ax
t−1] + (i− 1)µ

]
=E

Sx,U

[
n∑
t=1

[
Sx
t E[Zx

t−1|Ax
t−1] + Sx

t (Sx
t −1)

2
µ
]]
, (9)

and, the expected aggregate sum of all unscheduled patients’ waiting times across all slots is

E[Wu(x)] =E
Sx,U

[
E[Wu(x)|Sx,U]

]
=E

Sx,U

 n∑
t=1

Sx
t +Ut∑

i=Sx
t +1

E[W x
t,i(S

x
t−1,Ut−1)]


=E

Sx,U

 n∑
t=1

Sx
t +Ut∑

i=Sx
t +1

[
E[Zx

t−1|Ax
t−1] + (i− 1)µ

]
=E

Sx,U

[
n∑
t=1

[
UtE[Zx

t−1|Ax
t−1] +Sx

t Utµ+ Ut(Ut−1)

2
µ
]]
. (10)

We point out that for the special case of exponentially distributed service times, the recursive

distribution of the workload process in (4) can be simplified so that integration is no longer involved,

see for example Zeng et al. (2010). This task is feasible due to the memoryless property of the

exponential distribution.

3.2. Punctual Patients and Random Emergency Walk-ins with No Covariates

The computation of the expected system’s workload as a function of a schedule in §3.1 relies on

taking expectation over all possible realizations of a discrete arrival process; a task which has

exponential complexity (exponential in the number of patients in a schedule). We assume in this

section that patients who do show up are punctual, and that U is a sequence of independent

random variables. Under these two assumptions we can adjust the recursive distribution in (4)

to be dependent on x itself (as opposed to a realization of the arrival process) and, as a result,

compute all performance measures of interest much more efficiently.

In particular, let

G̃xt(z), FZxt
t

(z) = P(Zxt
t ≤ z), z ≥ 0

denote the CDF of Zxt
t under a partial schedule xt = (x1, x2, ..., xt) ∈ Zt+ up to some slot t =

1,2, ..., n. As a notational convention we let G̃x0
(z) = 1 for all z ≥ 0. The new workload that
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enters the system over time depends only on the current number of patients scheduled to arrive,

and follows a random sum of the service times distribution. In particular, Y xt
t ∼ R(St+Ut), where

St ∼Binomial(xt, pt) for all t= 1,2, ..., n. Let also

H̃xt(y), F
Y xt

(y) = F
R(St+Ut)

(y) = P(R(St+Ut) ≤ y), y≥ 0

denote the CDF of Y xt
t . Similarly to (4), G̃xt(z) can be expressed recursively for t= 1,2, ..., n as

G̃xt(z) =

∫ d+z

0

G̃xt−1
(z+ d− y) dH̃xt(y), z ≥ 0. (11)

Finally, (6), (8), (9), and (10) can be simplified respectively as

E[O(x)] =E[Zx
n ]

E[I(x)] =E[O(x)] +nd−µ
n∑
t=1

(ptxt +E[Ut])

E[Ws(x)] =

[
n∑
t=1

ptxtE[Zx
t−1] +E[St(St− 1)]

µ

2

]

and E[Wu(x)] =
n∑
t=1

[
E[Ut]E[Zx

t−1] +E[Ut]ptxtµ+E[Ut(Ut− 1)]
µ

2

]
,

where

E[Zx
t ] =

∫ ∞
0

z dG̃xt(z) for all t= 1,2, ...., n.

4. Discrete Optimization

Consistently with the literature, we consider three costs (penalties) associated with a scheduling

strategy: patients’ waiting costs, system’s idle time and overtime costs. A waiting cost cs (cu) is

incurred for each minute that a scheduled (unscheduled) patient has to wait before starting service.

There is an idle time cost ci per minute of idle time, and an overtime cost co is incurred for each

minute the system has to operate overtime until the queue empties out. We normalize the objective

function with respect to ci, i.e. ci = 1, and we consider the following nonlinear integer program:

min{V (x),E[I(x)] + coE[O(x)] + csE[Ws(x)] + cuE[Wu(x)] : x∈Zn+}. (P)

We denote the optimal solution to (P) with x∗ and the optimal objective value with V ∗ = V (x∗).

4.1. Supermodularity, Componentwise Convexity and Multimodularity

In this section we unfold discrete convexity properties of the optimization problem. These properties

guarantee that our search for an optimal schedule can be performed effectively and efficiently. In

preparation for our results, we present the following definition.
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Definition 1. (a) A function g :Zn+→R is said to be supermodular if

g(x) + g(u)≤ g(x∧u) + g(x∨u) for all x,u∈Zn+,

where

x∧u = (min(x1, u1),min(x2, u2), ....,min(xn, un)) (12)

and x∨u = (max(x1, u1),max(x2, u2), ....,max(xn, un)). (13)

Equivalently, g :Zn+→R is said to be supermodular if

g(x + ein + ejn)− g(x + ein)≥ g(x + ejn)− g(x) (14)

for all x∈Zn+ and for all 1≤ i < j ≤ n, where ekn ∈Zn+ is the vector which has zeros everywhere,

except in the kth component where it is one, 1≤ k ≤ n. If −g is supermodular, then g is said

to be submodular.

(b) A function g :Zn+→R is said to be componentwise convex if inequality (14) holds for all x∈Zn+
and for all 1≤ i= j ≤ n.

(c) A function g :Zn+→R is said to be directionally convex if it is supermodular and componentwise

convex.

(d) A function g :Zn+→R is said to be multimodular if

g(x + u)− g(x)≥ g(x + v + u)− g(x + v) (15)

for all x∈Zn+ and all u 6= v ∈ En such that x + u,x + v ∈Zn+, where

En = {−e1
n,e

1
n− e2

n,e
2
n− e3

n, ...,e
n−1
n − enn,e

n
n}.

Multimodularity is a property stronger than directional convexity (see Altman et al. (2000)

Lemma 2.2(b.iii)), which guarantees that a local optimum is also a global optimum. Murota (2005)

provides the optimality criterion for minimizing a multimodular function over Zn, as well as how

to obtain a neighbor of a vector x by adding an alternating sequence of positive and negative unit

directions.

Theorem 1. (Murota (2005)) For a multimodular function g :Zn→R we have

g(x)≤ g(y) for all y ∈Zn ⇐⇒ g(x)≤ g(x±d) for all d∈D, (16)

where D is the set of vectors of the form ei1n − ei2n + ...+ (−1)k−1eikn for some increasing sequence

of indices 1≤ i1 < i2 < ... < ik ≤ n.
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The following lemma provides an equivalent characterization of a multimodular function, which

we find to be more intuitive and facilitates a better exposition of our proofs.

Lemma 1. A function g :Zn+→R is multimodular if and only if the following four properties hold

for all x∈Zn+:

(i) g(x + e1
n + enn)− g(x + e1

n)≥ g(x + enn)− g(x).

(ii) g(x+ei+1
n +ejn)−g(x+ei+1

n +ej+1
n )≥ g(x+ein+ejn)−g(x+ein+ej+1

n ) ∀i 6= j ∈ {1,2, ...., n−1}.

(iii) g(x + e1
n + ejn)− g(x + e1

n + ej+1
n )≥ g(x + ejn)− g(x + ej+1

n ) ∀j ∈ {1,2, ...., n− 1}.

(iv) g(x + ei+1
n + enn)− g(x + ei+1

n )≥ g(x + ein + enn)− g(x + ein) ∀i∈ {1,2, ...., n− 1}.

As a first step to explore discrete convexity properties of (P), we focus on the conditional

expectation of the workload process given a realization of the arrival process. In other words, we

isolate the variability stemming from service times.

Theorem 2. (a) E[Zx
t |Ax

t = at] is directionally convex in at on Zt+ for all t= 1,2, ..., n.

(b) E[O(x)|Ax = a] is directionally convex in a on Zn+.

(c) E[I(x)|Ax = a] is directionally convex in a on Zn+.

(d) E[Ws(x)|Sx = s,U = u] is directionally convex in s on Zn+ for all u in Zn+.

(e) E[Wu(x)|Sx = s,U = u] is directionally convex in s on Zn+ for all u in Zn+.

Theorem 2 serves as an intermediate step for investigating the existence of multimodularity in

our performance measures. It provides us with insights into how to establish a proof/disproof of

the more elaborate multimodularity property.

Theorem 3. (a) E[Zx
t |Ax

t = at] is multimodular in at on Zt+ for all t= 1,2, ..., n.

(b) E[O(x)|Ax = a] is multimodular in a on Zn+.

(c) E[I(x)|Ax = a] is multimodular in a on Zn+.

(d) E[Ws(x)|Sx = s,U = u] is multimodular in s on Zn+ for all u in Zn+.

(e) E[Wu(x)|Sx = s,U = u] is multimodular in s on Zn+ for all u in Zn+.

Theorem 3 implies that when patients deterministically do show up and on time for their sched-

uled appointment, then all performance measures of interest are multimodular in x. This result

serves as a stepping stone toward investigating the conditions on patient punctuality under which

the multimodularity property holds.

Before we proceed with the analysis of the uncoditional performance measures of interest, we

would like to contrast our results with Zacharias and Pinedo (2017), where they prove discrete

convexity properties of a multi-server model with punctual patients and deterministic service times.

The proofs of our Theorems 2 and 3 rely on sample path analyses, by considering realizations of the

workload process given an arrival process; a technique similar to the one used to prove Theorems
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2 and 3 in Zacharias and Pinedo (2017). However, our proofs contain some novel elements, which

enable us to deal with general stochastic service times and heterogeneous patient groups (scheduled

and unscheduled). In Zacharias and Pinedo (2017) the workload process can only take values which

are integer multiples of one slot’s duration, and their proofs rely on the argument that the additional

patient from a unit perturbation “can be pushed toward the end of the queue of customers whenever

the queue is nonempty (i.e., the service discipline does not affect the cost function, as long as the

queue is work conserving)”. This argument cannot be applied in our setting since our workload

process takes values on a continuous space, our timescale is more refined, and becuase of our

treatment of the two separate patient groups. Moreover, we prove a result more general than the

one in Zacharias and Pinedo (2017). We prove multimodularity of the workload process (Theorem

3 (a)), based on which we prove multimodularity of all the components of the objective function.

Finally, each sample path analysis is complemented with a novel coupling argument, in order to

establish comparisons of the marginal differences of the workload process with respect to the unit

perturbations in Definition 1 (see for example equations (EC.34)-(EC.36) in Lemma EC.3 and

monotonicity properties in Lemma EC.4).

Theorem 4. (a) E[Zx
t ] is directionally convex in x on Zn+ for all t= 1,2, ..., n.

(b) E[O(x)] is directionally convex in x on Zn+.

(c) E[I(x)] is directionally convex in x on Zn+.

(d) E[Ws(x)] is directionally convex in x on Zn+.

(e) E[Wu(x)] is directionally convex in x on Zn+.

All performance measures of interest possess directional convexity under general distributions of

patient punctuality, under any discrete-time arrival process from emergency walk-ins, and under

general stochastic service times. Directional convexity implies that the components of a schedule

are operational substitutes, since the marginal cost (benefit) from adding a patient in the sched-

ule increases (decreases) as we add more patients into the schedule. Directional convexity alone,

however, does not imply global optimality of locally optimal solutions, under any notion of locality

established in the literature. To the best of our knowledge, there is no algorithm in the literature

that guarantees to approximate the minimum of a directionally convex function to within any

factor. As we demonstrate in what follows, the multimodularity property of the objective as a

function of x only holds under additional assumptions on patient punctuality.

Definition 2. (a) We say that show-up patients are punctual if

qtτ =


pt if τ = t

1− pt if τ = n+ 1

0 otherwise.
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(b) We say that show-up probabilities are slot-homogeneous if pt = p∈ (0,1] for all t= 1,2, ..., n.

(c) Timeliness of a patient who is scheduled to arrive at slot t and shows up at slot τ is defined

as the difference τ − t, where positive timeliness corresponds to lateness, negative timeliness

corresponds to earliness, and zero timeliness corresponds to promptness.

Theorem 5. Assume that show-up probabilities are slot-homogeneous and that show-up patients

are punctual. Then:

(a) E[Zxt
t ] is multimodular in xt on Zt+ for all t= 1,2, ..., n.

(b) E[O(x)] is multimodular in x on Zn+.

(c) E[I(x)] is multimodular in x on Zn+.

(d) E[Ws(x)] is multimodular in x on Zn+.

(e) E[Wu(x)] is multimodular in x on Zn+.

When patients promptly arrive for their scheduled appointments with the same show-up prob-

ability throughout the workday, then the objective function is multimodular. To the best of our

knowledge, Theorem 5 is the first result in the literature to prove multimodularity of the objective

function under general stochastic service times. However, as we demonstrate below, under a fam-

ily of uniform distributions regarding the arrival process, the multimodularity property collapses.

Under the following set of assumptions on patient the arrival process, some of the properties of

the equivalent definition of a multimodular function from Lemma 1 are violated, while some others

hold.

Assumption 1. Assume the following setting regarding patient adherence to the schedule:

(a) Show-up probabilities are slot-homogeneous.

(b) All patients’ timelinesses, given that they show up, are i.i.d. random variables uniformly dis-

tributed on {−e, ...,−1,0,1, ..., l}, where e (the maximum possible earliness) and l (the maxi-

mum possible lateness) are nonnegative integers such that l≤ n− 3 and e+ l 6= 0.

(c) Patients who arrive too early, before slot 1, do not receive service until the beginning of the

first slot. Waiting costs are incurred only for the waiting time patients experienced during or

after the first slot. Patients who arrive too late, beyond slot n, do not receive service at all and

they are accounted as no-shows.

Theorem 6. Under Assumption 1:

(a) E[O(x)] is not multimodular in x on Zn+.

(b) E[I(x)] is not multimodular in x on Zn+.

(c) E[Ws(x)] is not multimodular in x on Zn+.

(d) E[Wu(x)] is not multimodular in x on Zn+.



Zacharias and Yunes: Multimodularity in the Stochastic Appointment Scheduling Problem 17

Non-punctuality defeats the purpose of a schedule to a certain extent. A good appointment

schedule aims to consistently match capacity and demand throughout the workday by properly

managing patient arrivals. Patients not arriving on their designated appointment times make the

existence of a good schedule less valuable.

4.2. Minimizing a Multimodular Function on Zn+ via Sequential Local Search in Polynomial

Time

In this section we demonstrate how to minimize efficiently a multimodular function over nonnega-

tive integer vectors based on the results of Murota (2004) and Schrijver (2000).

Multimodular and L\-convex functions are related through a unimodular coordinate transfor-

mation. In particular, let g : Zn → R be a multimodular function. According to Lemma 2.1 in

Murota (2005), the function f : Zn→R : x 7→ g(Bx) is L\-convex, where B = (bij)1≤i,j≤n ∈Rn×n is

a bidiagonal matrix with

bij =


1 if j = i

−1 if j = i− 1

0 otherwise.

For the rest of this section, in order to avoid repetition, g will denote a multimodular function and

f an L\-convex function.

For a subset X of a ground set N = {1,2, ..., n}, let eX = (eX1, eX2, ..., eXn) ∈ {0,1}n be the

characteristic vector of X, i.e., eXi = 1i∈X for all i= 1,2, ..., n. Murota (2004) provides the following

algorithm that minimizes locally, and eventually globally, an L\-convex function defined on Zn in

polynomial time.

Algorithm 1 Steepest Descent Algorithm for an L\-convex function f on Zn (Murota (2004))

1: Pick an x∈Zn.

2: Find (ε∗,X∗) = arg min{f(x + εeX) : ε∈ {−1,1},X ⊆N}.

3: If f(x)≤ f(x + ε∗eX∗), then stop (x is a minimizer of f).

4: Set x← x + ε∗eX∗ and go to Step 2.

Definition 3. For a finite ground set N , a set function ρ : 2N →R is said to be submodular if

ρ(U ∪u)− ρ(U)≥ ρ(V ∪u)− ρ(V ) (17)

for all U ⊆ V ⊆N and u∈N\V .
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Step 2 in Algorithm 1 relies on unconstrained minimization of two submodular set functions

min{ρ+
x (X), f(x + eX) :X ⊆N}

and min{ρ−x (X), f(x− eX) :X ⊆N};

a task that involves O(n5) function evaluations and O(n6) arithmetic operations by implementing

Orlin (2009)’s algorithm, and can be readily adjusted to minimize a multimodular function over

Zn. However, minimizing a multimodular function g on Zn+ requires a more careful treatment. Note

that the optimization problem

min{g(x) : x∈Zn+}

is equivalent to

min{f(y), g(By) :By ∈Zn+},

which in turn can be written as

min{f(y) : 0≤ y1 ≤ y2...≤ yn,y ∈Zn+},

since for every x ∈ Zn+ there exists a unique y such that By = x, and vice versa. In particular,

By = x if and only if y = (x1, x1 +x2, x1 +x2 +x3, ..., x1 + ...+xn). Therefore, the problem of mini-

mizing a multimodular function over nonnegative integer vectors can be translated into constrained

minimization of an L\-convex function.

We adjust Murota (2004)’s algorithm in order to minimize efficiently a multimodular function

g on Zn+. Let A= {y ∈ Zn+ : 0≤ y1 ≤ y2 · · · ≤ yn}. It is straightforward to verify that the partially

ordered set (A,≤), with meet and join as defined in (12) and (13) respectively, is a distributive

lattice, but not a finite one (the reader is referred to Chapter I of Fujishige (2005) and Chapter

5 of Davey and Priestley (2002) for the mathematical preliminaries on lattices and orders). Based

on the definition of L\-convexity, see Murota (2005), f is submodular on A. Due to Birkhoff’s

representation theorem, see Birkhoff (1937), a finite integer lattice can be represented as a finite

set lattice, with set inclusion ⊆ as the partial order, set intersection ∩ and set union ∪ as meet and

join, respectively. Consequently, the problem of minimizing a submodular function defined over a

finite integer lattice can be solved in polynomial time (with respect to |A|). The distributive lattice

A is not finite. Even if we force A to be finite (by imposing for example an upper bound on the

number of patients in the schedule), the size of A grows exponentially with the number of decision

variables n. However, we can exploit the fact that a local minimum is also a global minimum for

an L\-convex function, in order to minimize f sequentially over finite set lattices in polynomial

time (with respect to n), until a local minimum is identified. Below we expose in detail how this

procedure works.
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Algorithm 2 Steepest Descent Algorithm for a Multimodular Function g on Zn+
1: Define f :A→R : x 7→ g(Bx).

2: Pick an x∈A.

3: Find (ε∗,X∗) = arg min{f(x + εeX) : ε∈ {−1,1},X ⊆N,x + εeX ∈A}.

4: If f(x)≤ f(x + ε∗eX∗), then stop (x is a minimizer of f and Bx is a minimizer of g).

5: Set x← x + ε∗eX∗ and go to Step 3.

Step 3 in Algorithm 2 involves the constrained minimization of two submodular set functions

min ρ+
x (X)

s.t. X ⊆N
x + eX ∈A

(P+
x )

and
min ρ−x (X)
s.t. X ⊆N

x− eX ∈A.
(P−x )

In general, exact solution to constrained (e.g., cardinality constraints) minimization of submodular

set function is NP-hard (Svitkina and Fleischer (2011)). In Appendix B we demonstrate how to

transform (P+
x ) and (P−x ) into unconstrained minimization of submodular set-functions based on

the results of Schrijver (2000).

Theorem 7. Problems (P+
x ) and (P−x ) can be solved in polynomial time via unconstrained sub-

modular set-function minimization for all x∈A.

5. Computational Experiments

Our transient analysis in §3 and theoretical investigation of discrete convexity properties in §4.1

were carried out based on the assumption of general stochastic service times (either continuous,

discrete, or a mixture). For the case of a continuous service time distribution (beyond the exponen-

tial) or a mixture, the computation of the recursive workload distribution in (4) requires integration

with both symbolic and numerical methods; a task which is computationally slow, and/or inac-

curate, and/or not feasible. Begen et al. (2012) also discuss the limitations and computational

difficulties in the evaluation of the objective function under continuous distributions. In our com-

putational experiments we consider stochastic service times with discrete supports. In Appendix

A we demonstrate how to simplify the analysis in §3 for such a purely discrete setting.

We consider a Beta-Binomial family of distributions; a three-parameter family of distributions

with finite and discrete supports. When the service time distribution is R∼BetaBin(m,α,β), then

R has a support on {0,1,2, ...,m}, a probability mass function

f
R

(r) =

(
m

r

)
B(r+α,m− s+β)

B(α,β)
,
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mean

E[R] = µ=
mα

α+β
,

and variance

Var[R] = σ2 =
mαβ(m+α+β)

(α+β)2(α+β+ 1)
,

where

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt

is the beta function. As shown in Figure 2, a Beta-Binomial distribution with fixed support on

{0,1,2, ...,m} and fixed mean µ may take a variety of shapes depending on its coefficient of variation

CoV(R) = σµ−1. This is a useful feature when it comes to investigating the impact of service time

variability on the optimal scheduling strategies. Another useful feature of the Beta-Binomial family

of distributions is its finite supports, which eliminate the need for numerical truncation, and thus

reduce the computational error.

