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Abstract. In this paper, we introduce and study mathematical pro-
gramming formulations for the Least Cost Directed Perfect Awareness
Problem (LDPAP), an NP-hard optimization problem that arises in the
context of influence marketing. In the LDPAP, we seek to identify influ-
ential members of a given social network that can disseminate a piece
of information and trigger its propagation throughout the network. The
objective is to minimize the cost of recruiting the initial spreaders while
ensuring that the information reaches everyone. This problem has been
previously modeled as two different integer programming formulations
that were tested on a collection of 300 small synthetic instances. In this
work, we propose two new integer programming models and three con-
straint programming formulations for the LDPAP. We also present pre-
processing techniques capable of significantly reducing the sizes of these
models. To investigate and compare the efficiency and effectiveness of
our approaches, we perform a series of experiments using the existing
small instances and a new publicly available benchmark of 14 large in-
stances. Our findings yield new optimal solutions to 185 small instances
that were previously unsolved, tripling the total number of instances with
known optima. Regarding both small and large instances, our contribu-
tions include a comprehensive analysis of the experimental results and an
evaluation of the performance of each formulation in distinct scenarios,
further advancing our understanding of the LDPAP toward the design of
exact approaches for the problem.
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1 Introduction

The phenomenon of influence spreading on social networks has been modeled
in combinatorial optimization since the beginning of the century [11]. One of
the most studied problems within this topic is the Target Set Selection Prob-
lem (TSSP) [5], whose introduction gave rise to IP formulations [1,20,22] and a
collection of variants that deal with different scenarios [2].

In the original formulation of the TSSP, the objective is to select a set of
individuals of minimum size (or minimum cost) capable of starting a widespread
propagation of a piece of information (news, media, opinion, etc.). Typically, it is
assumed that during a propagation, inactive people only start to actively pass on
the information when they receive sufficient influence from their acquaintances.

A more realistic scenario is addressed in the Perfect Awareness Problem
(PAP), which was proposed in [6] and also studied in [7,13,16]. In the PAP, an ad-
ditional intermediary state (being aware) is introduced. In this problem, people
are considered aware of the information as soon as they are influenced for the
first time. The objective is to select a minimum set of seminal spreaders so that
all individuals end up in the aware state at the end of the propagation.

In [15], the Least Cost Directed Perfect Awareness Problem (LDPAP) is intro-
duced as an extension of the PAP to consider nonreciprocal relations observed in
social networks like X (formerly known as Twitter) and Instagram. The LDPAP
also includes distinct degrees of influence between individuals (which neither
TSSP nor PAP consider) as well as different costs for recruiting initial spreaders.

Although there are important theoretical and practical results regarding the
LDPAP in the literature, which includes two integer programming (IP) formula-
tions and a heuristic [15], there remains significant work to be done to solve the
problem from an exact perspective. So far, only small instances can be solved to
optimality. In this paper, we propose new formulations and exact techniques for
the LDPAP that allow us to solve considerably larger instances.

Our contributions

The main contributions of this paper for the LDPAP are:

– two novel IP formulations;
– three new constraint programming (CP) formulations;
– preprocessing techniques that reduce the size of the models;
– comparative experiments using the new and existing models on small syn-

thetic instances and large instances built from crawled X networks.

This text is organized as follows. In Section 2, we formally define the LDPAP
and review the literature on the problem. The new IP and CP models are pre-
sented in Section 3 and Section 4, respectively. In Section 5, we introduce the
preprocessing techniques for these formulations. Later, in Section 6, we report a
set of computational experiments and analyze the results with the objective of
empirically evaluating the exact models. Lastly, in Section 7, we close the paper
with concluding remarks and address future work.
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2 Object of Study

Although the LDPAP has just recently been introduced into the literature, a
number of theoretical and practical results are already known. Next, we formally
present the LDPAP and summarize previous work.

2.1 Problem Statement

The LDPAP, as first introduced in [15], can be described as follows. Consider a
portion of an online social network represented by a directed graph D = (V,E),
where V and E are the sets of vertices and directed edges (arcs) of D. Each
vertex in V represents an individual, and each (u, v) ∈ E indicates that u can
exert influence over v. The in- and out-neighborhoods of each v ∈ V are indicated
by Nin(v) = {u ∈ V : (u, v) ∈ E} and Nout(v) = {u ∈ V : (v, u) ∈ E}.