Figure 2 Shapes of Beta-Binomial distribution with fixed mean and for different values of CoV.
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First, in §5.1-§5.4, we consider the setting where no-show probabilities are slot-homogeneous

and all patients are punctual when they show up. Under these assumptions, from Theorem 5,

the objective function is multimodular and therefore our Algorithm 2 terminates with an optimal

schedule. Local search for the best neighbor of a vector x in step 3 of Algorithm 2 is conducted

in polynomial time based on Theorem 7. In particular, the constrained problems (P+
x ) and (P−x )

are solved via unconstrained submodular set-function minimization, according to the transforma-

tions in (EC.2) and (EC.3) appearing in Appendix B. For unconstrained submodular set-function

minimization we used the minimum norm point algorithm of Fujishige (2005), as implemented in
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sfo min norm point.m of Krause (2010) with an arithmetic tolerance of 10−5. In §5.5 we consider

the setting where patients are not necessarily punctual and we develop heuristic solutions.

In what follows we display and discuss the optimal scheduling strategies as a function of the

various model inputs: U, ci, co, cs, cu, p, µ, σ2, m, T , d (and consequently n = T/d). In our

experiments ci is normalized to 1 and we consider an eight-hour workday from 9:00am to 5:00pm.

In preparation for our analysis and discussions, we introduce the following partial order on Zn+
regarding the comparisons of two schedules.

Definition 4. Let x, x̂ ∈ Zn+. We say that x is smaller than x̂ in the front-loaded order, denoted

as x≤fl x̂, iff
∑t

τ=1 xτ ≤
∑t

τ=1 x̂τ for all t= 1,2, ..., n.

It is straightforward to verify that ≤fl is indeed a partial order (reflexive, antisymmetric and

transitive) on Zn+. We note that the front-loaded order is related to the majorization order, see

Marshall and Olkin (1979); one main difference being that the latter only applies to vectors of

the same sum. Our comparisons based on ≤fl in what follows are grounded on computational

experiments, not on theoretical findings.

Another remark, before we discuss our computational experiments, is that it is often optimal

to overbook certain parts of the schedule in order to hedge against probable patient no-shows,

overtime workload, and potentially other factors. Overbooking might come in two types: (i) by

double-booking certain slots, (ii) by scheduling certain interarrival times to be less than the average

service time. Type (ii) of overbooking is only feasible when we refine the timescale of the schedule

so that d< µ, i.e., when a slot’s duration is less than the average service time.

5.1. Impact of Objective Coefficients

Figures 3 and 4 demonstrate the impact of the objective coefficients cs and co on the optimal

schedule. First, we place the focus on Figure 3, where the average service time is equal to one

slot’s duration. One intuitive observation is that as either or both coefficients increase, the optimal

objective value increases and the expected patient throughput decreases. Moreover, the optimal

schedules become less and less front-loaded as cs increases, to the point that we might have to

compromise patient throughput in order to contain patients’ waiting times.

Interestingly, however, sacrificing patient throughput as cs increases does not necessarily come

along with decreased overtime costs. For example, the optimal schedule in Figure 3(g) has the last

slot empty, in order to absorb any unfinished workload left toward the end of the workday and

to avoid high overtime costs. When we double the waiting cost coefficient from 0.05 to 0.10, we

observe in Figure 3(h) that the optimal schedule becomes less front-loaded and patient throughput

decreases, while overtime increases.
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Figure 3 Optimal schedules as a function of cs & co with µ= d.

(a) cs = 0.05, co = 0.00
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(b) cs = 0.10, co = 0.00
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(c) cs = 0.15, co = 0.00
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(d) cs = 0.05, co = 0.50
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(e) cs = 0.10, co = 0.50
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(f) cs = 0.15, co = 0.50
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(g) cs = 0.05, co = 1.00
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(h) cs = 0.10, co = 1.00
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(i) cs = 0.15, co = 1.00
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(j) cs = 0.05, co = 1.50
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(k) cs = 0.10, co = 1.50
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(l) cs = 0.15, co = 1.50
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Note. T = 8 hrs, p= 0.85, d= 15 mins, R∼BetaBin(45, α,β) with α & β such that µ= 15 mins & σµ−1 = 0.3, U = 0.

In contrast to the effect of cs, we do not observe monotonicity properties with respect to the

front-loaded order as co increases. In Figure 3(b), when the overtime cost is set to zero, the optimal

schedule has three double-booked slots spread out throughout the workday in order to offset a 15%

no-show rate. When we increase co by 0.5 in Figure 3(e), only two slots are double-booked (in order

to avoid high overtime costs) and the optimal schedule becomes less front-loaded. However, when

we double co in Figure 3(h), the optimal schedule becomes more front-loaded, while we maintain

the same patient throughput, and as a result overtime decreases at the expense of an increase in

the average waiting time.

In Figure 4 the average service time is 30 minutes, double the slot’s duration, and both types of

overbooking appear throughout the workday. The conclusions discussed above regarding Figure 3

still hold in this setting. When contrasting Figures 3 and 4 we observe that, in optimality, longer

service times come along with longer waiting times and overtime workload. Furthermore, in Figure

4, double-booking only occurs on the first slot, so that we get an empty system up and running. The

rest of the optimal schedule, beyond the first slot, consists of a sequence of scheduled interarrival

times that are equal to either 30 minutes (with no overbooking) or occasionally 15 minutes. The

lack of a clear repetitive pattern in the optimal schedule may be attributed to two reasons: (i) 8

hours are not enough for the system to reach some sort of steady state, (ii) the discrete nature of
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Figure 4 Optimal schedules as a function of cs & co with µ> d.

(a) cs = 0.05, co = 0.00
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(b) cs = 0.10, co = 0.00
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(c) cs = 0.15, co = 0.00
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(d) cs = 0.05, co = 0.50
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(e) cs = 0.10, co = 0.50
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(f) cs = 0.15, co = 0.50
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(g) cs = 0.05, co = 1.00
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(h) cs = 0.10, co = 1.00
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(i) cs = 0.15, co = 1.00
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(j) cs = 0.05, co = 1.50
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(k) cs = 0.10, co = 1.50
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(l) cs = 0.15, co = 1.50
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Note. T = 8 hrs, p= 0.85, d= 15, R∼BetaBin(90, α,β) with α & β such that µ= 30 mins & σµ−1 = 0.3, U = 0.

the problem offers limited flexibility to consistently match capacity with scheduled appointments

throughout the workday.

5.2. Impact of Service Time Variability and No-show Rate

In Figure 5 we demonstrate the impact of variability stemming from service times and no-shows.

One clear observation is that as either or both service time variability and no-show rate increase,

the optimal objective value increases as well; as the operational environment becomes more and

more stochastic, the harder it becomes to strike the right balance between efficient resource utiliza-

tion and contained waiting times. The latter remark suggests that outpatient clinics should take

measures to contain variability emerging from these two sources in order to better achieve their

operational goals.

Intuitively, as the no-show rate decreases, the optimal schedules become less front-loaded. Inter-

estingly, however, patient throughput does not necessarily improve as the no-show rate decreases:

as we transition from Figure 5(g) with a no-show rate of 15% to Figure 5(j) with a no-show rate

of 10%, we slightly compromise patient throughput to the benefit of achieving decreased overtime

and waiting time. In contrast to the effect of the no-show rate, we do not observe monotonicity

properties with respect to the front-loaded order as σ2 increases. For example, if we take a careful
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Figure 5 Optimal schedules as a function of CoV(R) & p.

(a) CoV(R) = 0.3, p= 0.75
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(b) CoV(R) = 0.4, p= 0.75
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(c) CoV(R) = 0.5, p= 0.75
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(d) CoV(R) = 0.3, p= 0.80
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(e) CoV(R) = 0.4, p= 0.80
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(f) CoV(R) = 0.5, p= 0.80
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(g) CoV(R) = 0.3, p= 0.85
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(h) CoV(R) = 0.4, p= 0.85
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(i) CoV(R) = 0.5, p= 0.85
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(j) CoV(R) = 0.3, p= 0.90
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(k) CoV(R) = 0.4, p= 0.90
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(l) CoV(R) = 0.5, p= 0.90
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Note. T = 8 hrs, co = 1, cs = 0.1, d= 15 mins, R∼BetaBin(90, α,β) with α & β such that µ= 30 mins, U = 0.

look at the first row of Figure 5, the optimal schedule in (b) with a CoV(R) = 0.4 is more front-

loaded when compared to both schedules from (a) and (c) with CoV(R) = 0.3 and CoV(R) = 0.5

respectively.

Another observation worth noting, probably one that bears limited managerial insight yet stim-

ulates academic curiosity, is the following. The set of nonnegative integer vectors Zn+ endowed with

the partial order ≤fl is not a totally ordered set, i.e., if we pick any two nonnegative integer vectors

they are not necessarily comparable. However, for either a fixed p or a fixed CoV(R), the resulting

subset of schedules from Figure 5 is in fact a totally ordered set. As discussed above, monotonicity

properties might not necessarily hold, but every pair of schedules is comparable with respect to

≤fl. This observation holds also for Figures 3 and 4 for either a fixed co or a fixed cs. That being

the case, we reckon that ≤fl is a more meaningful tool to contrast different appointment schedules,

when compared to the standard order ≤ on Zn+.

5.3. Impact of Timescale

In the literature (e.g., in Robinson and Chen (2010), LaGanga and Lawrence (2012), Zacharias

and Pinedo (2017), Wang et al. (2018)) it is often assumed that a slot’s duration d is equal to the

average service time µ, and therefore patients are scheduled to arrive only at integer multiples of
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µ. In our next experiment we place the focus on the impact of a schedule’s timescale d. Consider

for example the setting where the average service time is equal to 30 minutes. Should a clinic offer

appointment times at 9:00am, 9:30am, 10:00am, etc.? Is there any benefit in refining the timescale

of a schedule so that appointment times are potentially offered at 9:00am, 9:15am, 9:30am, etc.?

An appointment schedule in the former setting is also a feasible schedule in the latter, but not

the other way around. Therefore, in the latter setting we expect to obtain an optimal schedule at

least as good as the one in the former setting. On the other hand, a more refined timescale comes

along with more decision variables, something that increases the computational complexity of the

problem. Is there a significant benefit from sacrificing computational complexity in order to achieve

better operational outcomes?

Figure 6 Optimal schedules as a function of d & p.

(a) d= 30 mins, p= 0.7
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(b) d= 30 mins, p= 0.8
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(c) d= 30 mins, p= 0.9
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(d) d= 20 mins, p= 0.7
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(e) d= 20 mins, p= 0.8
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(f) d= 20 mins, p= 0.9
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(g) d= 15 mins, p= 0.7
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(h) d= 15 mins, p= 0.8
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(i) d= 15 mins, p= 0.9
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(j) d= 10 mins, p= 0.7
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(k) d= 10 mins, p= 0.8
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(l) d= 10 mins, p= 0.9
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(m) d= 5 mins, p= 0.7
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(n) d= 5 mins, p= 0.8
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(o) d= 5 mins, p= 0.9
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Note. T = 8 hrs, co = 1, cs = 0.1, R∼BetaBin(90, α,β) with α & β such that µ= 30 mins & σµ−1 = 0.4, U = 0.

In Figure 6 the average service time µ is 30 minutes and we display the optimal schedules for d=

30,20,15,10,5 minutes and for different no-show probabilities. Figure 7 shows the % improvement
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Figure 7 % improvement in the optimal objective value when d≤ µ.

(a) as a function of d and p
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Note. T = 8 hrs, co = 1, cs = 0.1, R∼BetaBin(90, α,β) with α & β such that µ= 30 mins & σµ−1 = 0.4, U = 0

% improvement is calculated relative to the optimal objective value when d= µ

in the optimal objective value relative to the one when d= µ. We observe that, indeed, when we

allow more flexibility in our scheduling decisions by letting d be a proper divisor of µ, then the

optimal objective value improves. For example, lets take a look at the middle column of Figure 6

(or the blue dotted line in Figure 7). When we double the decision variables from 16 to 32 as we

transition from 6(b) to 6(h), the improvement in the optimal objective value is 3.4%. When we

triple the decision variables from 16 to 48 as we transition from 6(b) to 6(k), the improvement is

3.8%. When we sextuple the decision variables from 16 to 96 from 6(b) to 6(n), the improvement is

4.3%. Moreover, a more refined timescale might result in higher patient throughput in optimality,

as the option of letting d to be less than µ provides the flexibility to strategically fit an extra

patient into the schedule (compare 6(b) with the rest of the column). Next, we place the focus

on the special case where d is not a proper divisor of µ= 30. When d= 20, the objective value in

fact worsens when the no-show rate is 10%, while the objective value improves for higher no-show

rates. This suggests that outpatient clinics can indeed benefit form a more refined timescale in

their scheduling decisions when d is a proper divisor of µ, while otherwise we might end up with

a worse schedule. Finally, when d is a proper divisor of µ, there is evidence of decreasing marginal

differences in the objective as the number of variables n increases.

5.4. Impact of Unscheduled Emergency Walk-ins

In our next computational experiment we investigate the impact of emergency walk-ins on the

optimal scheduling strategy. We consider a setting where the average service time µ is 30 minutes,

one slot’s duration d is 15 minutes, and one unscheduled emergency patient may arrive at each

one of the 32 slots with some probability pu (in agreement with Green et al. (2006)). In particular,
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Figure 8 Optimal schedules as a function of p & U.

(a) p= 0.8, pu = 0.0
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(b) p= 0.9, pu = 0.0
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(c) p= 1.0, pu = 0.0
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(d) p= 0.8, pu = 0.1
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(e) p= 0.9, pu = 0.1
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(f) p= 1.0, pu = 0.1
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(g) p= 0.8, pu = 0.2
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(h) p= 0.9, pu = 0.2
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(j) p= 0.8, pu = 0.3
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(k) p= 0.9, pu = 0.3
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(l) p= 1.0, pu = 0.3
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(m) p= 0.8, pu = 0.4
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(o) p= 1.0, pu = 0.4
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(p) p= 0.8, pu = 0.5
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(q) p= 0.9, pu = 0.5
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(r) p= 1.0, pu = 0.5

0
9

:0
0   

0
9

:1
5   

0
9

:3
0   

0
9

:4
5   

1
0

:0
0   

1
0

:1
5   

1
0

:3
0   

1
0

:4
5   

1
1

:0
0   

1
1

:1
5   

1
1

:3
0   

1
1

:4
5   

1
2

:0
0   

1
2

:1
5   

1
2

:3
0   

1
2

:4
5   

1
3

:0
0   

1
3

:1
5   

1
3

:3
0   

1
3

:4
5   

1
4

:0
0   

1
4

:1
5   

1
4

:3
0   

1
4

:4
5   

1
5

:0
0   

1
5

:1
5   

1
5

:3
0   

1
5

:4
5   

1
6

:0
0   

1
6

:1
5   

1
6

:3
0   

1
6

:4
5   

1
7

:0
0

0

1

2

Note. T = 8 hrs, co = 1, cs = 0.1, cu = 0.075, d= 15 mins, R∼BetaBin(90, α,β) with α & β such that µ= 30 mins &

σµ−1 = 0.4, Ut ∼Bernoulli(pu) for all t= 1,2, ...,32.

we let Ut ∼Bernoulli(pu) for all t= 1,2, ..., n, where pu ∈ {0,0.1,0.2,0.3,0.4,0.5}. The extreme case

where pu = 0.5 corresponds to a scenario were the expected number of all unscheduled emergency

walk-ins is equal to the daily capacity to serve patients.

Figure 8 displays the optimal schedules for a combination of no-show rates and walk-in rates. We

do observe that as the walk-in rate increases, the optimal schedules become less front-loaded, to the

point that only the first slot is booked with one scheduled patient, and essentially the outpatient

clinic operates under an open access regime (see Green and Savin (2008), Liu and Ziya (2014),

Izady (2015), and Zacharias and Armony (2017)). Moreover, the higher the walk-in rate, the less
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control we have over the arrival process and inevitably the optimal objective value increases as

well.

Next, we place the focus on the upper right corner of Figure 8, where there is no variability in

the arrival process (since p= 1.0 and pu = 0). Due to service time variability, the first two patients

are scheduled to arrive 15 minutes apart. For the rest of the day, patients are scheduled to arrive

deterministically every 30 minutes with two gaps of 15 minutes in the middle and toward the end of

the workday, and the last 2 slots remain empty. As a result, the patient throughput is 15 patients,

falling one patient short of the clinic’s daily capacity. Even in an ideal scenario where there is no

randomness in the arrival process, outpatient clinics might have to sacrifice some of their patient

throughput in order to hedge against service time variability and its impact on waiting times and

overtime workload.

5.5. Impact of Non-punctuality

The computational analyses in §5.1-§5.4 were carried out under the assumption of punctual

patients. In our last experiment we investigate the impact of non-punctuality on the optimal

scheduling strategy. We know from Theorem 4 that the objective function is directionally convex

under general conditions. However, under the assumptions of Theorem 6, the objective function

is not multimodular. To the best of our knowledge, there is no algorithm in the literature that

guarantees to approximate the minimum of a directionally convex function to within any factor.

Moreover, objective function evaluations have exponential complexity under the assumption of

non-punctual patients (as discussed in §3.2). We propose the following two heuristic procedures:

(i) exhaustive local search (els): the first heuristic incorporates non-punctuality in the objec-

tive function evaluations and performs exhaustive local search (locality as defined in Theorem

1). It terminates with a schedule xels which is optimal within its exponentially large neigh-

borhood.

(ii) submodular set-function minimization (ssm): the second heuristic assumes that

patients are punctual (and therefore the objective function is assumed to be multimodular),

and identifies a locally optimal schedule xssm in polynomial time via Algorithm 2.

In Figure 9 we contrast xels and xssm under the assumptions of Theorem 6 with d = 15 and

e = l = 1 (i.e., patients might arrive either on time, 15 mins early, 15 mins late, or not show up

at all) and for different values of CoV(R). We observe that xels outperforms xssm by 4.5%, 6.3%,

and 3.1% when CoV(R) is equal to 0.3, 0.4, and 0.5, respectively. These % cost differences can be

viewed as a lower bound for the “value” of explicitly accounting for patient non-punctuality in our

scheduling decisions. We also observe that xels is more front-loaded than xssm. Even though our

analysis is not comprehensive (due to the computational challenges involved), it provides evidence
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Figure 9 Hueristic solutions when patients are not necessarily punctual (under the assumptions of Theorem 6).

(a) xels, CoV(R) = 0.3
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(b) xels, CoV(R) = 0.4
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(c) xels, CoV(R) = 0.5
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(d) xssm, CoV(R) = 0.3
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(e) xssm, CoV(R) = 0.4
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(f) xssm, CoV(R) = 0.5
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Note. T = 4 hrs, co = 1, cs = 0.1, p = 0.9, d = 15 mins, R ∼ BetaBin(90, α,β) with α & β such that µ = 30 mins,

U = 0, e= l= 1.

that non-punctuality has a significant impact on the optimal scheduling strategy and should be

taken under consideration.

6. Conclusion

We address the problem of designing optimal appointment scheduling strategies so that outpatient

clinics can utilize their resources efficiently, while containing patients’ waiting times, in a stochastic

environment. Our stochastic model provides a unifying platform for addressing the well-studied

appointment scheduling problem, as many models in the literature can be considered as its special

cases. To the best of our knowledge, this is the first study to unfold discrete convexity proper-

ties of the static appointment scheduling problem under general stochastic service times and/or

non-punctual patients. We prove that under general conditions the objective function is direction-

ally convex. While directional convexity deems the components of a schedule to be operational

substitutes, it is not enough to ensure that the problem can be solved to exact optimality. We

prove that the objective function is multimodular when patients promptly arrive for their sched-

uled appointments with the same show-up probability, and we identify conditions under which the

multimodularity property collapses. This study is the first to develop and implement an algorithm

for minimizing locally (and eventually globally) a multimodular function over nonnegative integer

vectors in polynomial time; a task that bridges recent advances in discrete convex analysis and

submodular set-function minimization over ring families.

6.1. Managerial Implications and Practical Insights

Below we summarize some insights from our analysis for practical implementation. The reader is

referred to §5 for a more thorough discussion.
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• Addressing variability in outpatient processes: Increased variability stemming from all

sources (emergency walk-ins, consultation times, no-shows) is associated with worsened operational

outcomes, as measured by a weighted sum of the typical performance measures (waiting time,

overtime, and idleness). As the operational environment becomes more and more stochastic, it

becomes harder to strike the right balance between efficient resource utilization and short waiting

times. In a highly stochastic environment, optimal schedules tend to be front-loaded and often with

the last slot empty, in order to hedge against probable patient no-shows and overtime workload.

Our model, by properly balancing the involved trade-offs, can provide precise scheduling guidelines

tailored to stochastic clinical environments. On a broader level, we demonstrate that outpatient

clinics should take into account all sources of variability in their scheduling decisions and take

measures to contain this variability in order to better achieve their operational goals. For example,

our computational analysis indicates that, even in an ideal scenario where the no-show rate is

zero and there are no walk-ins, outpatient clinics might have to sacrifice some of their patient

throughput in order to handle service time variability and its impact on waiting times and overtime

workload.