A set of vertices selected to first disseminate the information is called a seed
set and it contains the seeds. When the seeds transmit the information to their
out-neighbors, some vertices may be influenced to the point that they forward
the information, triggering a propagation. In this process, each vertex assumes at
least one of three possible states regarding the information being disseminated:

– ignorant : the vertex is not a seed and has not received the information yet;
– aware: the vertex is a seed or has received the information at least once;
– spreader : the vertex is a seed or has received the information enough times

to enable it to forward the information to others.

The cost of selecting a vertex v as a seed is denoted by cv ∈ R+ and the
cost of a seed set S ⊆ V is cS =

∑
v∈S cv. Moreover, the threshold of v, denoted

by tv ∈ R+, quantifies the need for v to be sufficiently influenced to the point
where v begins to pass on the information being propagated. In other words, if v
is not a seed, then v becomes a spreader only if the amount of influence received
by v is at least tv. Furthermore, the weight of an edge (u, v) ∈ E, denoted by
wu,v ∈ R+, measures the degree of influence u can exert on v.

The passage of time in a propagation is divided into rounds. In each round
τ ≥ 0 of the propagation PS started from a seed set S, the sets of vertices that
are in the spreader and aware states are denoted by Sτ and Aτ , respectively. In
the beginning of PS , S0 = A0 = S, and for each τ ≥ 1 we have:

Aτ = Aτ−1 ∪ {v ∈ V \Aτ−1 : |Nin(v) ∩ Sτ−1| ≥ 1};
Sτ = Sτ−1 ∪ {v ∈ V \ Sτ−1 :

∑
u∈Nin(v)∩Sτ−1

wu,v ≥ tv}.

Note that every vertex in the spreader state is also in the aware state, i.e.,
Sτ ⊆ Aτ for any τ ≥ 0, but the reverse is not necessarily true. The propagation
ends when Sρ−1 = Sρ for some ρ ≥ 1. If all vertices are aware at the end of PS ,
i.e., Aρ = V , S is called a perfect seed set.

Formally, in the LDPAP, we are given an instance I = (D, c, t, w), where
D = (V,E) is a directed graph, and c : V → R+, t : V → R+ and w : E → R+

are cost, threshold, and weight functions, respectively. The problem’s objective
is to find a perfect seed set of minimum cost.
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2.2 Previous Work

In [15], it is shown that the LDPAP is NP-hard and cannot be approximated
within a ratio of O(2log

1−εn), for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).
These results also hold for the PAP [6], which is a special case of the LDPAP where
(u, v) ∈ E iff (v, u) ∈ E, wu,v = 1 for every (u, v) ∈ E, and tv ∈ Z+, cv = 1 for
every v ∈ V . Moreover, the LDPAP remains NP-hard for acyclic graphs, which
can be proved by a polynomial reduction from the Hitting Set Problem [10,15].

One may obtain a trivial lower bound for the objective function of the LDPAP
by computing the sum of the costs of all vertices that are sources, if there exists
any, or the least cost among all vertices, otherwise. An algorithm to obtain an
alternative lower bound that is at least as good as the trivial one is proposed
in [15]. The strategy is to contract the strongly connected components of the
original graph to form a (probably smaller) new instance. The optimal value for
the new instance provides a lower bound for the original one.

There are two IP models for the LDPAP called IP-ROUNDS and IP-ARCS, which
were proposed in [15]. In that same paper, these formulations were tested with a
commercial IP solver on 300 small instances containing up to 100 vertices. Within
an hour of execution for each instance, the IP-ROUNDS and IP-ARCS models
obtained optimal solutions for 90 and 54 instances, respectively. The authors
also concluded that the IP-ARCS formulation appears to be more adequate for
solving instances with sparse graphs, while the IP-ROUNDS model is a better fit
for instances with graphs of intermediate and higher densities.

Due to the LDPAP’s complexity, a natural way to tackle large instances is to
employ heuristic algorithms. In [15], the authors introduce a heuristic for the
LDPAP called RGR, which is based on the metaheuristic Reactive GRASP [19]. The
RGR heuristic was tested on large instances with up to 50,000 vertices and proved
to be greatly superior to a baseline greedy algorithm.

3 Integer Programming Formulations

In this section, we introduce two new IP formulations for the LDPAP, namely,
IP-ARCS-POLY and IP-ORDERING. For ease of reference, we also present the two
existing formulations from [15] namely, IP-ROUNDS and IP-ARCS. We remark
that these models can be simplified to obtain TSSP formulations and they may
be seen as adaptations from the IP models for the TSSP from [1,20,22]. Future
TSSP models might lead to the design of new formulations for LDPAP.