• Choosing the right timescale: It is common for schedulers to use a slot duration (or

timescale) d roughly equal to the average consultation time µ; is this practice ideal? Consider for

example the setting where the average consultation time is equal to 30 minutes. Should a clinic

offer appointment times at 9:00am, 9:30am, 10:00am, etc.? Is there a significant benefit in refining

the timescale of a schedule so that appointment times are potentially offered at 9:00am, 9:15am,

9:30am, etc.? An appointment schedule in the former setting is also a feasible schedule in the latter,

but not the other way around. Therefore, in the latter setting we expect to obtain an optimal

schedule at least as good as the one in the former setting. On the other hand, a more refined

timescale comes along with more decision variables, something that increases the computational

complexity of the problem. Our efficient optimization procedure enabled us to refine the timescale

down to increments of 5 minutes and to provide an answer to this question.

We studied the impact of using different values of d on the system’s overall performance. When

d is a proper divisor of µ (e.g., when µ= 30 and d= 15,10,5), we found that, indeed, outpatient

clinics can benefit from a more refined timescale in their scheduling decisions by improving their

daily patient flow. With a more refined timescale we can reduce waiting times or achieve a higher

patient throughput in optimality (by having the flexibility to strategically fit an extra patient

into the schedule). Achieving these benefits, however, requires patient adherence to the schedule.

We also found that the marginal benefit decreases as the timescale of the schedule becomes more

and more refined. Thus, by taking into account the aforementioned observations, for practical

implementation we recommend that outpatient clinics consider a timescale equal to half the average
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consultation time. Moreover, we should use caution when considering a schedule where d is not

proper divisor of µ (e.g., when µ= 30 and d= 20), as this practice might in fact lead to adverse

operational outcomes.

• Overbooking: It is often optimal to overbook certain parts of the schedule in order to address

variability stemming from all sources and its impact on the clinic’s productivity. Overbooking

can be done in two ways: by double-booking certain slots or by separating consecutive patients’

appointments by less than the average consultation time. The former type of overbooking should

mainly be used earlier in the day, whereas the latter can be spread later throughout the day.

Moreover, in the presence of no-shows and stochastic consultation times, the total number of

overbooked patients should be such that the expected patient throughput is slightly below the

daily capacity to see patients.

• Trade-off between productivity and waiting times: In the presence of variability, elim-

inating idle time (thereby improving overall productivity and throughput) and containing waiting

times are conflicting goals. Our weighted objective approach can capture the relative importance

between these goals. As waiting time weighs more in our scheduling decisions, we might have to

compromise patient throughput and/or idle time and/or overtime. We recommend that practition-

ers try different configurations on the objective coefficients and pick the one that strikes the right

balance between their operational goals.

6.2. Limitations and Future Research

Solving the appointment scheduling problem under non-punctual patients remains an open prob-

lem. We have shown that the multimodularity property collapses under a general class of uniform

distributions regarding patient punctuality, and we proposed heuristic solutions. Even though our

analysis is not comprehensive (due to the computational challenges involved), it provides the first

platform to address non-punctuality, and demonstrates evidence that non-punctuality has a sig-

nificant impact on the optimal scheduling strategy and should not be ignored. Further research is

needed in this direction in terms of efficient objective function evaluations and exact optimization

algorithms. Moreover, under our FIFO queueing discipline, patients are queued according to their

arrival time, as opposed to their scheduled time. Samorani and Ganguly (2016) provide a solution

to this problem by analyzing a stylized analytical model.

Our theoretical findings are true under general stochastic service times, yet our numerical analysis

was restricted to distributions with discrete supports. This was in part due to the computational

inefficiencies involved in the task of integrating with symbolic and numerical methods discussed

in §5. However, we can readily redefine the timescale of the service times so that one time unit

corresponds to one second, and therefore maintain a purely discrete setting where symbolic and
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numerical integrations are no longer necessary, while time is practically almost continuous. A precise

computational analysis based on continuous distributions remains an open direction, though we

believe it will not provide any additional insights.

Finally, we demonstrated that the front-loaded order ≤fl introduced in §5 is a more meaningful

tool to contrast different scheduling strategies, when compared to the standard order ≤ on Zn+. Our

comparisons and monotonocity patterns based on ≤fl are grounded on our computational experi-

ments, not on theoretical findings. A development of a theoretical foundation for our observations

is a promising future direction. A good starting point is to establish stochastic comparisons of the

workload process based on ≤fl.
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Electronic Companion

This electronic companion contains all the proofs of our theoretical results and other supplemen-

tary material.

Appendix A: Service Distributions with Discrete Supports

In this appendix we modify the analysis of §3.1 (and by association, the analysis in §3.2) to account

for the setting where service times have a discrete support on {0,1,2, ...} and a finite mean and

variance. Let πat(z) = P(Zx
t = z|Ax

t = at) denote the conditional probability mass function of Zx
t

given a partial realization of the arrival process at = (a1, a2, ..., at)∈Zt+ up to some slot t= 1,2, ..., n.

As a notational convention we let

πa0(z) =

{
1 if z = 0

0 otherwise,

by assuming that the system is empty at the beginning of the workday. Let also ζat(y) = P(Y x
t =

y|Ax
t = at) = P(R(at) = y) denote the conditional probability mass function of Y x

n given a realization

at of the number new arrivals at slot t = 1,2, ..., n. Then πat(z) can be expressed recursively for

t= 1,2, ..., n as

πat(z) =



d+z∑
y=0

ζat(y)πat−1
(z+ d− y) for z = 1,2, ...

d∑
y=0

ζat(y)

d−y∑
u=0

πat−1
(u) for z = 0

0 otherwise,

and the conditional expected workload over time, given a realization of the arrival process, as

E[Zx
t |Ax

t = at] =
∞∑
z=0

zπat(z), t= 1,2, ..., n. (EC.1)

Appendix B: Minimizing Locally a Multimodular Function on Zn+ via Submodular

Set-function Minimization

In this appendix we demonstrate how to transform (P+
x ) and (P−x ) into unconstrained minimization

of submodular set-functions based on the results of Schrijver (2000). First, we define the two

families of subsets of N corresponding to the constraints of (P+
x ) and (P−x ) as

C+
x , {X ⊆N : x + eX ∈A}⊆ 2N

and C−x , {X ⊆N : x− eX ∈A}⊆ 2N ,
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and two subfamilies for each constraint set

M+
x,u , {v ∈N : v≥ u,xv = xu},

M−
x,u , {v ∈N : v≤ u,xv = xu},

L+
x,u , {v ∈N : v < u,xv <xu}∪ {v ∈N : v > u},

and L−x,u , {v ∈N : v > u,xv >xu}∪ {v ∈N : v < u},

for all u∈N .

Lemma EC.1. For all u∈N :

(a) M+
x,u is the smallest set in C+

x containing u.

(b) M−
x,u is the smallest set in C−x containing u.

(c) L+
x,u is the largest set in C+

x not containing u.

(d) L−x,u is the largest set in C−x not containing u.

The next step toward translating (P+
x ) and (P−x ) into unconstrained minimization of submodular

set-functions is to prove that their feasible regions are ring families (i.e., collections of subsets of

N closed under union and intersection).

Lemma EC.2. For all x∈A:

(a) C+
x is a ring family.

(b) C−x is a ring family.

We also note that the family of sets {M+
x,1,M

+
x,2, ...,M

+
x,n} is the family of join-irreducible (see

Davey and Priestley (2002) Chapter 5) members of C+
x , and as a result, every member of C+

x can be

obtained as a (possibly empty) union of elements from {M+
x,1,M

+
x,2, ...,M

+
x,n}. A similar observation

holds for C−x .

Finally, consider the two set- unctions defined for every x∈A and X ∈ 2N by

ρ̃+
x (X), ρ+

x (X̃+
x ) +κ+

x (X̃+
x )−κ+

x (X)

and ρ̃−x (X), ρ−x (X̃−x ) +κ−x (X̃−x )−κ−x (X),
(EC.2)

where, for every X ∈ 2N

X̃+
x ,

⋃
u∈X

M+
x,u

X̃−x ,
⋃
u∈X

M−
x,u

κ+
x (X),

∑
u∈X

max(0, ρ+
x (L+

x,u)− ρ+
x (L+

x,u ∪{u}))

and κ−x (X),
∑
u∈X

max(0, ρ−x (L−x,u)− ρ−x (L−x,u ∪{u})).

(EC.3)

Then, according to Schrijver (2000), for all x∈A:
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(a) ρ̃+
x : 2N →R is submodular. If X minimizes ρ̃+

x over 2N , then X̃+
x minimizes ρ+

x over C+
x .

(b) ρ̃−x : 2N →R is submodular. If X minimizes ρ̃−x over 2N , then X̃−x minimizes ρ−x over C−x .

Appendix C: Proofs of Theoretical Results

In this appendix we display the proofs of our theoretical results. First, we find it necessary to

introduce some additional notation, and to state and prove two technical lemmas that do not

appear in the main body of the paper.

C.1. Additional Notation

For exposition purposes, we introduce the following additional notation. Let the random vector

Ỹat
t = (Ỹ a1

1 , Ỹ a2
2 , ..., Ỹ at

t ) denote the new-workload process up to slot t ∈ {1,2, ..., n} under the

realization of the arrival process at, with Ỹ aτ
τ ∼ R(aτ ) for all τ = 1,2, ..., t. Further, for ease of

notation, let zyt
t = (zyt1 , z

yt
2 , ...., z

yt
t ) be the deterministic counterpart of the workload vector Zx

t

given a realization of the new-workload process yt. Let also lytt = (lyt1 , l
yt
2 , ...., l

yt
t ) ∈ [0, d]t be the

deterministic counterpart of the idle time vector given a realization of the new-workload process

yt, i.e., lytτ indicates the amount of time during slot τ the server is idle, τ = 1,2, ..., t. Then zyt
t and

lytt satisfy the (deterministic) recursion

zyt0 = 0,

zytτ = max{zytτ−1 + yτ − d,0}, for τ = 1,2, ..., t, (EC.4)

lytτ = max{d− zytτ−1− yτ ,0}, for τ = 1,2, ..., t. (EC.5)

From (EC.4), (EC.5) and the identity x+−x− = x ∀x∈R, we also get the relationship

zytτ − lytτ = zytτ−1 + yτ − d, for τ = 1,2, ..., t. (EC.6)

C.2. Two Technical Lemmas

The following two technical lemmas serve as the predecessors of our main Theorems 2, 3, 4, 5, and

6.

Lemma EC.3. For all t∈ {1,2, ..., n}, for all yt ∈Rt+, and for all r, r′ ≥ 0 the following hold:

(a) z
yt+re

i
t+r
′ejt

t − zyt+re
i
t

t ≥ zyt+r
′ejt

t − zytt for all 1≤ i≤ j ≤ t.

(b) z
yt+re

i+1
t +r′ett

t − zyt+re
i+1
t

t ≥ zyt+re
i
t+r
′ett

t − zyt+re
i
t

t for all 1≤ i≤ t− 1.

(c) z
yt+re

i+1
t +r′ejt

t − zyt+re
i+1
t +r′ej+1

t
t ≥ zyt+re

i
t+r
′ejt

t − zyt+re
i
t+r
′ej+1
t

t for all i 6= j ∈ {1,2, ..., t− 1}.

(d) z
yt+re

1
t+r′ejt

t − zyt+re
1
t+r′ej+1

t
t ≥−zyt+r

′ejt
t − zyt+r

′ej+1
t

t for all 1≤ j ≤ t− 1.

Lemma EC.4. For all realizations of the arrival process a∈Zn+:

(a) The difference E[Zx
t |Ax

t = at+ei+1
t ]−E[Zx

t |Ax
t = at+eit] is decreasing in t on {i+1, i+2, ..., n}

for all i= 1,2, ..., n− 1.
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(b) The difference E[Zx
t |Ax

t = at + e1
t ]−E[Zx

t |Ax
t = at] is decreasing in t on {1,2, ..., n}.

(c) E[Zx
t |Ax

t = at] +µ−E[Zx
t |Ax

t = at + ett]≥E[Zx
t+1|Ax

t+1 = at+1 + et+1
t+1]−E[Zx

t+1|Ax
t+1 = at+1 + ett+1]

for all t= 1,2, ..., n− 1.

(d) E[Zx
n |Ax = a+e1

n+e1
n]−E[Zx

n |Ax = a+e1
n+ein]≥E[Zx

n |Ax = a+ei+1
n +e1

n]−E[Zx
n |Ax = a+ei+1

n +ein]

for all i= 2,3, ..., n.

Proof of Lemma EC.3 (a) Let t∈ {1,2, ..., n}, yt ∈Rt+, r, r′ ≥ 0 and 1≤ i≤ j ≤ t. We will show

that

[z
yt+re

i
t+r
′ejt

t − zyt+re
i
t

t ]− [z
yt+r

′ejt
t − zytt ]≥ 0. (EC.7)

From (EC.6),

z
yt+re

i
t+r
′ejt

τ − lyt+re
i
t+r
′ejt

τ = z
yt+re

i
t+r
′ejt

τ−1 +
(
yτ + r1{τ=i}+ r′1{τ=j}

)
− d for all τ = 1,2, ..., t

⇒ z
yt+re

i
t+r
′ejt

τ − zyt+re
i
t+r
′ejt

τ−1 = l
yt+re

i
t+r
′ejt

τ +
(
yτ + r1{τ=i}+ r′1{τ=j}

)
− d for all τ = 1,2, ..., t

⇒
t∑

τ=1

[
z
yt+re

i
t+r
′ejt

τ − zyt+re
i
t+r
′ejt

τ−1

]
=

t∑
τ=1

[
l
yt+re

i
t+r
′ejt

τ +
(
yτ + r1{τ=i}+ r′1{τ=j}

)
− d
]

⇒ z
yt+re

i
t+r
′ejt

t =
t∑

τ=1

l
yt+re

i
t+r
′ejt

τ +
t∑

τ=1

yτ + r+ r′− dt. (EC.8)

Similarly,

z
yt+re

i
t

t =
t∑

τ=1

lyt+re
i
t

τ +
t∑

τ=1

yτ + r− dt, (EC.9)

z
yt+r

′ejt
t =

t∑
τ=1

l
yt+r

′ejt
τ +

t∑
τ=1

yτ + r′− dt, (EC.10)

and zytt =
t∑

τ=1

lytτ +
t∑

τ=1

yτ − dt. (EC.11)

From (EC.8), (EC.9), (EC.10) and (EC.11), inequality (EC.7) holds iff

t∑
τ=1

[
lyt+re

i
t

τ − lyt+re
i
t+r
′ejt

τ

]
≤

t∑
τ=1

[
lytτ − l

yt+r
′ejt

τ

]
(EC.12)

Note that l
yt+re

i
t+r
′ejt

τ = l
yt+re

i
t

τ and l
yt+r

′ejt
τ = lyτ for all τ = 1, ..., j− 1. Therefore (EC.12) holds iff

t∑
τ=j

[
lyt+re

i
t

τ − lyt+re
i
t+r
′ejt

τ

]
︸ ︷︷ ︸

=:∆ij

≤
t∑

τ=j

[
lytτ − l

yt+r
′ejt

τ

]
︸ ︷︷ ︸

=:∆j

. (EC.13)

Next let us define the quantities

γij : =
t∑

τ=j

lyt+re
i
t

τ = idle time during slots j, j+ 1, ..., t under realization yt + reit,

and γj : =
t∑

τ=j

lytτ = idle time during slots j, j+ 1, ..., t under realization yt.
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From (EC.4) and (EC.5) it is straightforward to see inductively that

lyt+re
i
t

τ ≤ lytτ for all τ = j, j+ 1, ..., t

and therefore

γij ≤ γj. (EC.14)

Finally,

∆ij =
t∑

τ=j

[
lyt+re

i
t

τ − lyt+re
i
t+r
′ejt

τ

]
= workload from r′ejt absorbed by idle time resulting from realization yt + reit

= min(γij, r
′), (EC.15)

and ∆j =
t∑

τ=j

[
lytτ − l

yt+r
′ejt

τ

]
= workload from r′ejt absorbed by idle time resulting from realization yt

= min(γj, r
′). (EC.16)

From (EC.14), (EC.15) and (EC.16) we get

∆ij ≤∆j. � (EC.17)

(b) Let t∈ {1,2, ..., n}, yt ∈Rt+, r, r′ ≥ 0, and 1≤ i≤ t− 1. We will show that[
z
yt+re

i+1
t +r′ett

t − zyt+re
i+1
t

t

]
−
[
z
yt+re

i
t+r
′ett

t − zyt+re
i
t

t

]
≥ 0. (EC.18)

We will consider separately the two cases i < t− 1 and i= t− 1, and we will prove that (EC.18)

holds.

case 1: If i < t− 1, then from (EC.4),

z
yt+re

i+1
t +r′ett

t = max{zyt+re
i+1
t

t−1 + yt + r′− d,0}, (EC.19)

z
yt+re

i+1
t

t = max{zyt+re
i+1
t

t−1 + yt− d,0}, (EC.20)

z
yt+re

i
t+r
′ett

t = max{zyt+re
i
t

t−1 + yt + r′− d,0}, (EC.21)

z
yt+re

i
t

t = max{zyt+re
i
t

t−1 + yt− d,0}. (EC.22)

From (EC.19), (EC.20), (EC.21) and (EC.22), (EC.18) is true iff

max{zyt+re
i+1
t

t−1 + yt + r′− d,0}−max{zyt+re
i+1
t

t−1 + yt− d,0}

≥ max{zyt+re
i
t

t−1 + yt + r′− d,0}−max{zyt+re
i
t

t−1 + yt− d,0}

⇐⇒ min{r′,max{zyt+re
i+1
t

t−1 + yt− d,0}} ≥min{r′,max{zyt+re
i
t

t−1 + yt− d,0}},
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which is true since z
yt+re

i+1
t

t−1 ≥ zyt+re
i
t

t−1 for i < t− 1.

case 2: If i= t− 1, then (EC.18) can be written as[
z
yt+(r+r′)ett
t − zyt+re

t
t

t

]
−
[
z
yt+re

t−1
t +r′ett

t − zyt+re
t−1
t

t

]
≥ 0. (EC.23)

From (EC.4),

z
yt+(r+r′)ett
t = max{zytt−1 + yt + r+ r′− d,0}, (EC.24)

z
yt+re

t
t

t = max{zytt−1 + yt + r− d,0}, (EC.25)

z
yt+re

t−1
t +r′ett

t = max{zyt+re
t−1
t

t−1 + yt + r′− d,0}, (EC.26)

z
yt+re

t−1
t

t = max{zyt+re
t−1
t

t−1 + yt− d,0}. (EC.27)

From (EC.24), (EC.25), (EC.26) and (EC.27), (EC.23) is true iff

max{zytt−1 + yt + r+ r′− d,0}−max{zytt−1 + yt + r′− d,0}

≥ max{zyt+re
t−1
t

t−1 + yt + r− d,0}−max{zyt+re
t−1
t

t−1 + yt− d,0}

⇐⇒ min{r′,max{zytt−1 + yt + r− d,0}} ≥min{r′,max{zyt+re
t−1
t

t−1 + yt− d,0}},

which is true since zytt−1 + r≥ zyt+re
t−1
t

t−1 . �

(c) Let t ∈ {1,2, ..., n}, yt ∈ Rt+, r, r′ ≥ 0, and i 6= j ∈ {1,2, ..., t− 1}. Without loss of generality

we can assume that i < j. We will show that[
z
yt+re

i+1
t +r′ejt

t − zyt+re
i+1
t +r′ej+1

t
t

]
−
[
z
yt+re

i
t+r
′ejt

t − zyt+re
i
t+r
′ej+1
t

t

]
≥ 0. (EC.28)

From (EC.6),

z
yt+re

i+1
t +r′ejt

τ − lyt+re
i+1
t +r′ejt

τ = z
yt+re

i+1
t +r′ejt

τ−1 +
(
yτ + r1{τ=i+1}+ r′1{τ=j}

)
− d for all τ = 1,2, ..., t

⇒ z
yt+re

i+1
t +r′ejt

τ − zyt+re
i+1
t +r′ejt

τ−1 = l
yt+re

i+1
t +r′ejt

τ +
(
yτ + r1{τ=i+1}+ r′1{τ=j}

)
− d for all τ = 1,2, ..., t

⇒
t∑

τ=1

[
z
yt+re

i+1
t +r′ejt

τ − zyt+re
i+1
t +r′ejt

τ−1

]
=

t∑
τ=1

[
l
yt+re

i+1
t +r′ejt

τ +
(
yτ + r1{τ=i+1}+ r′1{τ=j}

)
− d
]

⇒ z
yt+re

i+1
t +r′ejt

t =
t∑

τ=1

l
yt+re

i+1
t +r′ejt

τ +
t∑

τ=1

yτ + r+ r′− dt. (EC.29)

Similarly,

z
yt+re

i+1
t +r′ej+1

t
t =

t∑
τ=1

l
yt+re

i+1
t +r′ej+1

t
τ +

t∑
τ=1

yτ + r+ r′− dt, (EC.30)

z
yt+re

i
t+r
′ejt

t =
t∑

τ=1

l
yt+re

i
t+r
′ejt

τ +
t∑

τ=1

yτ + r+ r′− dt, (EC.31)

and z
yt+re

i
t+r
′ej+1
t

t =
t∑

τ=1

l
yt+re

i
t+r
′ej+1
t

τ +
t∑

τ=1

yτ + r+ r′− dt. (EC.32)
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From (EC.29), (EC.30), (EC.31) and (EC.32), inequality (EC.28) holds iff

t∑
τ=1

[
l
yt+re

i+1
t +r′ej+1

t
τ − lyt+re

i+1
t +r′ejt

τ

]

≤
t∑

τ=1

[
l
yt+re

i
t+r
′ej+1
t

τ − lyt+re
i
t+r
′ejt

τ

]

⇐⇒
t∑

τ=1

[[
l
yt+re

i+1
t

τ − lyt+re
i+1
t +r′ejt

τ

]
−
[
l
yt+re

i+1
t

τ − lyt+re
i+1
t +r′ej+1

t
τ

]]

≤
t∑

τ=1

[[
lyt+re

i
t

τ − lyt+re
i
t+r
′ejt

τ

]
−
[
lyt+re

i
t

τ − lyt+re
i
t+r
′ej+1
t

τ

]]
. (EC.33)

From (EC.4) and (EC.5),

l
yt+re

i+1
t

τ = l
yt+re

i+1
t +r′ejt

τ for τ = 1, ..., j− 1

l
yt+re

i+1
t

τ = l
yt+re

i+1
t +r′ej+1

t
τ for τ = 1, ..., j

lyt+re
i
t

τ = l
yt+re

i
t+r
′ejt

τ for τ = 1, ..., j− 1

lyt+re
i
t

τ = l
yt+re

i
t+r
′ej+1
t

τ for τ = 1, ..., j

and therefore inequality (EC.33) holds iff

=:∆i+1 j︷ ︸︸ ︷
t∑

τ=j

[
l
yt+re

i+1
t

τ − lyt+re
i+1
t +r′ejt

τ

]
−

=:∆i+1 j+1︷ ︸︸ ︷
t∑

τ=j+1

[
l
yt+re

i+1
t

τ − lyt+re
i+1
t +r′ej+1

t
τ

]

≤
t∑

τ=j

[
lyt+re

i
t

τ − lyt+re
i
t+r
′ejt

τ

]
︸ ︷︷ ︸

=:∆i j

−
t∑

τ=j+1

[
lyt+re

i
t

τ − lyt+re
i
t+r
′ej+1
t

τ

]
︸ ︷︷ ︸

=:∆i j+1

. (EC.34)

Next let us define the quantities

γi+1 j : =
t∑

τ=j

l
yt+re

i+1
t

τ = idle time during slots j, j+ 1, ..., t under realization yt + rei+1
t

γi+1 j+1 : =
t∑

τ=j+1

l
yt+re

i+1
t

τ = idle time during slots j+ 1, j+ 2, ..., t under realization yt + rei+1
t

γi j : =
t∑

τ=j

lyt+re
i
t

τ = idle time during slots j, j+ 1, ..., t under realization yt + reit

γi j+1 : =
t∑

τ=j+1

lyt+re
i
t

τ = idle time during slots j+ 1, j+ 2, ..., t under realization yt + reit.