Let I = (D = (V,E), c, t, w) be an instance of the LDPAP, where |V | = n.
Every formulation in this section contains a set {sv : v ∈ V } of binary variables
such that sv = 1 iff v is a seed. The models also share the same objective
function (1), which minimizes the cost of the seed set.

min
∑
v∈V

cvsv (1)
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3.1 The Existing IP-ROUNDS Formulation

In the IP-ROUNDS model, there exists a set {xv,τ : v ∈ V, τ ∈ {0, 1, . . . , n}} of
binary variables such that xv,τ = 1 iff v is a spreader in round τ . Note that n+1
is the maximum number of rounds it takes for a propagation to end. The rest of
the formulation comprises constraints (2)–(4).

xv,0 = sv ∀v ∈ V (2)∑
u∈Nin(v)

wu,vxu,τ−1 + tvxv,0 ≥ tvxv,τ ∀v ∈ V ∀τ ∈ {1, 2, . . . , n} (3)

xv,0 +
∑

u∈Nin(v)

xu,n−1 ≥ 1 ∀v ∈ V (4)

Constraints (2) determine that the seed set is formed by the vertices that
are spreaders in round τ = 0. Constraints (3) forbid each vertex v from being
a spreader in round τ (i.e., make xv,τ = 0) if v is neither a seed (xv,0 = 0)
nor receives enough influence from its in-neighbors that are spreaders in round
τ − 1 (i.e.,

∑
u∈Nin(v)

wu,vxu,τ−1 < tv). Lastly, constraints (4) ensure that every
vertex v is either a seed or has an in-neighbor that is spreader in round τ = n−1
and, consequently, is aware in round n. The IP-ROUNDS formulation has O(|V |2)
binary variables and O(|V |2) constraints.

3.2 The Existing IP-ARCS Formulation

The IP-ARCS model has a set {yu,v : (u, v) ∈ E} of binary variables such that
yu,v = 1 iff u influences v during the propagation. Let Ξ be the collection of all
directed cycles of D. The IP-ARCS formulation includes constraints (5)–(8).

yu,v + sv ≤ 1 ∀(u, v) ∈ E (5)∑
i∈Nin(u)

wi,uyi,u + tusu ≥ tuyu,v ∀(u, v) ∈ E (6)

sv +
∑

u∈Nin(v)

yu,v ≥ 1 ∀v ∈ V (7)

∑
(u,v)∈ξ

yu,v ≤ |ξ| − 1 ∀ξ ∈ Ξ (8)

Constraints (5) establish that, if a vertex is a seed, it cannot be influenced
by any of its in-neighbors. Constraints (6) guarantee that, for any (u, v) ∈ E,
if u influences v during the propagation (yu,v = 1), then u necessarily enters
the spreader state before that happens, either by being a seed (su = 1) or by
receiving an amount of influence of at least tu. Constraints (7) enforce that each
vertex is a seed or is influenced by one of its in-neighbors, and hence aware.

Lastly, (8) forbid the occurrence of a circular sequence of influences during the
propagation by avoiding directed cycles in the directed subgraph of D induced
by each (u, v) ∈ E with yu,v = 1. The IP-ARCS formulation has O(|V | + |E|)
variables and O(|V |+ |E|) constraints, except for (8), which can be exponential.
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3.3 The New IP-ARCS-POLY Formulation

The new IP-ARCS-POLY formulation is obtained by substituting constraints (8)
in IP-ARCS by an alternative set of constraints with polynomial size. The idea
is similar to the subtour elimination constraints in the Miller–Tucker–Zemlin
formulation for the Travelling Salesman Problem [12].

Let {ℓv : v ∈ V } be a set of integer variables with domain {0, 1, . . . , n−1}. For
each v ∈ V , ℓv is the length of the longest path that starts from a seed and ends at
v in the directed subgraph of D induced by the edges in {(u, v) ∈ E : yu,v = 1}.
The IP-ARCS-POLY model comprises constraints (5)–(7), (9), and (10).

(n− 1) · (1− sv) ≥ ℓv ∀v ∈ V (9)
n(yu,v − 1) + 1 ≤ ℓv − ℓu ∀(u, v) ∈ E (10)

Constraints (9) determine that if v is a seed (sv = 1), then the length of the
longest path that starts from a seed and ends at v is 0 (i.e., ℓv = 0). On the
other hand, constraints (10) enforce that if u influences v (i.e., yu,v = 1), then
the length of the longest path that starts from a seed and ends at v must be
larger than the length of the longest path that starts from a seed and ends at
u (i.e., ℓv > ℓu). The IP-ARCS-POLY model has O(|V | + |E|) binary variables,
O(|V |) integer (non-binary) variables, and O(|V |+ |E|) constraints.

3.4 The New IP-ORDERING Formulation

In the new IP-ORDERING formulation, there are three sets of binary variables,
namely, {pv : v ∈ V }, {qv : v ∈ V }, {hu,v : u, v ∈ V, u ̸= v}, such that:

pv = 1 iff v is not a seed, but becomes a spreader during the propagation;
qv = 1 iff v is not a seed and does not become a spreader, but is in the aware
state at the end of the propagation;
hu,v = 1 iff u and v are both spreaders during the propagation, but u assumes
that state before v does.

The model comprises constraints (11)–(17). The role of the h variables is to
induce the order in which the vertices assume their spreader state.

sv + pv + qv = 1 ∀v ∈ V (11)∑
u∈Nin(v)

wu,vhu,v ≥ tvpv ∀v ∈ V (12)

∑
u∈Nin(v)

(su + pu) ≥ qv ∀v ∈ V (13)

su + pu ≥ hu,v ∀(u, v) ∈ V × V, u ̸= v (14)
hu,v ≤ pv ∀(u, v) ∈ V × V, u ̸= v (15)

hu,v + hv,u + qv ≤ 1 ∀(u, v) ∈ V × V, u ̸= v (16)
hi,j + hj,k ≤ hi,k + 1 ∀(i, j, k) ∈ V × V × V, i ̸= j ̸= k (17)
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Constraints (11) guarantee that each vertex is either a seed or assumes the
spreader or aware state. Constraints (12) enforce that, if v is not a seed but
becomes a spreader, the amount of influence received by v from its in-neighbors
that are spreaders before v must be at least tv. Constraints (13) determine that
if v is neither a seed nor becomes a spreader but is otherwise aware at the end
of the propagation, then v must have at least one in-neighbor that is either a
seed or becomes a spreader during the propagation.

Constraints (14) and (15) establish that, if u becomes a spreader before v
does, then either u is a seed or it becomes a spreader later, and v has to become
a spreader as well. Constraints (16) imply that at most one of the following can
be true: u assumes the spreader state before v does; v assumes the spreader state
before u does; v is neither a seed nor becomes a spreader, but becomes aware
during the propagation. Lastly, (17) ensure transitivity in the ordering of the ver-
tices that assume the spreader state during the propagation. The IP-ORDERING
model has O(|V |2) binary variables and O(|V |3) constraints.

4 Constraint Programming Formulations

In this section, we rewrite the IP-ROUNDS, IP-ARCS-POLY, and IP-ORDERING
formulations by converting some of their linear constraints into propositional
logic constraints, which are more natural and adequate for a CP solver. The
converted constraints represent logical implications originally formulated with
big-M type coefficients. This is the case for constraints (3), (6), (9), and (10).
As a result of this rewriting, we derive three CP formulations for the LDPAP,
namely, CP-ROUNDS, CP-ARCS-POLY, and CP-ORDERING. Before describing them,
we explain why we did not rewrite IP-ARCS.

Because of the exponentially many constraints (8) in the IP-ARCS model,
one would generally use a row generation algorithm in which (8) are regarded
as lazy constraints that get introduced only as they become violated. The CP
solvers we are familiar with do not allow lazy constraints since they require all
constraints to be loaded a priori, which is not doable for (8). Although it is
possible to use a CP solver to repeatedly solve the problem and add violated
constraints (8), we tested such an implementation and concluded it is too time
consuming and not effective in practice. Some CP solvers, such as Gecode [8],
include a global constraint called DAG that avoids induced directed cycles, but
that constraint basically consists of using (9) and (10). Therefore, substituting
DAG for (8) in IP-ARCS would simply lead to the same IP-ARCS-POLY model that
we are already studying.

We now introduce the CP-ROUNDS, CP-ARCS-POLY and CP-ORDERING formu-
lations, which share the same objective function (1).

4.1 The CP-ROUNDS Formulation

The CP-ROUNDS model is derived from IP-ROUNDS by substituting (18) for (3).

IF (xv,τ AND ¬xv,0) THEN
∑

u∈Nin(v)

wu,vxu,τ−1 ≥ tv ∀v ∈ V ∀τ ∈ {1, 2, . . . , n} (18)



8 F. de C. Pereira et al.

For every vertex v, (18) say that if v is a spreader in round τ but not a
seed, then the amount of influence it receives in round τ − 1 is at least tv. Like
IP-ROUNDS, this model has O(|V |2) binary variables and O(|V |2) constraints.

4.2 The CP-ARCS-POLY Formulation

The CP-ARCS-POLY model is derived from IP-ARCS-POLY by substituting (19),
(20), and (21) for (6), (9), and (10), respectively.