Then,

∆i+1 j =min(γi+1 j, r
′)
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=workload from r′ absorbed by idle time resulting from realization

yt + rei+1
t during slots j, j+ 1, ..., t

∆i+1 j+1 =min(γi+1 j+1, r
′)

=workload from r′ absorbed by idle time resulting from realization

yt + rei+1
t during slots j+ 1, j+ 2, ..., t

∆i j =min(γi j, r
′)

=workload from r′ absorbed by idle time resulting from realization

yt + reit during slots j, j+ 1, ..., t

∆i j+1 =min(γi j+1, r
′)

=workload from r′ absorbed by idle time resulting from realization

yt + reit during slots j+ 1, j+ 2, ..., t

∆i+1 j −∆i+1 j+1 =min(γi+1 j, r
′)−min(γi+1 j+1, r

′) (EC.35)

∆i j −∆i j+1 =min(γi j, r
′)−min(γi j+1, r

′). (EC.36)

From (EC.4) and (EC.5) we get

l
yt+re

i+1
t

τ = lyt+re
i
t

τ for τ = 1, ..., i− 1

l
yt+re

i+1
t

τ ≥ lyt+re
i
t

τ for τ = i

l
yt+re

i+1
t

τ ≤ lyt+re
i
t

τ for τ = i+ 1, ..., t (EC.37)

From (EC.37) and the assumption that j > i we get

γi+1 j+1 ≤ γi j+1, γi+1 j ≤ γi j.

Consider the case where γi+1 j+1 <γi+1 j. Then it must be true that

γi+1 j+1 =
t∑

τ=j+1

l
yt+re

i+1
t

τ <
t∑

τ=j

l
yt+re

i+1
t

τ = γi+1 j

⇒ l
yt+re

i+1
t

j > 0

⇒ z
yt+re

i
t

j = z
yt+re

i+1
t

j = 0

⇒ lyt+re
i
t

τ = l
yt+re

i+1
t

τ for all τ = j+ 1, j+ 2, ..., t (from (EC.4) and (EC.5) and the assumption j > i)

⇒
t∑

τ=j+1

lyt+re
i
t

τ =
t∑

τ=j+1

l
yt+re

i+1
t

τ

⇒ γi j+1 = γi+1 j+1.
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Therefore

either γi+1 j+1 = γi j+1 <γi+1 j ≤ γi j

or γi+1 j+1 = γi+1 j ≤ γi j+1 ≤ γi j

Finally, we will consider six (exhaustive) cases for the realization r′:

case 1: r′ ≤ γi+1 j+1 ≤ γi j+1, γi+1 j ≤ γi j,

case 2: γi+1 j+1 ≤ γi j+1, γi+1 j ≤ γi j ≤ r′,

case 3: γi+1 j+1 = γi j+1 < r
′ ≤ γi+1 j ≤ γi j,

case 4: γi+1 j+1 = γi j+1 <γi+1 j ≤ r′ ≤ γi j,

case 5: γi+1 j+1 = γi+1 j ≤ r′ ≤ γi j+1 ≤ γi j,

case 6: γi+1 j+1 = γi+1 j ≤ γi j+1 < r
′ ≤ γi j,

in order to prove that

∆i+1 j −∆i+1 j+1 ≤∆i j −∆i j+1

⇐⇒ min(γi+1 j, r
′)−min(γi+1 j+1, r

′)≤min(γi j, r
′)−min(γi j+1, r

′).

case 1: r′ ≤ γi+1 j+1 ≤ γi j+1, γi+1 j ≤ γi j. Then

min(γi+1 j, r
′)−min(γi+1 j+1, r

′)≤min(γi j, r
′)−min(γi j+1, r

′)

⇐⇒ r′− r′ ≤ r′− r′, which is trivially true.

case 2: γi+1 j+1 ≤ γi j+1, γi+1 j ≤ γi j ≤ r′. Then

min(γi+1 j, r
′)−min(γi+1 j+1, r

′)≤min(γi j, r
′)−min(γi j+1, r

′)

⇐⇒ γi+1 j − γi+1 j+1 ≤ γi j − γi j+1

⇐⇒ l
yt+re

i+1
t

j ≤ lyt+re
i
t

j , which is true from (EC.37) and the assumption that j > i.

case 3: γi+1 j+1 = γi j+1 < r
′ ≤ γi+1 j ≤ γi j. Then

min(γi+1 j, r
′)−min(γi+1 j+1, r

′)≤min(γi j, r
′)−min(γi j+1, r

′)

⇐⇒ r′− γi+1 j+1 ≤ r′− γi j+1

⇐⇒ γi j+1 ≤ γi+1 j+1, which is true.

case 4: γi+1 j+1 = γi j+1 <γi+1 j ≤ r′ ≤ γi j. Then

min(γi+1 j, r
′)−min(γi+1 j+1, r

′)≤min(γi j, r
′)−min(γi j+1, r

′)

⇐⇒ γi+1 j − γi+1 j+1 ≤ r′− γi j+1

⇐⇒ γi+1 j ≤ r′, which is true.
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case 5: γi+1 j+1 = γi+1 j ≤ r′ ≤ γi j+1 ≤ γi j. Then

min(γi+1 j, r
′)−min(γi+1 j+1, r

′)≤min(γi j, r
′)−min(γi j+1, r

′)

⇐⇒ γi+1 j − γi+1 j+1 ≤ r′− γi j+1

⇐⇒ γi j+1 ≤ r′, which is true.

case 6: γi+1 j+1 = γi+1 j ≤ γi j+1 ≤ r′ ≤ γi j. Then

min(γi+1 j, r
′)−min(γi+1 j+1, r

′)≤min(γi j, r
′)−min(γi j+1, r

′)

⇐⇒ γi+1 j − γi+1 j+1 ≤ r′− r′

⇐⇒ 0≤ 0, which is true. �

(d) Let t∈ {1,2, ..., n}, yt ∈Rt+, r, r′ ≥ 0, and 1≤ j ≤ t− 1. We will show that[
z
yt+re

1
t+r′ejt

t − zyt+re
1
t+r′ej+1

t
t

]
−
[
z
yt+r

′ejt
t − zyt+r

′ej+1
t

t

]
≥ 0. (EC.38)

From (EC.6),

z
yt+re

1
t+r′ejt

τ − lyt+re
1
t+r′ejt

τ = z
yt+re

1
t+r′ejt

τ−1 +
(
yτ + r1{τ=1}+ r′1{τ=j}

)
− d for all τ = 1,2, ..., t

⇒ z
yt+re

1
t+r′ejt

τ − zyt+re
1
t+r′ejt

τ−1 = l
yt+re

1
t+r′ejt

τ +
(
yτ + r1{τ=1}+ r′1{τ=j}

)
− d for all τ = 1,2, ..., t

⇒
t∑

τ=1

[
z
yt+re

1
t+r′ejt

τ − zyt+re
1
t+r′ejt

τ−1

]
=

t∑
τ=1

[
l
yt+re

1
t+r′ejt

τ +
(
yτ + r1{τ=1}+ r′1{τ=j}

)
− d
]

⇒ z
yt+re

1
t+r′ejt

t =
t∑

τ=1

l
yt+re

1
t+r′ejt

τ +
t∑

τ=1

yτ + r+ r′− dt. (EC.39)

Similarly,

z
yt+re

1
t+r′ej+1

t
t =

t∑
τ=1

l
yt+re

1
t+r′ej+1

t
τ +

t∑
τ=1

yτ + r+ r′− dt, (EC.40)

z
yt+r

′ejt
t =

t∑
τ=1

l
yt+r

′ejt
τ +

t∑
τ=1

yτ + r′− dt, (EC.41)

and z
yt+r

′ej+1
t

t =
t∑

τ=1

l
yt+r

′ej+1
t

τ +
t∑

τ=1

yτ + r′− dt. (EC.42)

From (EC.39), (EC.40), (EC.41) and (EC.42), inequality (EC.38) holds iff

t∑
τ=1

[
l
yt+re

1
t+r′ej+1

t
τ − lyt+re

1
t+r′ejt

τ

]
≤

t∑
τ=1

[
l
yt+r

′ej+1
t

τ − lyt+r
′ejt

τ

]

⇐⇒
t∑

τ=1

[[
lyt+re

1
t

τ − lyt+re
1
t+r′ejt

τ

]
−
[
lyt+re

1
t

τ − lyt+re
1
t+r′ej+1

t
τ

]]

≤
t∑

τ=1

[[
lytτ − l

yt+r
′ejt

τ

]
−
[
lytτ − l

yt+r
′ej+1
t

τ

]]
. (EC.43)
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From (EC.4) and (EC.5),

lyt+re
1
t

τ = l
yt+re

1
t+r′ejt

τ for τ = 1, ..., j− 1,

lyt+re
1
t

τ = l
yt+re

1
t+r′ej+1

t
τ for τ = 1, ..., j,

lytτ = l
yt+r

′ejt
τ for τ = 1, ..., j− 1,

lytτ = l
yt+r

′ej+1
t

τ for τ = 1, ..., j

and therefore inequality (EC.43) holds iff

=:∆1 j︷ ︸︸ ︷
t∑

τ=j

[
lyt+re

1
t

τ − lyt+re
1
t+r′ejt

τ

]
−

=:∆1 j+1︷ ︸︸ ︷
t∑

τ=j+1

[
lyt+re

1
t

τ − lyt+re
1
t+r′ej+1

t
τ

]

≤
t∑

τ=j

[
lytτ − l

yt+r
′ejt

τ

]
︸ ︷︷ ︸

=:∆0 j

−
t∑

τ=j+1

[
lytτ − l

yt+r
′ej+1
t

τ

]
︸ ︷︷ ︸

=:∆0 j+1

. (EC.44)

Next let us define the quantities

γ1 j : =
t∑

τ=j

lyt+re
1
t

τ = idle time during slots j, j+ 1, ..., t under realization yt + re1
t

γ1 j+1 : =
t∑

τ=j+1

lyt+re
1
t

τ = idle time during slots j+ 1, j+ 2, ..., t under realization yt + re1
t

γ0 j : =
t∑

τ=j

lytτ = idle time during slots j, j+ 1, ..., t under realization yt

γ0 j+1 : =
t∑

τ=j+1

lytτ = idle time during slots j+ 1, j+ 2, ..., t under realization yt.

Then,

∆1 j =min(γ1 j, r
′)

=workload from r′ absorbed by idle time resulting from realization

yt + re1
t during slots j, j+ 1, ..., t

∆1 j+1 =min(γ1 j+1, r
′)

=workload from r′ absorbed by idle time resulting from realization

yt + re1
t during slots j+ 1, j+ 2, ..., t

∆0 j =min(γ0 j, r
′)

=workload from r′ absorbed by idle time resulting from realization
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yt during slots j, j+ 1, ..., t

∆0 j+1 =min(γ0 j+1, r
′)

=workload from r′ absorbed by idle time resulting from realization

yt during slots j+ 1, j+ 2, ..., t

∆1 j −∆1 j+1 =min(γ1 j, r
′)−min(γ1 j+1, r

′) (EC.45)

and ∆0 j −∆0 j+1 =min(γ0 j, r
′)−min(γ0 j+1, r

′). (EC.46)

From (EC.4) and (EC.5) we get

lyt+re
1
t

τ ≤ lytτ for τ = 1, ..., t. (EC.47)

From (EC.47) we get

γ1 j+1 ≤ γ0 j+1, γ1 j ≤ γ0 j.

The rest of the proof follows the same steps as in Lemma EC.3 (c) and thus is omitted. �

Proof of Lemma EC.4 (a) Let a∈Zn+, i∈ {1,2, ..., n−1} and t∈ {i+2, ..., n}. It suffices to show

that

E[Zx
t |Ax

t = at + ei+1
t ]−E[Zx

t |Ax
t = at + eit]

≤E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1]. (EC.48)

We will show that (EC.48) is true given any realization yt = (y1, y2, ..., yt)∈Zt+ of Ỹat
t , i.e.,

E[Zx
t |Ax

t = at + ei+1
t , Ỹat

t = yt]−E[Zx
t |Ax

t = at + eit, Ỹ
at
t = yt]

≤E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1, Ỹ

at
t = yt]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1, Ỹ

at
t = yt]. (EC.49)

Note that from (EC.4) and (EC.5),

l
yt+re

i+1
t

τ = lyt+re
i
t

τ for τ = 1, ..., i− 1

l
yt+re

i+1
t

τ ≥ lyt+re
i
t

τ for τ = i

l
yt+re

i+1
t

τ ≤ lyt+re
i
t

τ for τ = i+ 1, ..., t. (EC.50)

Inequality (EC.49) can be written as∫ ∞
0

[
[z

yt+re
i
t

t − zyt+re
i
t

t−1 ]− [z
yt+re

i+1
t

t − zyt+re
i+1
t

t−1 ]
]

dF
R

(r)≥ 0. (EC.51)

We will show in fact something stronger; we will show that

z
yt+re

i
t

t − zyt+re
i
t

t−1 ≥ zyt+re
i+1
t

t − zyt+re
i+1
t

t−1
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for all r≥ 0. From (EC.6) and the assumption that t≥ i+ 2,

z
yt+re

i
t

t − zyt+re
i
t

t−1 ≥ zyt+re
i+1
t

t − zyt+re
i+1
t

t−1

⇐⇒ l
yt+re

i
t

t + yt− d≥ l
yt+re

i+1
t

t + yt− d

⇐⇒ l
yt+re

i
t

t ≥ lyt+re
i+1
t

t ,

which is true from (EC.50) and the assumption that t≥ i+ 2. �

(b) Let a∈Zn+, and t∈ {2, ..., n}. It suffices to show that

E[Zx
t |Ax

t = at + e1
t ]−E[Zx

t |Ax
t = at]≤E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1]−E[Zx
t−1|Ax

t−1 = at−1]. (EC.52)

As in the proof of Lemma EC.4(a), it suffices to show that

zytt − zytt−1 ≥ z
yt+re

1
t

t − zyt+re
1
t

t−1

for all realizations yt of Ỹat
t and for all r≥ 0. From (EC.6) and the assumption that t≥ 2,

zytt − zytt−1 ≥ z
yt+re

1
t

t − zyt+re
1
t

t−1

⇐⇒ lytt + yt− d≥ lyt+re
1
t

t + yt− d

⇐⇒ lytt ≥ l
yt+re

1
t

t , which is true. �

(c) Let a∈Zn+ and t∈ {2, ..., n}. We will show that

E[Zx
t−1|Ax

t−1 = at−1] +µ−E[Zx
t−1|Ax

t−1 = at−1 + et−1
t−1]

≥E[Zx
t |Ax

t = at + ett]−E[Zx
t |Ax

t = at + et−1
t ]. (EC.53)

By definition, µ=
∫∞

0
r dF

R
(r) and therefore, as in the proof of Lemma EC.4(a), it suffices to show

that

z
yt+re

t−1
t

t − zyt+re
t−1
t

t−1 ≥ zyt+re
t
t

t − zytt−1− r

for all realizations yt of Ỹat
t and for all r≥ 0. From (EC.6),

z
yt+re

t−1
t

t − zyt+re
t−1
t

t−1 ≥ zyt+re
t
t

t − (zytt−1 + r)

⇐⇒ l
yt+re

t−1
t

t + yt− d≥ lyt+re
t
t

t + (yt + r)− d− r

⇐⇒ l
yt+re

t−1
t

t ≥ lyt+re
t
t

t , which is true. �

(d) Let a∈Zn+ and i∈ {2, ..., n}. It suffices to show that

E[Zx
n |Ax = a + e1

n + e1
n, Ỹ

a = y]−E[Zx
n |Ax = a + e1

n + ein, Ỹ
a = y]

≥E[Zx
n |Ax = a + ei+1

n + e1
n, Ỹ

a = y]−E[Zx
n |Ax = a + ei+1

n + ein, Ỹ
a = y] (EC.54)
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for any realization y = (y1, y2, ..., yn)∈Rn+ of Ỹa. We consider all possible realizations of the random

vectors Ỹein , Ỹei+1
n , Ỹe1n , Ỹe1n and the law of total expectation to get

E[Zx
n |Ax = a + e1

n + e1
n, Ỹ

a = y] =

∫ ∞
0

∫ ∞
0

zy+re1n+r′e1n
n dF

R
(r) dF

R
(r′), (EC.55)

E[Zx
n |Ax = a + e1

n + ein, Ỹ
a = y] =

∫ ∞
0

∫ ∞
0

zy+re1n+r′ein
n dF

R
(r) dF

R
(r′), (EC.56)

E[Zx
n |Ax = a + ei+1

n + e1
n, Ỹ

a = y] =

∫ ∞
0

∫ ∞
0

zy+rei+1
n +r′e1n

n dF
R

(r) dF
R

(r′), (EC.57)

E[Zx
n |Ax = a + ei+1

n + ein, Ỹ
a = y] =

∫ ∞
0

∫ ∞
0

zy+rei+1
n +r′ein

n dF
R

(r) dF
R

(r′). (EC.58)

From (EC.55), (EC.56), (EC.57) and (EC.58), inequality (EC.54) holds iff∫ ∞
0

∫ ∞
0

[
[zy+re

1
n+r′e1n

n − zy+re1n+r′ein
n ]− [zy+re

i+1
n +r′e1n

n − zy+rei+1
n +r′ein

n ]
]

dF
R

(r) dF
R

(r′)≥ 0.