IF (yu,v AND ¬su) THEN
∑

i∈Nin(u)

wi,uyi,u ≥ tu ∀(u, v) ∈ E (19)

IF sv THEN ℓv = 0 ∀v ∈ V (20)
IF yu,v THEN ℓu < ℓv ∀(u, v) ∈ E (21)

Constraints (19) guarantee that, for any (u, v) ∈ E, if u influences v during a
propagation but u is not a seed, then u must have become a spreader by receiving
enough influence. Constraints (20) establish that, if v is a seed, the longest path
from a seed to v has length 0. Lastly, (21) indicate that, if u influences v, the
longest path from a seed to u must be shorter than the longest path from a
seed to v. The CP-ARCS-POLY model has O(|V | + |E|) binary variables, O(|V |)
(non-binary) integer variables, and O(|V |+ |E|) constraints.

4.3 The CP-ORDERING Formulation

The CP-ORDERING formulation is derived from IP-ORDERING by substituting (22)
and (23) for (12) and (17), respectively.

IF pv THEN
∑

u∈Nin(v)

wu,vhu,v ≥ tv ∀v ∈ V (22)

IF (hi,j AND hj,k) THEN hi,k ∀(i, j, k) ∈ V × V × V, i ̸= j ̸= k (23)

Constraints (22) determine that, if a non-seed vertex v becomes a spreader,
the amount of influence received by v must be at least tv. Constraints (23) enforce
transitivity on the spreading order implied by the h variables. The CP-ORDERING
model has O(|V |2) binary variables and O(|V |3) constraints.

5 Preprocessing Methods for the LDPAP Formulations

In this section, we present useful preprocessing techniques that can be applied
to the proposed models to reduce their sizes either by removing unnecessary
variables or constraints, or by reducing some variable domains.

Let I = (D = (V,E), c, t, w) be an instance of the LDPAP with |V | = n,
and let Q ⊆ V be the set of source vertices in D (i.e., vertices with an empty
in-neighborhood). Clearly, any feasible solution for I must contain Q, otherwise
the sources would not become aware during the propagation. Now, let PQ be
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a propagation started from Q and let ρ ≥ 1 be the last round of PQ. Then,
Qρ = Qρ−1, where Qi denotes the set of spreaders in the i-th round. Take
κ = ρ+ n+ 1− |Qρ−1|. Our first preprocessing method relies on Theorem 1.

Theorem 1. If S is a feasible solution for I, then the propagation PS started
from S takes no more than κ rounds.

Proof. Let S be a feasible solution for I so that PS takes at least κ+ 1 rounds.
Since S is feasible, Q ⊆ S and, therefore, Qρ−1 ⊆ Sρ−1. Hence, at the end of
round ρ−1 of PS , there are at least |Qρ−1| spreaders and, consequently, at most
n−|Qρ−1| non-spreaders. Therefore, there can be at most n−|Qρ−1|+1 rounds
after ρ− 1, totaling ρ+ n+ 1− |Qp−1| = κ rounds (because there are ρ rounds
from 0 to ρ− 1), which contradicts the choice of S. □

We can compute both ρ and |Qρ−1| (and thus κ) by simulating PQ using the
CompletePropagation algorithm, introduced in [15], which runs in O(|V |+ |E|)
time. To do so, we keep a counter for the number of rounds and another for the
number of spreaders per round.

So far in this paper, we have used n + 1 as an upper bound for the total
number of rounds that a propagation can take. Indeed, some variables in the
IP-ROUNDS, IP-ARCS-POLY, CP-ROUNDS, and CP-ARCS-POLY formulations were
defined by assuming that, in the worst-case scenario, a propagation ends in round
n. We now tighten the n + 1 upper bound to κ. In doing so, we are assuming
that, in the worst case, a propagation ends in round κ − 1. Next, we describe
how we adjust the models accordingly.

For the IP-ROUNDS and CP-ROUNDS models, we remove all variables xv,τ with
v ∈ V and τ ≥ κ, as well as every constraint of type (3) and (18) in which they
occur. Then, we substitute (24) for (4).

xv,0 +
∑

u∈Nin(v)

xu,κ−2 ≥ 1 ∀v ∈ V (24)

For the IP-ARCS-POLY and CP-ARCS-POLY models, we simply change the domain
of the ℓ variables from {0, 1, . . . , n− 1} to {0, 1, . . . , κ− 2}.