We will show in fact something stronger; we will show that[
zy+re1n+r′e1n
n − zy+re1n+r′ein

n

]
−
[
zy+rei+1

n +r′e1n
n − zy+rei+1

n +r′ein
n

]
≥ 0 (EC.59)

for all realizations y of Ỹa and for all r, r′ ≥ 0. From (EC.6),

zy+re1n+r′e1n
τ − ly+re1n+r′e1n

τ = z
y+re1n+r′e1n
τ−1 +

(
yτ + r1{τ=1}+ r′1{τ=1}

)
− d for all τ = 1,2, ..., n

⇒ zy+re1n+r′e1n
τ − zy+re1n+r′e1n

τ−1 = ly+re1n+r′e1n
τ +

(
yτ + r1{τ=1}+ r′1{τ=1}

)
− d for all τ = 1,2, ..., n

⇒
n∑
τ=1

[
zy+re1n+r′e1n
τ − zy+re1n+r′e1n

τ−1

]
=

n∑
τ=1

[
ly+re1n+r′e1n
τ +

(
yτ + r1{τ=1}+ r′1{τ=1}

)
− d
]

⇒ zy+re1n+r′e1n
n =

n∑
τ=1

ly+re1n+r′e1n
τ +

n∑
τ=1

yτ + r+ r′− dt. (EC.60)

Similarly,

zy+re1n+r′ein
n =

n∑
τ=1

ly+re1n+r′ein
τ +

n∑
τ=1

yτ + r+ r′− dt, (EC.61)

zy+rei+1
n +r′e1n

n =
n∑
τ=1

ly+rei+1
n +r′e1n

τ +
n∑
τ=1

yτ + r+ r′− dt, (EC.62)

and zy+rei+1
n +r′ein

n =
n∑
τ=1

ly+rei+1
n +r′ein

τ +
n∑
τ=1

yτ + r+ r′− dt. (EC.63)

From (EC.60), (EC.61), (EC.62) and (EC.63), inequality (EC.59) holds iff

n∑
τ=1

[
ly+re1n+r′ein
τ − ly+re1n+r′e1n

τ

]
≤

n∑
τ=1

[
ly+rei+1

n +r′ein
τ − ly+rei+1

n +r′e1n
τ

]
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⇐⇒
n∑
τ=1

[[
ly+re1n
τ − ly+re1n+r′e1n

τ

]
−
[
ly+re1n
τ − ly+re1n+r′ein

τ

]]
≤

n∑
τ=1

[[
ly+rei+1

n
τ − ly+rei+1

n +r′e1n
τ

]
−
[
ly+rei+1

n
τ − ly+rei+1

n +r′ein
τ

]]
. (EC.64)

From (EC.4) and (EC.5),

ly+re1n
τ = ly+re1n+r′ein

τ for τ = 1, ..., i− 1

ly+rei+1
n

τ = ly+rei+1
n +r′ein

τ for τ = 1, ..., i− 1

and therefore inequality (EC.64) holds iff

=:∆1 1︷ ︸︸ ︷
n∑
τ=1

[
ly+re1n
τ − ly+re1n+r′e1n

τ

]
−

=:∆1 i︷ ︸︸ ︷
n∑
τ=i

[
ly+re1n
τ − ly+re1n+r′ein

τ

]
≤

n∑
τ=1

[
ly+rei+1

n
τ − ly+rei+1

n +r′e1n
τ

]
︸ ︷︷ ︸

=:∆i+1 1

−
n∑
τ=i

[
ly+rei+1

n
τ − ly+rei+1

n +r′ein
τ

]
︸ ︷︷ ︸

=:∆i+1 i

. (EC.65)

Next let us define the quantities

γ1 1 : =
n∑
τ=1

ly+re1n
τ = idle time during slots 1,2, ..., n under realization y + re1

n

γ1 i : =
n∑
τ=i

ly+re1n
τ = idle time during slots i, i+ 1..., n under realization y + re1

n

γi+1 1 : =
n∑
τ=1

ly+rei+1
n

τ = idle time during slots 1,2, ..., n under realization y + rei+1
n

γi+1 i : =
n∑
τ=i

ly+rei+1
n

τ = idle time during slots i, i+ 1..., n under realization y + rei+1
n

Then,

∆1 1 =min(γ1 1, r
′)

=workload from r′ absorbed by idle time resulting from realization

y + re1
n during slots 1,2, ..., n

∆1 i =min(γ1 i, r
′)

=workload from r′ absorbed by idle time resulting from realization

y + re1
n during slots i, i+ 1, ..., n

∆i+1 1 =min(γi+1 1, r
′)

=workload from r′ absorbed by idle time resulting from realization



ec16 e-companion to Zacharias and Yunes: Multimodularity in the Stochastic Appointment Scheduling Problem

y + rei+1
n during slots 1,2, ..., n

∆i+1 i =min(γi+1 i, r
′)

=workload from r′ absorbed by idle time resulting from realization

y + rei+1
n during slots i, i+ 1, ..., n

∆1 1−∆1 i =min(γ1 1, r
′)−min(γ1 i, r

′)

∆i+1 1−∆i+1 i =min(γi+1 1, r
′)−min(γi+1 i, r

′)

From (EC.4) and (EC.5) we get

ly+re1n
τ ≤ ly+rei+1

n
τ for τ = 1,2, ..., i

ly+re1n
τ ≥ ly+rei+1

n
τ for τ = i+ 1, ..., n

and therefore

γ1 i ≤ γ1 1 ≤ γi+1 1

and γi+1 i ≤ γi+1 1.

Consider the case where γi+1 i >γ1 i. Then it must be true that

γi+1 i =
n∑
τ=i

ly+rei+1
n

τ >
n∑
τ=i

ly+re1n
τ = γ1 i

and
n∑

τ=i+1

ly+re1n
τ ≥

n∑
τ=i+1

ly+rei+1
n

τ (from (EC.4) and (EC.5))

and therefore

l
y+re1n
i < l

y+rei+1
n

i

⇒ly+re1n
i < lyi (since ly+rei+1

n
τ = lyτ for all τ = 1,2, ..., i)

⇒
i−1∑
τ=1

ly+re1n
τ = 0

⇒
n∑
τ=1

ly+re1n
τ =

n∑
τ=i

ly+re1n
τ

⇒γ1 1 = γ1 i.

Hence, either

γ1 i = γ1 1 <γi+1 i ≤ γi+1 1

or

γi+1 i ≤ γ1 i ≤ γ1 1 ≤ γi+1 1.

Finally, we will consider seven (exhaustive) cases for the realization r′:
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case 1: r′ ≤ γi+1 i, γ1 i, γ1 1, γi+1 1

case 2: r′ ≥ γi+1 i, γ1 i, γ1 1, γi+1 1

case 3: γi+1 i ≤ r′ ≤ γ1 i ≤ γ1 1 ≤ γi+1 1

case 4: γi+1 i ≤ γ1 i ≤ r′ ≤ γ1 1 ≤ γi+1 1

case 5: γi+1 i ≤ γ1 i ≤ γ1 1 ≤ r′ ≤ γi+1 1

case 6: γ1 i = γ1 1 < r
′ ≤ γi+1 i ≤ γi+1 1

case 7: γ1 i = γ1 1 <γi+1 i ≤ r′ ≤ γi+1 1

in order to prove that

∆1 1−∆1 i ≤∆i+1 1−∆i+1 i

⇐⇒ min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′).

case 1: r′ ≤ γi+1 i, γ1 i, γ1 1, γi+1 1. Then

min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′)

⇐⇒ r′− r′ ≤ r′− r′, which is trivially true.

case 2: r′ ≥ γi+1 i, γ1 i, γ1 1, γi+1 1. Then

min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′)

⇐⇒ γ1 1− γ1 i ≤ γi+1 1− γi+1 i

⇐⇒
i−1∑
τ=1

ly+re1n
τ ≤

i−1∑
τ=1

ly+rei+1
n

τ , which is true from (EC.37).

case 3: γi+1 i ≤ r′ ≤ γ1 i ≤ γ1 1 ≤ γi+1 1. Then

min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′)

⇐⇒ r′− r′ ≤ r′− γi+1 i, which is true.

case 4: γi+1 i ≤ γ1 i ≤ r′ ≤ γ1 1 ≤ γi+1 1. Then

min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′)

⇐⇒ r′− γ1 i ≤ r′− γi+1 i, which is true.

case 5: γi+1 i ≤ γ1 i ≤ γ1 1 ≤ r′ ≤ γi+1 1. Then

min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′)

⇐⇒ γ1 1− γ1 i ≤ r′− γi+1 i

⇐⇒ γ1 1 + γi+1 i ≤ r′+ γ1 i, which is true.
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case 6: γ1 i = γ1 1 < r
′ ≤ γi+1 i ≤ γi+1 1. Then

min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′)

⇐⇒ γ1 1− γ1 i ≤ r′− r′, which is true.

case 7: γ1 i = γ1 1 <γi+1 i ≤ r′ ≤ γi+1 1. Then

min(γ1 1, r
′)−min(γ1 i, r

′)≤min(γi+1 1, r
′)−min(γi+1 i, r

′)

⇐⇒ γ1 1− γ1 i ≤ r′− γi+1 i

⇐⇒ γi+1 i ≤ r′, which is true. �

C.3. Proofs of Main Results

Proof of Lemma 1 We will prove the two directions of the iff relationship separately. First,

assume that g :Zn+→R is a multimodular function. By definition,

g(x + u)− g(x)≥ g(x + v + u)− g(x + v) (EC.66)

for all x∈Zn+ and all u 6= v ∈ En such that x + u,x + v ∈Zn+, where

En = {−e1
n,e

1
n− e2

n,e
2
n− e3

n, ...,e
n−1
n − enn,e

n
n}.

Now let x∈Zn+. We will show that all four properties listed in Lemma 1 hold:

(i) Define x̃ = x + e1
n, pick ũ = enn and ṽ =−e1

n. Then x̃, x̃ + ũ, x̃ + ṽ ∈Zn+ and from (EC.66) we

get

g(x̃ + ũ)− g(x̃)≥ g(x̃ + ṽ + ũ)− g(x̃ + ṽ)

⇐⇒ g(x + e1
n + enn)− g(x + e1

n)≥ g(x + e1
n + enn− e1

n)− g(x + e1
n− e1

n)

⇐⇒ g(x + e1
n + enn)− g(x + e1

n)≥ g(x + enn)− g(x).

(ii) Let i 6= j ∈ {1,2, ..., n− 1}. Define x̃ = x + ei+1
n + ej+1

n , pick ũ = ejn − ej+1
n and ṽ = ein − ei+1

n .

Then x̃, x̃ + ũ, x̃ + ṽ ∈Zn+ and from (EC.66) we get

g(x̃ + ũ)− g(x̃)≥ g(x̃ + ṽ + ũ)− g(x̃ + ṽ)

⇐⇒ g(x + ei+1
n + ej+1

n + ejn− ej+1
n )− g(x + ei+1

n + ej+1
n )

≥g(x + ei+1
n + ej+1

n + ein− ei+1
n + ejn− ej+1

n )− g(x + ei+1
n + ej+1

n + ein− ei+1
n )

⇐⇒ g(x + ei+1
n + ejn)− g(x + ei+1

n + ej+1
n )≥ g(x + ein + ejn)− g(x + ein + ej+1

n ).



e-companion to Zacharias and Yunes: Multimodularity in the Stochastic Appointment Scheduling Problem ec19

(iii) Let j ∈ {1,2, ..., n − 1}. Define x̃ = x + e1
n + ej+1

n , pick ũ = ejn − ej+1
n and ṽ = −e1

n. Then

x̃, x̃ + ũ, x̃ + ṽ ∈Zn+ and from (EC.66) we get

g(x̃ + ũ)− g(x̃)≥ g(x̃ + ṽ + ũ)− g(x̃ + ṽ)

⇐⇒ g(x + e1
n + ej+1

n + ejn− ej+1
n )− g(x + e1

n + ej+1
n )

≥g(x + e1
n + ej+1

n − e1
n + ejn− ej+1

n )− g(x + e1
n + ej+1

n − e1
n)

⇐⇒ g(x + e1
n + ejn)− g(x + e1

n + ej+1
n )≥ g(x + ejn)− g(x + ej+1

n ). (EC.67)

(iv) Let i∈ {1,2, ..., n−1}. Define x̃ = x+ei+1
n , pick ũ = enn and ṽ = ein−ei+1

n . Then x̃, x̃+ũ, x̃+ṽ ∈

Zn+ and from (EC.66) we get

g(x̃ + ũ)− g(x̃)≥ g(x̃ + ṽ + ũ)− g(x̃ + ṽ)

⇐⇒ g(x + ei+1
n + enn)− g(x + ei+1

n )

≥g(x + ei+1
n + ein− ei+1

n + enn)− g(x + ei+1
n + ein− ei+1

n )

⇐⇒ g(x + ei+1
n + enn)− g(x + ei+1

n )≥ g(x + ein + enn)− g(x + ein).

Now assume that g : Zn+→R satisfies the four properties listed in Lemma 1. We will show that g

satisfies the definition of a multimodular function, i.e.,

g(x + u)− g(x)≥ g(x + v + u)− g(x + v)

for all x∈Zn+ and all u 6= v ∈ En such that x + u,x + v ∈Zn+, where

En = {−e1
n,e

1
n− e2

n,e
2
n− e3

n, ...,e
n−1
n − enn,e

n
n}.

We consider the following (exhaustive) four cases separately: (a) u 6= v ∈ {−e1
n,e

n
n}, (b) u 6= v ∈

{ein − ei+1
n ,ejn − ej+1

n } for some i 6= j ∈ {1,2, ..., n− 1}, (c) u 6= v ∈ {−e1
n,e

j
n − ej+1

n } for some j ∈

{1,2, ..., n− 1}, (d) u 6= v ∈ {ein− ei+1
n ,enn} for some i∈ {1,2, ..., n− 1}.

(a) Let u 6= v ∈ {−e1
n,e

n
n}. Without loss of generality let u = enn and v = −e1

n. Let x ∈ Zn+ such

that x + u,x + v ∈Zn+. Define x̂ = x− e1
n. Then x̂∈Zn+ and from property (i) we get

g(x̂ + e1
n + enn)− g(x̂ + e1

n)≥ g(x̂ + enn)− g(x̂)

⇐⇒ g(x− e1
n + e1

n + enn)− g(x− e1
n + e1

n)≥ g(x− e1
n + enn)− g(x− e1

n)

⇐⇒ g(x + u)− g(x)≥ g(x + v + u)− g(x + v). (EC.68)
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(b) Let u 6= v ∈ {ein − ei+1
n ,ejn − ej+1

n } for some i 6= j ∈ {1,2, ..., n− 1}. Without loss of generality

let u = ejn − ej+1
n and v = ein − ei+1

n . Let x ∈ Zn+ such that x + u,x + v ∈ Zn+ and define x̂ =

x− ei+1
n − ej+1

n . Then x̂∈Zn+ and from property (ii) we get

g(x̂ + ei+1
n + ejn)− g(x̂ + ei+1

n + ej+1
n )≥ g(x̂ + ein + ejn)− g(x̂ + ein + ej+1

n )

⇐⇒ g(x− ei+1
n − ej+1

n + ei+1
n + ejn)− g(x− ei+1

n − ej+1
n + ei+1

n + ej+1
n )

≥g(x− ei+1
n − ej+1

n + ein + ejn)− g(x− ei+1
n − ej+1

n + ein + ej+1
n )

⇐⇒ g(x + u)− g(x)≥ g(x + v + u)− g(x + v).

(c) Let u 6= v ∈ {−e1
n,e

j
n − ej+1

n } for some j ∈ {1,2, ..., n− 1}. Without loss of generality let u =

ejn − ej+1
n and v =−e1

n. Let x ∈ Zn+ such that x + u,x + v ∈ Zn+ and define x̂ = x− e1
n. Then

x̂∈Zn+ and from property (iii) we get

g(x̂ + e1
n + ejn)− g(x̂ + e1

n + ej+1
n )≥ g(x̂ + ejn)− g(x̂ + ej+1

n )

⇐⇒ g(x− e1
n− ej+1

n + e1
n + ejn)− g(x− e1

n− ej+1
n + e1

n + ej+1
n )

≥g(x− e1
n− ej+1

n + ejn)− g(x− e1
n− ej+1

n + ej+1
n )

⇐⇒ g(x + u)− g(x)≥ g(x + v + u)− g(x + v).

(d) Let u 6= v ∈ {ein − ei+1
n ,enn} for some i ∈ {1,2, ..., n− 1}. Without loss of generality let u = enn

and v = ein−ei+1
n . Let x∈Zn+ such that x+u,x+v ∈Zn+ and define x̂ = x−ei+1

n . Then x̂∈Zn+
and from property (iv) we get

g(x̂ + ei+1
n + enn)− g(x̂ + ei+1

n )≥ g(x̂ + ein + enn)− g(x̂ + ein)

⇐⇒ g(x− ei+1
n + ei+1

n + enn)− g(x− ei+1
n + ei+1

n )≥ g(x− ei+1
n + ein + enn)− g(x− ei+1

n + ein)

⇐⇒ g(x + u)− g(x)≥ g(x + v + u)− g(x + v).

Proof of Theorem 2: (a) Let t ∈ {1,2, ..., n} and at ∈ Zt+ be a realization of the partial arrival

process up to slot t. We will show that

E[Zx
t |Ax

t = at + eit + ejt ]−E[Zx
t |Ax

t = at + eit]

≥E[Zx
t |Ax

t = at + ejt ]−E[Zx
t |Ax

t = at] (EC.69)

for all 1≤ i≤ j ≤ t. We will show that (EC.69) is true given any realization yt = (y1, y2, ..., yt)∈Zt+
of Ỹat

t , i.e.,

E[Zx
t |Ax

t = at + eit + ejt , Ỹ
at
t = yt]−E[Zx

t |Ax
t = at + eit, Ỹ

at
t = yt]

≥E[Zx
t |Ax

t = at + ejt , Ỹ
at
t = yt]−E[Zx

t |Ax
t = at, Ỹ

at
t = yt]. (EC.70)
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We consider all possible realizations of the random vectors Ỹ
eit
t and Ỹ

e
j
t
t and the law of total

expectation to get

E[Zx
t |Ax

t = at + eit + ejt , Ỹ
at
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

i
t+r

′ejt
t dF

R
(r) dF

R
(r′), (EC.71)

E[Zx
t |Ax

t = at + eit, Ỹ
at
t = yt] =

∫ ∞
0

z
yt+re

i
t

t dF
R

(r)

=

∫ ∞
0

∫ ∞
0

z
yt+re

i
t

t dF
R

(r) dF
R

(r′), (EC.72)

E[Zx
t |Ax

t = at + ejt , Ỹ
at
t = yt] =

∫ ∞
0

z
yt+r

′ejt
t dF

R
(r′)

=

∫ ∞
0

∫ ∞
0

z
yt+r

′ejt
t dF

R
(r) dF

R
(r′), (EC.73)

E[Zx
t |Ax

t = at, Ỹ
at
t = yt] = zyt

t

=

∫ ∞
0

∫ ∞
0

zyt
t dF

R
(r) dF

R
(r′). (EC.74)

From (EC.71), (EC.72), (EC.73) and (EC.74), inequality (EC.70) holds iff∫ ∞
0

∫ ∞
0

[
[z

yt+re
i
t+r
′ejt

t − zyt+re
i
t

t ]− [z
yt+r

′ejt
t − zytt ]

]
dF

R
(r) dF

R
(r′)≥ 0, (EC.75)

which is true from Lemma EC.3 (a). �

(b) Direct consequence of (a) and the relationship

E[O(x)|Ax = a] =E[Zx
n |Ax = a]. �

(c) Direct consequence of (b), the relationship

E[I(x)|Ax = a] = nd+E[O(x)|Ax = a]−µ
n∑
t=1

at,

and the fact that the sum of a directionally convex and a linear function is also directionally convex.

�

(d) Let s = (s1, s2, ..., sn)∈Zn+ be a realization of the arrival process from scheduled appointments,

u = (u1, u2, ..., un) ∈ Zn+ be a realization of the arrival process from unscheduled walk-ins, and

a = s + u. We will show that

E[Ws(x)|Sx = s + ein + ejn,U = u]−E[Ws(x)|Sx = s + ein,U = u]

≥E[Ws(x)|Sx = s + ejn,U = u]−E[Ws(x)|Sx = s,U = u] (EC.76)

for all 1≤ i≤ j ≤ n. From (9),

E[Ws(x)|Sx = s,U = u] =
n∑
t=1

[stE[Zx
t−1|Ax

t−1 = at−1]] +

n∑
t=1

st(st−1)
2

µ (EC.77)

E[Ws(x)|Sx = s+ ejn,U = u] =

n∑
t=1

[
(st +1{t=j})E[Zx

t−1|Ax
t−1 = at−1 +1{t−1≥j}e

j
t−1]

]
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+

n∑
t=1

st(st−1)
2

µ+ sjµ (EC.78)

E[Ws(x)|Sx = s+ ein,U = u] =

n∑
t=1

[
(st +1{t=i})E[Zx

t−1|Ax
t−1 = at−1 +1{t−1≥i}e

i
t−1]

]
+

n∑
t=1

st(st−1)
2

µ+ siµ (EC.79)

E[Ws(x)|Sx = s+ ein + ejn,U = u] =

n∑
t=1

[
(st +1{t=i}+1{t=j})E[Zx

t−1|Ax
t−1 = at−1 +1{t−1≥i}e

i
t−1 +1{t−1≥j}e

j
t−1]

]
+

n∑
t=1

st(st−1)
2

µ+ (si + sj +1{i=j})µ. (EC.80)

From (EC.77), (EC.78), (EC.79), (EC.80),

E[Ws(x)|Sx = s+ ejn,U = u]−E[Ws(x)|Sx = s,U = u] =

n∑
t=j+1

st
[
E[Zx

t−1|Ax
t−1 = at−1 + ejt−1]

−E[Zx
t−1|Ax

t−1 = at−1]
]

+E[Zx
j−1|Ax

j−1 = aj−1] + sjµ (EC.81)

E[Ws(x)|Sx = s+ ein + ejn,U = u]−E[Ws(x)|Sx = s+ ein,U = u] =

n∑
t=j+1

st
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]

−E[Zx
t−1|Ax

t−1 = at−1 + eit−1]
]

+E[Zx
j−1|Ax

j−1 = aj−1 + eit−1] + sjµ+1{i=j}µ
(EC.82)

Therefore, from (EC.81) and (EC.82), inequality (EC.76) is true iff

0≤
n∑

t=j+1

st
[
[E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1]]
]

+ [E[Zx
j−1|Ax

j−1 = aj−1 + eit−1]−E[Zx
j−1|Ax

j−1 = aj−1]] +1{i=j}µ. (EC.83)

From the directional convexity of E[Zx
t−1|Ax

t−1 = at−1] in at−1 proved in part (a) we get

0≤
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1]

]
−
[
E[Zx

t−1|Ax
t−1 = at−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1]

]
for all t= j+ 1..., n

⇒0≤
n∑

t=j+1

st

[[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1]

]
−
[
E[Zx

t−1|Ax
t−1 = at−1 + ejt−1]−E[Zx

t |Ax
t−1 = at−1]

]]
. (EC.84)

Finally note that

R(ai+1) ≥st R
(ai)

⇒[Zx
j−1|Ax

j−1 = aj−1 + eit−1]≥st [Zx
j−1|Ax

j−1 = aj−1]

⇒E[Zx
j−1|Ax

j−1 = aj−1 + eit−1]≥E[Zx
j−1|Ax

j−1 = aj−1], (EC.85)
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concluding that (EC.83) is true. �

(e) Let s = (s1, s2, ..., sn)∈Zn+ be a realization of the arrival process from scheduled appointments,

u = (u1, u2, ..., un) ∈ Zn+ be a realization of the arrival process from unscheduled walk-ins, and

a = s + u. We will show that

E[Wu(x)|Sx = s + ein + ejn,U = u]−E[Wu(x)|Sx = s + ein,U = u]

≥E[Wu(x)|Sx = s + ejn,U = u]−E[Wu(x)|Sx = s,U = u] (EC.86)

for all 1≤ i≤ j ≤ n. From (10),

E[Wu(x)|Sx = s,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1] +

n∑
t=1

stutµ+

n∑
t=1

ut(ut−1)
2

µ (EC.87)

E[Wu(x)|Sx = s+ ejn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥j}e
j
t−1]

+

n∑
t=1

(st +1{t=j})utµ+

n∑
t=1

ut(ut−1)
2

µ (EC.88)

E[Wu(x)|Sx = s+ ein,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1]

+

n∑
t=1

(st +1{t=i})utµ+

n∑
t=1

ut(ut−1)
2

µ (EC.89)

E[Wu(x)|Sx = s+ ein + ejn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1 +1{t−1≥j}e

j
t−1]

+

n∑
t=1

(st +1{t=i}+1{t=j})utµ+

n∑
t=1

ut(ut−1)
2

µ. (EC.90)

From (EC.87), (EC.88), (EC.89), (EC.90),

E[Wu(x)|Sx = s+ ejn,U = u]−E[Wu(x)|Sx = s,U = u] =

n∑
t=j+1

ut
[
E[Zx

t−1|Ax
t−1 = at−1 + ejt−1]

−E[Zx
t−1|Ax

t−1 = at−1]
]

+ujµ (EC.91)

E[Wu(x)|Sx = s+ ein + ejn,U = u]−E[Wu(x)|Sx = s+ ein,U = u] =

n∑
t=j+1

ut
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]

−E[Zx
t−1|Ax

t−1 = at−1 + eit−1]
]

+ujµ. (EC.92)

Therefore, from (EC.91) and (EC.92), inequality (EC.86) is true iff

0≤
n∑

t=j+1

ut
[
[E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1]]
]
, (EC.93)

which is true from the directional convexity of E[Zx
t−1|Ax

t−1 = at−1] in at−1 proved in part (a). �

Proof of Theorem 3 (a) Let t ∈ {1,2, ..., n} and at ∈ Zt+ be a realization of the partial arrival

process up to slot t. We will show that the four properties of the equivalent definition of a multi-

modular function from Lemma 1 are satisfied.
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Property (i) It suffices to show that

E[Zx
t |Ax

t = at + e1
t + ett]−E[Zx

t |Ax
t = at + e1

t ]≥E[Zx
t |Ax

t = at + e1
t ]−E[Zx

t |Ax
t = at],

which is true from the directional convexity of E[Zx
t |Ax

t = at] in at.

Property (iv) Let i∈ {1,2, ..., t− 1}. It suffices to show that

E[Zx
t |Ax

t = at + ei+1
t + ett]−E[Zx

t |Ax
t = at + ei+1

t ]

≥E[Zx
t |Ax

t = at + eit + ett]−E[Zx
t |Ax

t = at + eit]. (EC.94)

We will show that (EC.94) is true given any realization yt = (y1, y2, ..., yt)∈Zt+ of Ỹat
t , i.e.,

E[Zx
t |Ax

t = at + ei+1
t + ett, Ỹ

at
t = yt]−E[Zx

t |Ax
t = at + ei+1

t , Ỹat
t = yt]

≥E[Zx
t |Ax

t = at + eit + ett, Ỹ
at
t = yt]−E[Zx

t |Ax
t = at + eit, Ỹ

at
t = yt]. (EC.95)

We consider all possible realizations of the random vectors Ỹ
eit
t , Ỹ

ei+1
t
t , Ỹ

ett
t and the law of total

expectation to get

E[Zx
t |Ax

t = at + ei+1
t + ett, Ỹ

at
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

i+1
t +r′ett

t dF
R

(r) dF
R

(r′), (EC.96)

E[Zx
t |Ax

t = at + ei+1
t , Ỹat

t = yt] =

∫ ∞
0

z
yt+re

i+1
t

t dF
R

(r)

=

∫ ∞
0

∫ ∞
0

z
yt+re

i+1
t

t dF
R

(r) dF
R

(r′), (EC.97)

E[Zx
t |Ax

t = at + eit + ett, Ỹ
at
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

i
t+r
′ett

t dF
R

(r) dF
R

(r′), (EC.98)

E[Zx
t |Ax

t = at + eit, Ỹ
at
t = yt] =

∫ ∞
0

z
yt+re

i
t

t dF
R

(r)

=

∫ ∞
0

∫ ∞
0

z
yt+re

i
t

t dF
R

(r) dF
R

(r′). (EC.99)

From (EC.96), (EC.97), (EC.98) and (EC.99), inequality (EC.95) holds iff∫ ∞
0

∫ ∞
0

[
[z

yt+re
i+1
t +r′ett

t − zyt+re
i+1
t

t ]− [z
yt+re

i
t+r
′ett

t − zyt+re
i
t

t ]
]

dF
R

(r) dF
R

(r′)≥ 0, (EC.100)

which is true from Lemma EC.3 (b).

Property (ii) Let i 6= j ∈ {1,2, ..., t− 1}. Without loss of generality we can assume that i < j.

It suffices to show that

E[Zx
t |Ax

t = at + ei+1
t + ejt ]−E[Zx

t |Ax
t = at + ei+1

t + ej+1
t ]

≥E[Zx
t |Ax

t = at + eit + ejt ]−E[Zx
t |Ax

t = at + eit + ej+1
t ]. (EC.101)
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We will show that (EC.101) is true given any realization yt = (y1, y2, ..., yt)∈Rt+ of Ỹat
t , i.e.,

E[Zx
t |Ax

t = at + ei+1
t + ejt , Ỹ

at
t = yt]−E[Zx

t |Ax
t = at + ei+1

t + ej+1
t , Ỹat

t = yt]

≥E[Zx
t |Ax

t = at + eit + ejt , Ỹ
at
t = yt]−E[Zx

t |Ax
t = at + eit + ej+1

t , Ỹat
t = yt]. (EC.102)

We consider all possible realizations of the random vectors Ỹ
eit
t , Ỹ

ei+1
t
t , Ỹ

e
j
t
t , Ỹ

e
j+1
t
t and the law of

total expectation to get

E[Zx
t |Ax

t = at + ei+1
t + ejt , Ỹ

at
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

i+1
t +r′ejt

t dF
R

(r) dF
R

(r′), (EC.103)

E[Zx
t |Ax

t = at + ei+1
t + ej+1

t , Ỹat
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

i+1
t +r′ej+1

t
t dF

R
(r) dF

R
(r′), (EC.104)

E[Zx
t |Ax

t = at + eit + ejt , Ỹ
at
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

i
t+r
′ejt

t dF
R

(r) dF
R

(r′), (EC.105)

E[Zx
t |Ax

t = at + eit + ej+1
t , Ỹat

t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

i
t+r
′ej+1
t

t dF
R

(r) dF
R

(r′). (EC.106)

From (EC.103), (EC.104), (EC.105) and (EC.106), inequality (EC.102) holds iff∫ ∞
0

∫ ∞
0

[
[z

yt+re
i+1
t +r′ejt

t − zyt+re
i+1
t +r′ej+1

t
t ]− [z

yt+re
i
t+r

′ejt
t − zyt+re

i
t+r

′ej+1
t

t ]
]

dF
R

(r) dF
R

(r′)≥ 0, (EC.107)

which is true from Lemma EC.3 (c).

Property (iii) Let j ∈ {1,2, ..., t− 1}. It suffices to show that

E[Zx
t |Ax

t = at + e1
t + ejt ]−E[Zx

t |Ax
t = at + e1

t + ej+1
t ]

≥E[Zx
t |Ax

t = at + ejt ]−E[Zx
t |Ax

t = at + ej+1
t ]. (EC.108)

We will show that (EC.108) is true given any realization yt = (y1, y2, ..., yt)∈Rt+ of Ỹat
t , i.e.,

E[Zx
t |Ax

t = at + e1
t + ejt , Ỹ

at
t = yt]−E[Zx

t |Ax
t = at + e1

t + ej+1
t , Ỹat

t = yt]

≥E[Zx
t |Ax

t = at + ejt , Ỹ
at
t = yt]−E[Zx

t |Ax
t = at + ej+1

t , Ỹat
t = yt]. (EC.109)

We consider all possible realizations of the random vectors Ỹ
e1t
t , Ỹ

e
j
t
t , Ỹ

e
j+1
t
t and the law of total

expectation to get

E[Zx
t |Ax

t = at + e1
t + ejt , Ỹ

at
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

1
t+r′ejt

t dF
R

(r) dF
R

(r′), (EC.110)

E[Zx
t |Ax

t = at + e1
t + ej+1

t , Ỹat
t = yt] =

∫ ∞
0

∫ ∞
0

z
yt+re

1
t+r′ej+1

t
t dF

R
(r) dF

R
(r′), (EC.111)

E[Zx
t |Ax

t = at + ejt , Ỹ
at
t = yt] =

∫ ∞
0

z
yt+r

′ejt
t dF

R
(r′)

=

∫ ∞
0

∫ ∞
0

z
yt+r

′ejt
t dF

R
(r) dF

R
(r′), (EC.112)

E[Zx
t |Ax

t = at + ej+1
t , Ỹat

t = yt] =

∫ ∞
0

z
yt+r

′ej+1
t

t dF
R

(r′)

=

∫ ∞
0

∫ ∞
0

z
yt+r

′ej+1
t

t dF
R

(r) dF
R

(r′). (EC.113)
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From (EC.110), (EC.111), (EC.112) and (EC.113), inequality (EC.109) holds iff∫ ∞
0

∫ ∞
0

[
[z

yt+re
1
t+r

′ejt
t − zyt+re

1
t+r

′ej+1
t

t ]− [z
yt+r

′ejt
t − zyt+r

′ej+1
t

t ]
]

dF
R

(r) dF
R

(r′)≥ 0, (EC.114)

which is true from Lemma EC.3 (d). �

(b) Direct consequence of (a) and the relationship

E[O(x)|Ax = a] =E[Zx
n |Ax = a]. �

(c) Direct consequence of (b), the relationship

E[I(x)|Ax = a] = nd+E[O(x)|Ax = a]−µ
n∑
t=1

at,

and the fact that the sum of a multimodular and a linear function is also multimodular. �

(d) Let s = (s1, s2, ..., sn)∈Zn+ be a realization of the arrival process from scheduled appointments,

u = (u1, u2, ..., un) ∈ Zn+ be a realization of the arrival process from unscheduled walk-ins, and

a = s + u. We will show that the four properties of the equivalent definition of a multimodular

function from Lemma 1 are satisfied.

Property (i) It suffices to show that

E[Ws(x)|Sx = s + e1
n + enn,U = u]−E[Ws(x)|Sx = s + e1

n,U = u]

≥E[Ws(x)|Sx = s + enn,U = u]−E[Ws(x)|Sx = s,U = u],

which is true from the directional convexity of E[Ws(x)|Sx = s,U = u] in s.

Property (iv) Let i∈ {1,2, ..., n− 1}. It suffices to show that

E[Ws(x)|Sx = s + ei+1
n + enn,U = u]−E[Ws(x)|Sx = s + ei+1

n ,U = u]

≥E[Ws(x)|Sx = s + ein + enn,U = u]−E[Ws(x)|Sx = s + ein,U = u]. (EC.115)

From (9),

E[Ws(x)|Sx = s+ ein,U = u] =

n∑
t=1

(st +1{t=i})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1]

+

n∑
t=1

st(st−1)
2

µ+ siµ (EC.116)

E[Ws(x)|Sx = s+ ei+1
n ,U = u] =

n∑
t=1

(st +1{t=i+1})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1]

+
n∑
t=1

st(st−1)
2

µ+ si+1µ (EC.117)

E[Ws(x)|Sx = s+ ein + enn,U = u] =

n∑
t=1

(st +1{t=i}+1{t=n})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1]

+

n∑
t=1

st(st−1)
2

µ+ (si + sn)µ (EC.118)

E[Ws(x)|Sx = s+ ei+1
n + enn,U = u] =

n∑
t=1

(st +1{t=i+1}+1{t=n})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1]

+

n∑
t=1

st(st−1)
2

µ+ (si+1 + sn +1{i+1=n})µ. (EC.119)
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From (EC.116), (EC.117), (EC.118), (EC.119),

E[Ws(x)|Sx = s+ ei+1
n + enn,U = u]−E[Ws(x)|Sx = s+ ei+1

n ,U = u] =E[Zx
n−1|Ax

n−1 = an−1 +1{i+16=n}e
i+1
n−1]

+ (sn +1{i+1=n})µ, (EC.120)

E[Ws(x)|Sx = s+ ein + enn,U = u]−E[Ws(x)|Sx = s+ ein,U = u] =E[Zx
n−1|Ax

n−1 = an−1 + ein−1] + snµ.
(EC.121)

We will consider separately the two cases i+ 1<n and i+ 1 = n, and we will prove that (EC.115)

holds.

case 1: Assume i+ 1<n. From (EC.120) and (EC.121), (EC.115) can be written as

E[Zx
n−1|Ax

n−1 = an−1 + ei+1
n−1]≥E[Zx

n−1|Ax
n−1 = an−1 + ein−1],

which is true since [Zx
n−1|Ax

n−1 = an−1 + ei+1
n−1]≥st [Zx

n−1|Ax
n−1 = an−1 + ein−1].

case 2: Assume i+ 1 = n. From (EC.120) and (EC.121), (EC.115) can be written as

E[Zx
n−1|Ax

n−1 = an−1] +µ≥E[Zx
n−1|Ax

n−1 = an−1 + ein−1],

which is true since [Zx
n−1|Ax

n−1 = an−1] +R≥st [Zx
n−1|Ax

n−1 = an−1 + ein−1].

Property (ii) Let i 6= j ∈ {1,2, ..., n− 1}. Without loss of generality we can assume that i < j.

It suffices to show that

E[Ws(x)|Sx = s + ei+1
n + ejn,U = u]−E[Ws(x)|Sx = s + ei+1

n + ej+1
n ,U = u]

≥E[Ws(x)|Sx = s + ein + ejn,U = u]−E[Ws(x)|Sx = s + ein + ej+1
n ,U = u]. (EC.122)

From (9),

E[Ws(x)|Sx = s+ ein + ejn,U = u] =

n∑
t=1

(st +1{t=i}+1{t=j})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1 +1{t−1≥j}e

j
t−1]

+

n∑
t=1

st(st−1)
2

µ+ (si + sj)µ, (EC.123)

E[Ws(x)|Sx = s+ ei+1
n + ejn,U = u] =

n∑
t=1

(st +1{t=i+1}+1{t=j})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1 +1{t−1≥j}e

j
t−1]

+

n∑
t=1

st(st−1)
2

µ+ (si+1 + sj +1{i+1=j})µ, (EC.124)

E[Ws(x)|Sx = s+ ein + ej+1
n ,U = u] =

n∑
t=1

(st +1{t=i}+1{t=j+1})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1 +1{t−1≥j+1}e

j+1
t−1 ]

+
n∑
t=1

st(st−1)
2

µ+ (si + sj+1)µ, (EC.125)

E[Ws(x)|Sx = s+ ei+1
n + ej+1

n ,U = u] =
n∑
t=1

(st +1{t=i+1}+1{t=j+1})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1 +1{t−1≥j+1}e

j+1
t−1 ]

+

n∑
t=1

st(st−1)
2

µ+ (si+1 + sj+1)µ. (EC.126)
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From (EC.123), (EC.124), (EC.125), (EC.126),

E[Ws(x)|Sx = s+ ei+1
n + ejn,U = u]−E[Ws(x)|Sx = s+ ei+1

n + ej+1
n ,U = u] =

=

n∑
t=j+2

st
[
E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]
]

+ sj+1E[Zx
j |Ax

j = aj + ei+1
j + ejj ]− (sj+1 + 1)E[Zx

j |Ax
j = aj + ei+1

j ]

+ (sj + 1)E[Zx
j−1|Ax

j−1 = aj−1 +1{j−1≥i+1}e
i+1
j−1]− sjE[Zx

j−1|Ax
j−1 = aj−1 +1{j−1≥i+1}e

i+1
j−1]

+ (sj − sj+1 +1{i+1=j})µ, (EC.127)

E[Ws(x)|Sx = s+ ein + ejn,U = u]−E[Ws(x)|Sx = s+ ein + ej+1
n ,U = u] =

=

n∑
t=j+2

st
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ej+1

t−1 ]
]

+ sj+1E[Zx
j |Ax

j = aj + eij + ejj ]− (sj+1 + 1)E[Zx
j |Ax

j = aj + eij ]

+ (sj + 1)E[Zx
j−1|Ax

j−1 = aj−1 + eij−1]− sjE[Zx
j−1|Ax

j−1 = aj−1 + eij−1]

+ (sj − sj+1)µ. (EC.128)

Therefore, from (EC.127) and (EC.128), inequality (EC.122) is true iff

0≤
n∑

t=j+2

st
[
[E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]]

− [E[Zx
t−1|Ax

t−1 = at−1 + eit−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + eit−1 + ej+1
t−1 ]]

]
+ sj+1

[
[E[Zx

j |Ax
j = aj + ei+1

j + ejj ]−E[Zx
j |Ax

j = aj + ei+1
j ]]

− [E[Zx
j |Ax

j = aj + eij + ejj ]−E[Zx
j |Ax

j = aj + eij ]]
]

+
[[
E[Zx

j−1|Ax
j−1 = aj−1 +1{j 6=i+1}e

i+1
j−1]−E[Zx

j |Ax
j = aj + ei+1

j ] +1{j=i+1}µ
]

−
[
E[Zx

j−1|Ax
j−1 = aj−1 + eij−1]−E[Zx

j |Ax
j = aj + eij ]

]]
. (EC.129)

From the multimodularity of E[Zx
t−1|Ax

t−1 = at−1] in at−1 for all t= 2,3, ..., n+ 1 we get

0≤
[
E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]
]

−
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ej+1

t−1 ]
]

for all t= j+ 2, ..., n+ 1

⇒0≤
n∑

t=j+2

st

[[
E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]
]

−
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ej+1

t−1 ]
]]
. (EC.130)

From the multimodularity of E[Zx
j |Ax

j = aj] in aj we get

0≤ sj+1

[[
E[Zx

j |Ax
j = aj + ei+1

j + ejj]−E[Zx
j |Ax

j = aj + ei+1
j ]
]

−
[
E[Zx

j |Ax
j = aj + eij + ejj]−E[Zx

j |Ax
j = aj + eij]

]]
. (EC.131)

We will consider separately the two cases i+ 1< j and i+ 1 = j, and we will show also that

0≤
[[
E[Zx

j−1|Ax
j−1 = aj−1 +1{j 6=i+1}e

i+1
j−1]−E[Zx

j |Ax
j = aj + ei+1

j ] +1{j=i+1}µ
]

−
[
E[Zx

j−1|Ax
j−1 = aj−1 + eij−1]−E[Zx

j |Ax
j = aj + eij]

]]
(EC.132)
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case 1: Assume i+ 1< j, then (EC.132) can be written as

E[Zx
j−1|Ax

j−1 = aj−1 + ei+1
j−1]−E[Zx

j−1|Ax
j−1 = aj−1 + eij−1]

≥E[Zx
j |Ax

j = aj + ei+1
j ]−E[Zx

j |Ax
j = aj + eij],

which is true from Lemma EC.4(a).

case 2: Assume i+ 1 = j, then (EC.132) can be written as

E[Zx
i |Ax

i = ai] +µ−E[Zx
i |Ax

i = ai + eii]

≥E[Zx
i+1|Ax

i+1 = ai+1 + ei+1
i+1]−E[Zx

i+1|Ax
i+1 = ai+1 + eii+1],

which is true from Lemma EC.4(c). From (EC.130), (EC.131), (EC.132) we conclude that (EC.129)

is true.