Now, we present a preprocessing approach for the IP-ORDERING formulation.
Recall that each binary variable hu,v indicates whether u assumes the spreader
state before v does. Moreover, (16) and (17) guarantee that the directed graph
defined by the edge set {(u, v) : u, v ∈ V, u ̸= v, hu,v = 1} is acyclic. In other
words, these constraints forbid any circular sequence of vertices with respect to
the order in which they assume the spreader state.

During a propagation, however, a circular sequence of influence induced by
h can only occur between vertices belonging to the same strongly connected
component of D. Thus, instead of ensuring a non-circular ordering of the vertices
for the entire graph, we can rewrite the constraints to focus separately on each
strongly connected component of D.

We redefine the set of h variables from {hu,v : u, v ∈ V, u ̸= v} to {hu,v :
(u, v) ∈ E ∪ E′} where E′ contains edges (u, v) and (v, u) for every distinct
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vertices u and v that belong to the same strongly connected component of D.
Next, we substitute constraints (25) to (28) for constraints (14) to (17).

su + pu ≥ hu,v ∀(u, v) ∈ E ∪ E′ (25)
hu,v ≤ pv ∀(u, v) ∈ E ∪ E′ (26)

hu,v + hv,u + qv ≤ 1 ∀(u, v) ∈ E′ (27)
hi,j + hj,k ≤ hi,k + 1 ∀ distinct i, j, k ∈ V s.t. (i, j), (j, k), (i, k) ∈ E′ (28)

To consider the CP-ORDERING formulation with the preprocessing approach
we have described for the IP-ORDERING model, we apply the same modifications
proposed above and also substitute (29) for (23).

IF (hi,j AND hj,k) THEN hi,k ∀ distinct i, j, k ∈ V s.t. (i, j), (j, k), (i, k) ∈ E′ (29)

6 Computational Experiments

In this section, we describe the experiments we carried out with the formulations
presented in Sections 3 and 4. We used a machine equipped with an Intel®
Xeon® E5-2630 v4 processor, 64 GB of RAM, and the Ubuntu 22.04.1 LTS
operating system. We employed Gurobi v10.0.3 [9] as the IP solver and CP-SAT
v9.7.2996 (from Google OR-Tools) [18] as the CP solver. The instances in our
experiments were divided into two datasets, outlined in the next section.

We refer the reader to a publicly available repository [17] that accompanies
this paper and includes the source code, problem instances, the solutions ob-
tained, and an appendix with additional details about our experimental results.

6.1 Datasets

The first dataset, denoted by ∆syn, was introduced in [15] and contains 30 syn-
thetic instances with n vertices for each n ∈ {10, 20, . . . , 100}, totaling 300
instances. The graphs in these instances were generated using a well known
algorithm proposed in [3] for the creation of scale-free graphs that capture cru-
cial characteristics of social networks. Particularly, the ∆syn dataset was pur-
posely designed to be diverse regarding the densities of the graphs, calculated as
m/(n2 − n), where m is the number of edges. For each fixed n, the 30 instances
in ∆syn with n vertices vary from very sparse graphs to nearly complete graphs.

For each instance (D,w, c, t) in ∆syn, the weight, cost, and threshold functions
are given by (30), (31) and (32), which were originally presented in [15].

wu,v = |Nout(u)|/
(∑

w∈Nin(v)
|Nout(w)|

)
(30)

cv =

{
5 · |Nout(v)|, if |Nout(v)| > 0

+∞, otherwise
(31)

tv =


|Nin(v)|

2
· median
u∈Nin(v)

{wu,v}, if |Nin(v)| > 0

+∞, otherwise.
(32)
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Formula (30) establishes that the amount of influence that u exerts on v is
proportional to the popularity of u on the network compared to the popularity
of the other in-neighbors of v. Formula (31) is based on the fact that, in 2020,
influencers with up to 1 million followers on some online social networks were
charging about 5 cents of a dollar per follower for a single paid post [4]. Note
that when v has no influence over other users, assigning +∞ as its cost prevents
v from being picked as an ineffective seed.

Formula (32) determines that a vertex v begins to forward the information
when it receives an amount of influence equivalent to the total influence coming
from half of its in-neighbors, assuming that all of them were exerting a median
level of influence on v. This is an extension of the well-studied majority threshold
function, where, in a given unweighted and undirected graph, a non-seed vertex
spreads the information when at least half of its neighbors are spreaders [5]. For
more details on the generation of the ∆syn dataset, we refer the reader to [15].

With the objective of evaluating the scalability of the proposed models for
larger but still solvable instances, we designed a second set of instances, denoted
by ∆X, containing large graphs. The ∆X dataset was built using a set of users
of the X social network and their online interactions between August 2019 and
March 2020 [21]. For each of 14 selected topics, from soccer to politics, the
authors identified the users who actively posted, retweeted or quoted, and then
crawled their followers that were also active users on the same topic.

These crawled relationships between “follower” and “followed” were previously
used in [15] to obtain a benchmark of instances used to test a heuristic for the
LDPAP (see Section 2.2). We first attempted to test our exact models on that
benchmark, but preliminary results indicated that the formulations could not be
solved within the established time limit of one hour and sometimes could not even
be loaded into memory due to the very large sizes of the instances, specifically
their number of edges. Thus, we were compelled to reduce the number of edges
in these graphs in order to stress our models on large, yet solvable, instances.

Therefore, we designed the ∆X dataset so that its instances contain a subset
of the user relationships present in the original instances from [15]. This resulted
in 14 large instances, one for each crawled topic. Next, we outline the details of
the ∆X dataset construction.

First, we grouped the users with respect to their popularity in the network, in
accordance with the approach proposed in [4], where the influential users were
classified according to their number of followers. To do so, we took r as the
largest integer such that there exists a user with at least 2r followers, and then
partitioned the users into the following equivalence classes:

– Group A: at least 2r followers;
– Group B : at least 2r−1 and fewer than 2r followers;
– Group C : at least 2r−2 and fewer than 2r−1 followers;
– Group D : fewer than 2r−2 followers.

We then assumed that the information typically flows from more popular
users to less popular ones or between users within the same class, except for
users within the least popular Group D. Next, we constructed a graph that
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contains an edge (u, v), meaning that u exerts influence over v, for each pair
of users u and v such that v follows u, and either u is more popular than v or
they both belong to the same group A, B or C. This construction purposely
forbids outgoing edges from vertices in group D, since they correspond to users
with very few followers and are not significantly influential in practice. Lastly,
we used (30), (31) and (32) to compute the remaining parameters required to
create an instance of the LDPAP. Table 1 shows properties of the graphs that make
up the instances in ∆X, where SCCs denotes the number of strongly connected
components (SCC) and LSCC is the number of vertices in the largest SCC.

Table 1. Quantifying topological characteristics of ∆X.

Instance Vertices Edges Density SCCs LSCC
X01 6529 69385 0.00163 6344 170
X02 16976 646190 0.00224 16123 719
X03 29693 250162 0.00028 29515 172
X04 275 1244 0.01651 250 26
X05 1637 11744 0.00439 1520 99
X06 6537 310694 0.00727 5725 664
X07 8068 138701 0.00213 7362 572
X08 7857 164710 0.00267 6994 730
X09 927 5371 0.00626 884 35
X10 9271 58828 0.00068 9209 50
X11 3964 24296 0.00155 3903 56
X12 1520 13287 0.00575 1388 104
X13 993 16828 0.01708 685 173
X14 1405 8181 0.00415 1370 32

6.2 Results for Instances in ∆syn

In this section, we report the results for each of the 300 instances from ∆syn.
We configured both solvers, Gurobi and CP-SAT, to run on a single thread of
execution within a time limit of 1 hour for each pair of formulation and instance.

The preprocessing methods that we proposed in Section 5 to reduce the size
of the models were employed whenever they were applicable. They proved to be
much more effective than the built-in preprocessing phase inherent to the solver,
so the time spent running them was fully compensated by the performance gains.

Moreover, for each instance, we provided the solvers with an initial feasible
solution that corresponds to the best known perfect seed set for that instance
thus far. These seed sets were obtained from experiments conducted in [15] and
are publicly available in [14]. We also provided the solvers with an initial lower
bound for the objective function, which was obtained by the algorithm proposed
in [15] (see Section 2.2).

It is important to highlight that, as shown in Section 3, the IP-ARCS model
has an exponential number of constraints (8). As a result, we followed the tradi-
tional lazy constraint strategy: whenever the IP solver found an integer solution,
we performed a complete depth-first search on the directed graph induced by the
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integer solution and, for each cycle found, we added the corresponding violated
constraint to the formulation.

We remark that, in [15], the IP-ROUNDS and IP-ARCS models were tested
with the ∆syn dataset and found optimal solutions for 90 and 54 instances,
respectively, totalling 93 instances solved.

Regarding the experiments conducted in the present paper, Table 2 shows
the number of provably optimal solutions obtained by each model, where the in-
stances are grouped by their number of vertices (recall that there are 30 instances
for each value of |V |).

Table 2. Number of solved instances from ∆syn.