Property (iii) Let j ∈ {1,2, ..., t− 1}. It suffices to show that

E[Ws(x)|Sx = s + e1
n + ejn,U = u]−E[Ws(x)|Sx = s + e1

n + ej+1
n ,U = u]

≥E[Ws(x)|Sx = s + ejn,U = u]−E[Ws(x)|Sx = s + ej+1
n ,U = u]. (EC.133)

From (9),

E[Ws(x)|Sx = s+ e1
n + ejn,U = u] =

n∑
t=1

(st +1{t=1}+1{t=j})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥1}e
1
t−1 +1{t−1≥j}e

j
t−1]

+

n∑
t=1

st(st−1)
2

µ+ (s1 + sj +1{j=1})µ, (EC.134)

E[Ws(x)|Sx = s+ e1
n + ej+1

n ,U = u] =

n∑
t=1

(st +1{t=1}+1{t=j+1})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥1}e
1
t−1 +1{t−1≥j+1}e

j+1
t−1 ]

+

n∑
t=1

st(st−1)
2

µ+ (s1 + sj+1)µ, (EC.135)

E[Ws(x)|Sx = s+ ejn,U = u] =

n∑
t=1

(st +1{t=j})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥j}e
j
t−1]

+

n∑
t=1

st(st−1)
2

µ+ sjµ, (EC.136)

E[Ws(x)|Sx = s+ ej+1
n ,U = u] =

n∑
t=1

(st +1{t=j+1})E[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥j+1}e
j+1
t−1 ]

+

n∑
t=1

st(st−1)
2

µ+ sj+1µ. (EC.137)

From (EC.134), (EC.135), (EC.136), (EC.137),

E[Ws(x)|Sx =s+ e1
n + ejn,U = u]−E[Ws(x)|Sx = s+ e1

n + ej+1
n ,U = u] =

=

n∑
t=j+2

st
[
E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]
]

+ sj+1E[Zx
j |Ax

j = aj + e1
j + ejj ]− (sj+1 + 1)E[Zx

j |Ax
j = aj + e1

j ]

+ (sj + 1)E[Zx
j−1|Ax

j−1 = aj−1 +1{j−1≥1}e
1
j−1]− sjE[Zx

j−1|Ax
j−1 = aj−1 +1{j−1≥1}e

1
j−1]
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+ (sj − sj+1 +1{j=1})µ, (EC.138)

E[Ws(x)|Ax =a+ ejn,U = u]−E[Ws(x)|Ax = a+ ej+1
n ,U = u] =

=

n∑
t=j+2

st
[
E[Zx

t−1|Ax
t−1 = at−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + ej+1

t−1 ]
]

+ sj+1E[Zx
j |Ax

j = aj + ejj ]− (sj+1 + 1)E[Zx
j |Ax

j = aj ]

+ (sj + 1)E[Zx
j−1|Ax

j−1 = aj−1]− sjE[Zx
j−1|Ax

j−1 = aj−1]

+ (sj − sj+1)µ. (EC.139)

Therefore, from (EC.138) and (EC.139), inequality (EC.133) is true iff

0≤
n∑

t=j+2

st
[
[E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ej+1
t−1 ]]

]
+ sj+1

[
[E[Zx

j |Ax
j = aj + e1

j + ejj ]−E[Zx
j |Ax

j = aj + e1
j ]]

− [E[Zx
j |Ax

j = aj + ejj ]−E[Zx
j |Ax

j = aj ]]
]

+
[[
E[Zx

j−1|Ax
j−1 = aj−1 +1{j 6=1}e

1
j−1]−E[Zx

j |Ax
j = aj + e1

j ] +1{j=1}µ
]

−
[
E[Zx

j−1|Ax
j−1 = aj−1]−E[Zx

j |Ax
j = aj ]

]]
. (EC.140)

From the multimodularity of E[Zx
t−1|Ax

t−1 = at−1] in at−1 for all t= 2,3, ..., n+ 1 we get

0≤
[
E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ej+1
t−1 ]
]

for all t= j+ 2, ..., n+ 1

⇒0≤
n∑

t=j+2

st

[[
E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ej+1
t−1 ]
]]
. (EC.141)

From the multimodularity of E[Zx
j |Ax

j = aj] in aj we get

0≤ sj+1

[[
E[Zx

j |Ax
j = aj + e1

j + ejj]−E[Zx
j |Ax

j = aj + e1
j ]]

− [E[Zx
j |Ax

j = aj + ejj]−E[Zx
j |Ax

j = aj]
]]
. (EC.142)

We will consider separately the two cases j > 1 and j = 1, and we will show also that

0≤
[[
E[Zx

j−1|Ax
j−1 = aj−1 +1{j 6=1}e

1
j−1]−E[Zx

j |Ax
j = aj + e1

j ] +1{j=1}µ
]

−
[
E[Zx

j−1|Ax
j−1 = aj−1]−E[Zx

j |Ax
j = aj]

]]
(EC.143)

case 1: Assume j > 1, then (EC.143) can be written as

E[Zx
j−1|Ax

j−1 = aj−1 + e1
j−1]−E[Zx

j−1|Ax
j−1 = aj−1]≥E[Zx

j |Ax
j = aj + e1

j ]−E[Zx
j |Ax

j = aj],

which is true from Lemma EC.4(b).
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case 2: Assume j = 1, then (EC.143) can be written as

E[Zx
j−1|Ax

j−1 = aj−1] +µ−E[Zx
j−1|Ax

j−1 = aj−1]≥E[Zx
j |Ax

j = aj + e1
j ]−E[Zx

j |Ax
j = aj]

⇐⇒E[Zx
j |Ax

j = aj] +µ≥E[Zx
j |Ax

j = aj + e1
j ],

which is true since [Zx
j |Ax

j = aj] +R≥st [Zx
j |Ax

j = aj + e1
j ].

Finally, from (EC.141), (EC.142), (EC.143) we conclude that (EC.140) is true. �

(e) Let s = (s1, s2, ..., sn)∈Zn+ be a realization of the arrival process from scheduled appointments,

u = (u1, u2, ..., un) ∈ Zn+ be a realization of the arrival process from unscheduled walk-ins, and

a = s + u. We will show that the four properties of the equivalent definition of a multimodular

function from Lemma 1 are satisfied.

Property (i) It suffices to show that

E[Wu(x)|Sx = s + e1
n + enn,U = u]−E[Wu(x)|Sx = s + e1

n,U = u]

≥E[Wu(x)|Sx = s + enn,U = u]−E[Wu(x)|Sx = s,U = u],

which is true from the directional convexity of E[Wu(x)|Sx = s,U = u] in s.

Property (iv) Let i∈ {1,2, ..., n− 1}. It suffices to show that

E[Wu(x)|Sx = s + ei+1
n + enn,U = u]−E[Wu(x)|Sx = s + ei+1

n ,U = u]

≥E[Wu(x)|Sx = s + ein + enn,U = u]−E[Wu(x)|Sx = s + ein,U = u]. (EC.144)

From (10),

E[Wu(x)|Sx = s+ ein,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1]

+

n∑
t=1

(st +1{t=i})utµ+

n∑
t=1

ut(ut−1)
2

µ (EC.145)

E[Wu(x)|Sx = s+ ei+1
n ,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1]

+
n∑
t=1

(st +1{t=i+1})utµ+

n∑
t=1

ut(ut−1)
2

µ (EC.146)

E[Wu(x)|Sx = s+ ein + enn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1]

+

n∑
t=1

(st +1{t=i}+1{t=n})utµ+

n∑
t=1

ut(ut−1)
2

µ (EC.147)

E[Wu(x)|Sx = s+ ei+1
n + enn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1]

+

n∑
t=1

(st +1{t=i+1}+1{t=n})utµ+

n∑
t=1

ut(ut−1)
2

µ. (EC.148)
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From (EC.145), (EC.146), (EC.147), (EC.148),

E[Wu(x)|Sx = s+ ei+1
n + enn,U = u]−E[Wu(x)|Sx = s+ ei+1

n ,U = u] =unµ,

E[Wu(x)|Sx = s+ ein + enn,U = u]−E[Wu(x)|Sx = s+ ein,U = u] =unµ,

concluding that (EC.144) holds as equality.

Property (ii) Let i 6= j ∈ {1,2, ..., n− 1}. Without loss of generality we can assume that i < j.

It suffices to show that

E[Wu(x)|Sx = s + ei+1
n + ejn,U = u]−E[Wu(x)|Sx = s + ei+1

n + ej+1
n ,U = u]

≥E[Wu(x)|Sx = s + ein + ejn,U = u]−E[Wu(x)|Sx = s + ein + ej+1
n ,U = u]. (EC.149)

From (10),

E[Wu(x)|Sx = s+ ein + ejn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1 +1{t−1≥j}e

j
t−1]

+

n∑
t=1

(st +1{t=i}+1{t=j})utµ+

n∑
t=1

ut(ut−1)
2

µ, (EC.150)

E[Wu(x)|Sx = s+ ei+1
n + ejn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1 +1{t−1≥j}e

j
t−1]

+

n∑
t=1

(st +1{t=i+1}+1{t=j})utµ+

n∑
t=1

ut(ut−1)
2

µ, (EC.151)

E[Wu(x)|Sx = s+ ein + ej+1
n ,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i}e
i
t−1 +1{t−1≥j+1}e

j+1
t−1 ]

+

n∑
t=1

(st +1{t=i}+1{t=j+1})utµ+

n∑
t=1

ut(ut−1)
2

µ, (EC.152)

E[Wu(x)|Sx = s+ ei+1
n + ej+1

n ,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥i+1}e
i+1
t−1 +1{t−1≥j+1}e

j+1
t−1 ]

+

n∑
t=1

(st +1{t=i+1}+1{t=j+1})utµ+

n∑
t=1

ut(ut−1)
2

µ. (EC.153)

From (EC.150), (EC.151), (EC.152), (EC.153),

E[Wu(x)|Sx = s+ ei+1
n + ejn,U = u]−E[Wu(x)|Sx = s+ ei+1

n + ej+1
n ,U = u] =

=

n∑
t=j+2

ut
[
E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]
]

+uj+1E[Zx
j |Ax

j = aj + ei+1
j + ejj ]−uj+1E[Zx

j |Ax
j = aj + ei+1

j ] +ujµ−uj+1µ, (EC.154)

E[Wu(x)|Sx = s+ ein + ejn,U = u]−E[Wu(x)|Sx = s+ ein + ej+1
n ,U = u] =

=

n∑
t=j+2

ut
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ej+1

t−1 ]
]

+uj+1E[Zx
j |Ax

j = aj + eij + ejj ]−uj+1E[Zx
j |Ax

j = aj + eij ] +ujµ−uj+1µ. (EC.155)

Therefore, from (EC.154) and (EC.155), inequality (EC.149) is true iff

0≤
n∑

t=j+2

ut
[
[E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]]
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− [E[Zx
t−1|Ax

t−1 = at−1 + eit−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + eit−1 + ej+1
t−1 ]]

]
+uj+1

[
[E[Zx

j |Ax
j = aj + ei+1

j + ejj ]−E[Zx
j |Ax

j = aj + ei+1
j ]]

− [E[Zx
j |Ax

j = aj + eij + ejj ]−E[Zx
j |Ax

j = aj + eij ]]
]
. (EC.156)

From the multimodularity of E[Zx
t−1|Ax

t−1 = at−1] in at−1 for all t= 2,3, ..., n+ 1 we get

0≤
[
E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]
]

−
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ej+1

t−1 ]
]

for all t= j+ 2, ..., n+ 1

⇒0≤
n∑

t=j+2

ut

[[
E[Zx

t−1|Ax
t−1 = at−1 + ei+1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ei+1
t−1 + ej+1

t−1 ]
]

−
[
E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + eit−1 + ej+1

t−1 ]
]]
,

and from the multimodularity of E[Zx
j |Ax

j = aj] in aj we get

0≤ uj+1

[[
E[Zx

j |Ax
j = aj + ei+1

j + ejj]−E[Zx
j |Ax

j = aj + ei+1
j ]
]

−
[
E[Zx

j |Ax
j = aj + eij + ejj]−E[Zx

j |Ax
j = aj + eij]

]]
,

concluding that (EC.156) is true.

Property (iii) Let j ∈ {1,2, ..., t− 1}. It suffices to show that

E[Wu(x)|Sx = s + e1
n + ejn,U = u]−E[Wu(x)|Sx = s + e1

n + ej+1
n ,U = u]

≥E[Wu(x)|Sx = s + ejn,U = u]−E[Wu(x)|Sx = s + ej+1
n ,U = u]. (EC.157)

From (10),

E[Wu(x)|Sx = s+ e1
n + ejn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥1}e
1
t−1 +1{t−1≥j}e

j
t−1]

+

n∑
t=1

(st +1{t=1}+1{t=j})utµ+

n∑
t=1

ut(ut−1)
2

µ, (EC.158)

E[Wu(x)|Sx = s+ e1
n + ej+1

n ,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥1}e
1
t−1 +1{t−1≥j+1}e

j+1
t−1 ]

+

n∑
t=1

(st +1{t=1}+1{t=j+1})utµ+

n∑
t=1

ut(ut−1)
2

µ, (EC.159)

E[Wu(x)|Sx = s+ ejn,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥j}e
j
t−1]

+

n∑
t=1

(st +1{t=j})utµ+

n∑
t=1

ut(ut−1)
2

µ, (EC.160)

E[Wu(x)|Sx = s+ ej+1
n ,U = u] =

n∑
t=1

utE[Zx
t−1|Ax

t−1 = at−1 +1{t−1≥j+1}e
j+1
t−1 ]

+

n∑
t=1

(st +1{t=j+1})utµ+

n∑
t=1

ut(ut−1)
2

µ. (EC.161)
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From (EC.158), (EC.159), (EC.160), (EC.161),

E[Wu(x)|Sx =s+ e1
n + ejn,U = u]−E[Wu(x)|Sx = s+ e1

n + ej+1
n ,U = u] =

=

n∑
t=j+2

ut
[
E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]
]

+uj+1E[Zx
j |Ax

j = aj + e1
j + ejj ]−uj+1E[Zx

j |Ax
j = aj + e1

j ] +ujµ−uj+1µ, (EC.162)

E[Wu(x)|Ax =a+ ejn,U = u]−E[Wu(x)|Ax = a+ ej+1
n ,U = u] =

=

n∑
t=j+2

ut
[
E[Zx

t−1|Ax
t−1 = at−1 + ejt−1]−E[Zx

t−1|Ax
t−1 = at−1 + ej+1

t−1 ]
]

+uj+1E[Zx
j |Ax

j = aj + ejj ]−uj+1E[Zx
j |Ax

j = aj ] +ujµ−uj+1µ. (EC.163)

Therefore, from (EC.162) and (EC.163), inequality (EC.157) is true iff

0≤
n∑

t=j+2

ut
[
[E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ej+1
t−1 ]]

]
+uj+1

[
[E[Zx

j |Ax
j = aj + e1

j + ejj ]−E[Zx
j |Ax

j = aj + e1
j ]]

− [E[Zx
j |Ax

j = aj + ejj ]−E[Zx
j |Ax

j = aj ]]
]

(EC.164)

From the multimodularity of E[Zx
t−1|Ax

t−1 = at−1] in at−1 for all t= 2,3, ..., n+ 1 we get

0≤
[
E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ej+1
t−1 ]
]

for all t= j+ 2, ..., n+ 1

⇒0≤
n∑

t=j+2

ut

[[
E[Zx

t−1|Ax
t−1 = at−1 + e1

t−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + e1
t−1 + ej+1

t−1 ]]

− [E[Zx
t−1|Ax

t−1 = at−1 + ejt−1]−E[Zx
t−1|Ax

t−1 = at−1 + ej+1
t−1 ]
]]
,

and from the multimodularity of E[Zx
j |Ax

j = aj] in aj we get

0≤ uj+1

[[
E[Zx

j |Ax
j = aj + e1

j + ejj]−E[Zx
j |Ax

j = aj + e1
j ]]

− [E[Zx
j |Ax

j = aj + ejj]−E[Zx
j |Ax

j = aj]
]]
,

concluding that (EC.164) is true. �

Proof of Theorem 4: (a) Let t∈ {1,2, ..., n} and x∈Zn+. We will show that

E[Zx+ei+ej

t ]−E[Zx+ei

t ]≥E[Zx+ej

t ]−E[Zx
t ] (EC.165)

for all 1 ≤ i ≤ j ≤ n, where ek ∈ Zn+ is the vector which has zeros everywhere, except in the kth

component where it is one, 1 ≤ k ≤ n. We will show in fact that (EC.165) is true given any

realization at = (a1, a2, ..., at)∈Zt+ of Ax
t , i.e.,

E[Zx+ei+ej

t |Ax
t = at]−E[Zx+ei

t |Ax
t = at]≥E[Zx+ej

t |Ax
t = at]−E[Zx

t |Ax
t = at]. (EC.166)
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Based on the assumption that walk-ins arrive independently from the schedule and the system’s

workload, we consider all possible realizations of the random vectors Sei

t and Sej

t and the law of

total expectation to get

E[Zx+ei+ej

t |Ax
t = at] =

t∑
k=1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + ekt + emt ]

+
t∑

k=1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + ekt ]

+
n+1∑
k=t+1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + emt ]

+
n+1∑
k=t+1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at], (EC.167)

E[Zx+ei

t |Ax
t = at] =

t∑
k=1

pikE[Zx+ei

t |Ax+ei

t = at + ekt ] +
n+1∑
k=t+1

pikE[Zx+ei

t |Ax+ei

t = at]

=
t∑

k=1

pikE[Zx+ei+ej

t |Ax+ei+ej

t = at + ekt ] +
n+1∑
k=t+1

pikE[Zx+ei+ej

t |Ax+ei+ej

t = at]

=
t∑

k=1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + ekt ]

+
t∑

k=1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + ekt ]

+
n+1∑
k=t+1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at]

+
n+1∑
k=t+1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at], (EC.168)

E[Zx+ej

t |Ax
t = at] =

t∑
m=1

pjmE[Zx+ej

t |Ax+ej

t = at + emt ] +
n+1∑

m=t+1

pjmE[Zx+ej

t |Ax+ej

t = at]

=
t∑

m=1

pjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + emt ] +
n+1∑

m=t+1

pjmE[Zx+ei+ej

t |Ax+ei+ej

t = at]

=
t∑

k=1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + emt ]

+
t∑

k=1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at]

+
n+1∑
k=t+1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at + emt ]

+
n+1∑
k=t+1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at], (EC.169)
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E[Zx
t |Ax

t = at] =E[Zx+ei+ej

t |Ax+ei+ej

t = at]

=
t∑

k=1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at]

+
t∑

k=1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at]

+
n+1∑
k=t+1

t∑
m=1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at]

+
n+1∑
k=t+1

n+1∑
m=t+1

pikpjmE[Zx+ei+ej

t |Ax+ei+ej

t = at]. (EC.170)

From (EC.167), (EC.168), (EC.169), (EC.170) and some algebra, inequality (EC.166) is true iff

0≤
t∑

k=1

t∑
m=1

pikpjm

[[
E[Zx+ei+ej

t |Ax+ei+ej

t = at + ekt + emt ]−E[Zx+ei+ej

t |Ax+ei+ej

t = at + ekt ]
]

−
[
E[Zx+ei+ej

t |Ax+ei+ej

t = at + emt ]−E[Zx+ei+ej

t |Ax+ei+ej

t = at]
]]

which is true from Theorem 2(a). �

(b) Direct consequence of (a) and the relationship

E[O(x)] =E[Zx
n ]. �

(c) Direct consequence of (b), the relationship

E[I(x)] =E[O(x)] +nd−µ
n∑
t=1

(ptxt +E[Ut]),

and the fact that the sum of a directionally convex and a linear function is also directionally convex.

�

(d) Let x∈Zn+ and 1≤ i≤ j ≤ n. We will show that

E[Ws(x + ei + ej)]−E[Ws(x + ei)]≥E[Ws(x + ej)]−E[Ws(x)]. (EC.171)

We will show in fact that (EC.171) is true given any realizations s = (s1, s2, ..., sn) ∈ Zn+ and u =

(u1, u2, ..., un)∈Zn+ of Sx and U respectively, i.e.,

E[Ws(x + ei + ej)|Sx = s,U = u]−E[Ws(x + ei)|Sx = s,U = u]

≥E[Ws(x + ej)|Sx = s,U = u]−E[Ws(x)|Sx = s,U = u].

As in the proof of Theorem 4(a), it suffices to show that

0≤
n∑
k=1

n∑
m=1

pikpjm

[[
E[Ws(x + ei + ej)|Sx+ei+ej = s + ek + em,U = u]
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−E[Ws(x + ei + ej)|Sx+ei+ej = s + ek,U = u]
]

−
[
E[Ws(x + ei + ej)|Sx+ei+ej = s + em,U = u]

−E[Ws(x + ei + ej)|Sx+ei+ej = s,U = u]
]]

which is true from Theorem 2(d). �

(e) The proof follows exactly the same steps as the one of Theorem 4(d) and thus is omitted (by

simply replacing Ws(x) with Wu(x)). �

Proof of Theorem 5: Assume that show-up patients are punctual and that show-up probabili-

ties are slot-homogeneous with pt = p∈ (0,1] for all t= 1,2, ..., n.

(a) Let t∈ {1,2, ..., n} and xt ∈Zt+ be a partial schedule up to slot t. We will show that the four

properties of the equivalent definition of a multimodular function from Lemma 1 are satisfied.

Property (i) It suffices to show that

E[Z
xt+e1t+ett
t ]−E[Z

xt+e1t
t ]≥E[Z

xt+ett
t ]−E[Zxt

t ],

which is true from Theorem 4(a).

Property (iv) Let i∈ {1,2, ..., t− 1}. It suffices to show that

E[Z
xt+ei+1

t +ett
t ]−E[Z

xt+ei+1
t

t ]≥E[Z
xt+eit+ett
t ]−E[Z

xt+eit
t ]. (EC.172)

We will show in fact that (EC.172) is true given any realization at = (a1, a2, ..., at)∈Zt+ of Axt
t , i.e.,

E[Z
xt+ei+1

t +ett
t |Axt

t = at]−E[Z
xt+ei+1

t
t |Axt

t = at]≥E[Z
xt+eit+ett
t |Axt

t = at]−E[Z
xt+ett
t |Axt

t = at].

(EC.173)

Based on the assumption that walk-ins arrive independently from the schedule and the system’s

workload, we consider all possible realizations of the random vectors S
eit
t , S

ei+1
t
t and S

ett
t and the

law of total expectation to get

E[Z
xt+ei+1

t +ett
t |Axt

t = at] =p2E[Z
xt+ei+1

t +ett
t |Axt+ei+1

t +ett
t = at + ei+1

t + ett]

+ p(1− p)E[Z
xt+ei+1

t +ett
t |Axt+ei+1

t +ett
t = at + ei+1

t ]

+ (1− p)pE[Z
xt+ei+1

t +ett
t |Axt+ei+1

t +ett
t = at + ett]

+ (1− p)2E[Z
xt+ei+1

t +ett
t |Axt+ei+1

t +ett
t = at],

=p2E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + ei+1

t + ett]

+ p(1− p)E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + ei+1

t ]

+ (1− p)pE[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + ett]

+ (1− p)2E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at], (EC.174)
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E[Z
xt+ei+1

t
t |Axt

t = at] =pE[Z
xt+ei+1

t
t |Axt+ei+1

t
t = at + ei+1

t ]

+ (1− p)E[Z
xt+ei+1

t
t |Axt+ei+1

t
t = at]

=pE[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + ei+1

t ]

+ (1− p)E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at], (EC.175)

E[Z
xt+eit+ett
t |Axt

t = at] =p2E[Z
xt+eit+ett
t |Axt+eit+ett

t = at + eit + ett]

+ p(1− p)E[Z
xt+eit+ett
t |Axt+eit+ett

t = at + eit]

+ (1− p)pE[Z
xt+eit+ett
t |Axt+eit+ett

t = at + ett]

+ (1− p)2E[Z
xt+eit+ett
t |Axt+eit+ett

t = at],

=p2E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + eit + ett]

+ p(1− p)E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + eit]

+ (1− p)pE[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + ett]

+ (1− p)2E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at], (EC.176)

E[Z
xt+eit
t |Axt

t = at] =pE[Z
xt+eit
t |Axt+eit

t = at + eit]

+ (1− p)E[Z
xt+eit
t |Axt+eit

t = at]

=pE[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + eit]

+ (1− p)E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at]. (EC.177)

From (EC.174), (EC.175), (EC.176), (EC.177) and some algebra, inequality (EC.173) is true iff

E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + ei+1

t + ett]−E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + ei+1

t ]

≥E[Z
xt+eit+ei+1

t +ett
t |Axt+eit+ei+1

t +ett
t = at + eit + ett]−E[Z

xt+eit+ei+1
t +ett

t |Axt+eit+ei+1
t +ett

t = at + eit],

which is true from Theorem 3(a).

Property (ii) Let i 6= j ∈ {1,2, ..., t− 1}. Without loss of generality we can assume that i < j.

It suffices to show that

E[Z
xt+ei+1

t +e
j
t

t ]−E[Z
xt+ei+1

t +e
j+1
t

t ]≥E[Z
xt+eit+e

j
t

t ]−E[Z
xt+eit+e

j+1
t

t ]. (EC.178)

As in Property (iv), by considering all possible realizations of the random vectors S
eit
t , S

ei+1
t
t , S

e
j
t
t ,

S
e
j+1
t
t and the law of total expectation, inequality (EC.178) is true iff

E[Z
xt+eit+ei+1

t +e
j
t+e

j+1
t

t |Axt+eit+ei+1
t +e

j
t+e

j+1
t

t = at + ei+1
t + ejt ]

−E[Z
xt+eit+ei+1

t +e
j
t+e

j+1
t

t |Axt+eit+ei+1
t +e

j
t+e

j+1
t

t = at + ei+1
t + ej+1

t ]

≥E[Z
xt+eit+ei+1

t +e
j
t+e

j+1
t

t |Axt+eit+ei+1
t +e

j
t+e

j+1
t

t = at + eit + ejt ]

−E[Z
xt+eit+ei+1

t +e
j
t+e

j+1
t

t |Axt+eit+ei+1
t +e

j
t+e

j+1
t

t = at + eit + ej+1
t ]
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which is true from Theorem 3(a).

Property (iii) Let j ∈ {1,2, ..., t− 1}. It suffices to show that

E[Z
xt+e1t+e

j
t

t ]−E[Z
xt+e1t+e

j+1
t

t ]≥E[Z
xt+e

j
t

t ]−E[Z
xt+e

j+1
t

t ]. (EC.179)

As in Property (iv), by considering all possible realizations of the random vectors S
e1t
t , S

e
j
t
t , S

e
j+1
t
t

and the law of total expectation, inequality (EC.179) is true iff

E[Z
xt+e1t+e

j
t+e

j+1
t

t |Axt+e1t+e
j
t+e

j+1
t

t = at + e1
t + ejt ]−E[Z

xt+e1t+e
j
t+e

j+1
t

t |Axt+e1t+e
j
t+e

j+1
t

t = at + e1
t + ej+1

t ]

≥E[Z
xt+e1t+e

j
t+e

j+1
t

t |Axt+e1t+e
j
t+e

j+1
t

t = at + ejt ]−E[Z
xt+e1t+e

j
t+e

j+1
t

t |Axt+e1t+e
j
t+e

j+1
t

t = at + ej+1
t ]

which is true from Theorem 3(a). �

(b) Direct consequence of (a) and the relationship

E[O(x)] =E[Zx
n ]. �

(c) Direct consequence of (b), the relationship

E[I(x)] =E[O(x)] +nd−µ
n∑
t=1

(ptxt +E[Ut]),

and the fact that the sum of a multimodular and a linear function is also multimodular. �

(d) The proof follows exactly the same steps as the one of Theorem 5(a) and thus is omitted (by

simply replacing Zxt
t with Wc(x)). �

(e) The proof follows exactly the same steps as the one of Theorem 5(a) and thus is omitted (by

simply replacing Zxt
t with Wu(x)). �

Proof of Theorem 6: Under assumption (b), all patients’ timelinesses, given that they show up,

are i.i.d. random variables uniformly distributed on {−e, ...,−1,0,1, ..., l}, where e (the maximum

possible earliness) and l (the maximum possible lateness) are nonnegative integers such that l ≤

n− 3 and e+ l 6= 0. Accordingly, we let q̃k = Pr(Timeliness = k|Show-up) with

q̃k =

{
1

e+l+1
for k=−e, , ...,−1,0,1, ..., l

0 otherwise.
(EC.180)

Now consider x ∈ Zn+ and let ekn denote the n-dimensional vector which has zeros everywhere,

except in the kth component where it is one, 1≤ k≤ n. We will show that E[O(x)] =E[Zx
n ] violates

property (ii) of the equivalent definition of a multimodular function from Lemma 1 for i= 1 and

j = 2. Assume, for contradiction, that

E[Zx+e2n+e2n
n ]−E[Zx+e2n+e3n

n ]≥E[Zx+e1n+e2n
n ]−E[Zx+e1n+e3n

n ]. (EC.181)
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We will show that

E[Zx+e2n+e2n
n ]−E[Zx+e2n+e3n

n ]≤E[Zx+e1n+e2n
n ]−E[Zx+e1n+e3n

n ] (EC.182)

which will imply that

E[Zx+e2n+e2n
n ]−E[Zx+e2n+e3n

n ] =E[Zx+e1n+e2n
n ]−E[Zx+e1n+e3n

n ] (EC.183)

for all x ∈ Zn+; a contradiction. We will show that (EC.182) is true given any realization a =

(a1, a2, ..., an)∈Zn+ of Ax, i.e.,

E[Zx+e2n+e2n
n |Ax = a]−E[Zx+e2n+e3n

n |Ax = a]

≤E[Zx+e1n+e2n
n |Ax = a]−E[Zx+e1n+e3n

n |Ax = a]. (EC.184)

Based on the assumption that walk-ins arrive independently from the schedule and the system’s

workload, we consider all possible realizations of the random vectors Se1n , Se2n , Se2n , Se3n and the

law of total expectation to get

E[Z
x+e2n+e2n
n |Ax = a] =p2

−2∑
k=−e

−2∑
m=−e

q̃k q̃mE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e1

n + e1
n]

+ p2
l∑

k=−1

−2∑
m=−e

q̃k q̃mE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e2+k

n + e1
n]

+ p2
−2∑
k=−e

l∑
m=−1

q̃k q̃mE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e1

n + e2+m
n ]

+ p2
l∑

k=−1

l∑
m=−1

q̃k q̃mE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e2+k

n + e2+m
n ]

+ (1− p)p
−2∑

m=−e

q̃mE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e1

n]

+ (1− p)p
l∑

m=−1

q̃mE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e2+m

n ]

+ p(1− p)
−2∑
k=−e

q̃kE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e1

n]

+ p(1− p)
l∑

k=−1

q̃kE[Z
x+e2n+e2n
n |Ax+e2n+e2n = a+ e2+k

n ]

+ (1− p)2E[Z
x+e2n+e2n
n |Ax+e2n+e2n = a], (EC.185)

E[Z
x+e2n+e3n
n |Ax = a]E[Z

x+e2n+e3n
n |Ax = a] =p2

−2∑
k=−e

−3∑
m=−e

q̃k q̃mE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e1

n + e1
n]

+ p2
l∑

k=−1

−3∑
m=−e

q̃k q̃mE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e2+k

n + e1
n]

+ p2
−2∑
k=−e

l∑
m=−2

q̃k q̃mE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e1

n + e3+m
n ]
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+ p2
l∑

k=−1

l∑
m=−2

q̃k q̃mE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e2+k

n + e3+m
n ]

+ (1− p)p
−3∑

m=−e

q̃mE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e1

n]

+ (1− p)p
l∑

m=−2

q̃mE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e3+m

n ]

+ p(1− p)
−2∑
k=−e

q̃kE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e1

n]

+ p(1− p)
l∑

k=−1

q̃kE[Z
x+e2n+e3n
n |Ax+e2n+e3n = a+ e2+k

n ]

+ (1− p)2E[Z
x+e2n+e3n
n |Ax+e2n+e3n = a] (EC.186)

E[Z
x+e1n+e2n
n |Ax = a] =p2

−1∑
k=−e

−2∑
m=−e

q̃k q̃mE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e1

n + e1
n]

+ p2
l∑

k=0

−2∑
m=−e

q̃k q̃mE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e1+k

n + e1
n]

+ p2
−1∑
k=−e

l∑
m=−1

q̃k q̃mE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e1

n + e2+m
n ]

+ p2
l∑

k=0

l∑
m=−1

q̃k q̃mE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e1+k

n + e2+m
n ]

+ (1− p)p
−2∑

m=−e

q̃mE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e1

n]

+ (1− p)p
l∑

m=−1

q̃mE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e2+m

n ]

+ p(1− p)
−1∑
k=−e

q̃kE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e1

n]

+ p(1− p)
l∑

k=0

q̃kE[Z
x+e1n+e2n
n |Ax+e1n+e2n = a+ e1+k

n ]

+ (1− p)2E[Z
x+e1n+e2n
n |Ax+e1n+e2n = a], (EC.187)

E[Z
x+e1n+e3n
n |Ax = a] =p2

−1∑
k=−e

−3∑
m=−e

q̃k q̃mE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e1

n + e1
n]

+ p2
l∑

k=0

−3∑
m=−e

q̃k q̃mE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e1+k

n + e1
n]

+ p2
−1∑
k=−e

l∑
m=−2

q̃k q̃mE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e1

n + e3+m
n ]

+ p2
l∑

k=0

l∑
m=−2

q̃k q̃mE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e1+k

n + e3+m
n ]

+ (1− p)p
−3∑

m=−e

q̃mE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e1

n]

+ (1− p)p
l∑

m=−2

q̃mE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e3+m

n ]
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+ p(1− p)
−1∑
k=−e

q̃kE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e1

n]

+ p(1− p)
l∑

k=0

q̃kE[Z
x+e1n+e3n
n |Ax+e1n+e3n = a+ e1+k

n ]

+ (1− p)2E[Z
x+e1n+e3n
n |Ax+e1n+e3n = a]. (EC.188)

From (EC.180), (EC.185), (EC.186), (EC.187), (EC.188) and some algebra, inequality (EC.184)

is true iff

q̃−2q̃−1E[Zx
n |Ax = a + e1

n + e1
n]− q̃−2q̃lE[Zx

n |Ax = a + e1
n + e2+l

n ]

≥q̃−1q̃lE[Zx
n |Ax = a + e3+l

n + e1
n]− q̃lq̃lE[Zx

n |Ax = a + e3+l
n + e2+l

n ]. (EC.189)

First, assume that e= 0. Then q̃−2 = q̃−1 = 0 and (EC.189) can be written as

E[Zx
n |Ax = a + e3+l

n + e2+l
n ]≥ 0,

which is true. Next, assume that e= 1. Then q̃−2 = 0 and (EC.189) can be written as

E[Zx
n |Ax = a + e3+l

n + e2+l
n ]≥E[Zx

n |Ax = a + e3+l
n + e1

n],

which is true from (1) and the assumption that 0 ≤ l ≤ n− 3. Finally assume that e ≥ 2. Then

(EC.189) can be written as

E[Zx
n |Ax = a+e1

n+e1
n]−E[Zx

n |Ax = a+e1
n+e2+l

n ]≥E[Zx
n |Ax = a+e3+l

n +e1
n]−E[Zx

n |Ax = a+e3+l
n +e2+l

n ],

which is true from Lemma EC.4(d). This completes the proof that (EC.182) is true. �

(b) The proof follows the same steps as the one in (a) and thus is omitted. �

(c) The proof follows the same steps as the one in (a) and thus is omitted. �

(d) The proof follows the same steps as the one in (a) and thus is omitted. �

Proof of Lemma EC.1: (a) Let x ∈ Z+
n be such that 0≤ x1 ≤ x2 · · · ≤ xn and pick any u ∈N .

First, we need to show that M+
x,u is indeed a set in C+

x . By its definition, M+
x,u is nonempty

and contains u. Let u′ be the largest element in M+
x,u. Then

0≤ x1 ≤ x2 ≤ · · · ≤ xu−1 ≤ xu = · · ·= xu′ <xu′+1 ≤ xu′+2 ≤ · · · ≤ xn,

and therefore

0≤ x1 ≤ x2 ≤ · · · ≤ xu−1 <xu + 1 = · · ·= xu′ + 1≤ xu′+1 ≤ xu′+2 ≤ · · · ≤ xn,

since x is an integer vector. This verifies that M+
x,u is indeed a set in C+

x . Now let X be a set

containing u such that x+eX ∈A. X must contain also all v ∈N such that v≥ u and xv = xu,

since otherwise we have a contradiction (otherwise x + eX /∈A). This completes the proof.
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(b) Similar to (a).

(c) Let x ∈ Z+
n be such that 0≤ x1 ≤ x2 · · · ≤ xn and pick any u ∈N . First, we need to show that

L+
x,u is indeed a set in C+

x . Let u′ = min{v : xv = xu, v≤ u}. Then

L+
x,u = {1,2, ..., u′− 1, u+ 1, u+ 2, ..., n}

and

0≤ x1 ≤ x2 ≤ · · · ≤ xu′−1 <xu′ = · · ·= xu ≤ xu+1 ≤ · · · ≤ xn,

and therefore

0≤ x1 + 1≤ x2 + 1≤ · · · ≤ xu′−1 + 1≤ xu′ = · · ·= xu <xu+1 ≤ · · · ≤ xn,

since x is an integer vector. This verifies that L+
x,u is indeed a set in C+

x . Now let X be a set not

containing u such that x + eX ∈ A. X cannot contain any of the elements {u′, u′ + 1, . . . , u},

since otherwise we have a contradiction (otherwise x + eX /∈A). The largest such set is L+
x,u =

N\{u′, u′+ 1, . . . , u}. This completes the proof. �

(d) Similar to (c). �

Proof of Lemma EC.2: (a) Let x∈A. First, note that both ∅ and N are in C+
x . Pick any X,Y ∈

C+
x . From Lemma EC.1, any X and Y can be obtained as a union (possibly empty) of sets from

the family {M+
x,1,M

+
x,2, ...,M

+
x,n}. Consequently, both X ∪ Y and X ∩ Y can be obtained as

unions (possibly empty) of sets from the family {M+
x,1,M

+
x,2, ...,M

+
x,n}. Using similar arguments

with the proof of Lemma EC.1, we can verify that indeed any union of sets from the family

{M+
x,1,M

+
x,2, ...,M

+
x,n} belongs to C+

x . This completes the proof. �

(b) Similar to (a). �

Proof of Theorem 7: The proof of this theorem follows from Lemmas EC.1 and EC.2, transfor-

mations (EC.2) and (EC.3), and Section 6 of Schrijver (2000). �
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Appendix D: Comparison of Static Appointment Scheduling Models

Table EC.1 Static Intra-Day Appointment Scheduling Models

service
no-

shows

random investig. heterog. theoretical exact or
optimization
procedure

time emergency non- patient optimization heuristic
distribution demand punctuality groups properties solution

Lau and Lau (2000)
ind. general

no no no yesstochastic - heuristic quasi-Newton
(beta-fitting)

Kaandorp and Koole (2007)
i.i.d.

exponential
yes no no no

local search
multimodularity exact (exponential

complexity)

Hassin and Mendel (2008)
i.i.d.

exponential
yes no no no

sequential
- heuristic quadratic

programming

Zeng et al. (2010)
i.i.d.

exponential
yes no no yes

local search
multimodularity1 exact1 (exponential

complexity)

Begen and Queyranne (2011)
independent

yes no no yes
local search

general L-convexity exact in polynomial
discrete time

Luo et al. (2012)
independent
exponential

yes yes no yes
interior-

- heuristic point
methods

LaGanga and Lawrence (2012) deterministic yes no no no
structural gradient search

properties & heuristic & pairwise
submodularity swap

Kong et al. (2013)

distributionally

no no no yes

moment

exact

robust opt.
robust based decomposition & convex
on first two & conic conic
moments duality programming

Chen and Robinson (2014)
independent

yes yes no yes
stochastic linear

general - heuristic programming &
stochastic sequencing rules

Zacharias and Pinedo (2014) deterministic yes no no yes
structural
properties

enumeration
exact (exponential

complexity)

Mak et al. (2014)
independent

no no no yes
structural
properties

mixed-integer
general heuristic second-order

stochastic conic progr.

Mak et al. (2015)

distributionally

no no no yes

sequencing rules2,

exact

robust opt.,
robust based closed-from2, conic progr. &
on marginal equivalent conic sample average

moments programming approximation

Zacharias and Pinedo (2017) deterministic yes no no no
multimodularity local search
& monotonicity exact (exponential

properties complexity)

Qi (2017)

general discrete

no no no yes

equivalent

exact

robust opt.,
& distributionally linear mixed & sequential
robust based on integer mixed-integer
mean abs. dev. programming programming

Wang et al. (2018) deterministic yes yes no yes

multimodularity

exact

local search
& equivalent (exponential

two-stage complexity) &
linear int. progr. linear int. progr.

this study
i.i.d.

yes yes yes yes
multimodularity3 local search

general & directional exact3 in polynomial
stochastic convexity4 time3

1Under homogeneous patients
2Under mild assumptions
3Under punctual patients
4Under general distributions of non-punctuality