Formulation |V | Total10 20 30 40 50 60 70 80 90 100
IP-ROUNDS 30 28 9 4 3 3 3 3 4 4 91
IP-ARCS 30 9 4 3 2 2 1 1 1 1 54
IP-ARCS-POLY 30 14 5 3 2 2 1 1 1 1 60
IP-ORDERING 30 26 6 3 2 2 1 1 1 1 73
CP-ROUNDS 30 30 30 30 30 30 30 29 22 17 278
CP-ARCS-POLY 30 22 9 5 3 3 1 2 1 1 77
CP-ORDERING 30 30 30 28 12 6 6 2 3 2 149

We first observe that the results for the IP-ROUNDS and IP-ARCS models
were similar to the ones obtained in [15], since they solved almost the exact
same instances they did before. The IP-ARCS-POLY model had slightly supe-
rior performance than its exponential-size version, IP-ARCS, by solving 6 more
instances with 20 and 30 vertices. The IP-ORDERING formulation outperformed
both IP-ARCS and IP-ARCS-POLY formulations by solving a total of 73 instances.
Among the IP models, IP-ROUNDS remained the best formulation for the ∆syn

dataset, solving a total of 91 instances.
When it comes to the CP formulations, we observe that each model outper-

formed its own IP version. More specifically, the CP-ORDERING and CP-ROUNDS
models solved substantially more instances than their IP counterparts for each
group of instances (with at least 20 vertices). Indeed, the CP-ORDERING and
CP-ROUNDS models were the ones that solved the largest numbers of instances,
149 and 278, respectively, surpassing all the IP models by a large margin. Next,
we analyze the results obtained by these two formulations in more detail.

Because the CP-ROUNDS model was able to solve all 149 instances solved by
the CP-ORDERING model, we compare the performance of these formulations by
the time it took them to find these optimal solutions. Table 3 reports statistics
on the running times for those 149 instances.

From the median values in Table 3, we see that both models solved at least
half of the 149 instances in less than 2 seconds. However, the average times
indicate that the CP-ROUNDS formulation was about 38 times faster than the
CP-ORDERING model. The intervals between minimum and maximum running
times, together with the standard deviations, suggest that the CP-ROUNDS model
had more stable running times that grew more gradually.
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Table 3. Running times (in seconds) for the 149 instances solved by both CP-ROUNDS
and CP-ORDERING formulations.

Formulation Min Max Median Average Std Dev
CP-ROUNDS 0.006 56.572 0.617 3.622 8.453
CP-ORDERING 0.004 3362.744 1.450 138.469 458.432

Regarding the 129 instances solved by the CP-ROUNDS model but not by
CP-ORDERING (because it exceed the 1-hour time limit), CP-ORDERING obtained
an average optimality gap of 78.31%, with a standard deviation of 24.26. On the
other hand, the CP-ROUNDS formulation proved optimality within 469 seconds on
average, with a standard deviation of 746.

With respect to the 22 instances for which all formulations exceeded the time
limit, the IP-ROUNDS and CP-ROUNDS models obtained the smallest optimality
gaps, on average, namely 92.60% and 92.83%, respectively.

6.3 Results for Instances in ∆X

In this section, we report the results of the experiments conduced with the ∆X
dataset. We maintained the same experimental settings used for the ∆syn set
(see Section 6.2), with the exceptions noted below.

We configured the solvers to run on at most 10 threads of execution for
each pair of formulation and instance. We also provided the solvers with initial
feasible solutions that were obtained by running the only existing heuristic for
the LDPAP [15] for 10 minutes per instance. Due to the large sizes of the instances
from ∆X, the combinatorial lower bound proposed in [15] could not be computed.
Instead, we provided the solvers with trivial lower bounds (see Section 2.2).

Table 4 reports the optimality gaps obtained for each formulation within the
1-hour time limit. Entries containing the ‘–’ symbol indicate the run could not
be completed due to lack of memory.

Table 4. Optimality gaps (%) obtained for the instances in ∆X.

Formulation X01 X02 X03 X04 X05 X06 X07 X08 X09 X10 X11 X12 X13 X14

IP-ROUNDS 88.87 – – 0.00 0.00 – – – 0.00 – 20.22 31.32 85.28 0.00
IP-ARCS 88.87 93.63 0.00 0.00 0.00 96.06 76.36 52.46 0.00 64.31 0.00 31.32 98.73 0.00
IP-ARCS-POLY 88.87 98.65 0.00 0.00 0.00 96.06 76.36 52.46 0.00 64.31 0.00 31.32 98.73 0.00
IP-ORDERING 88.80 – 0.00 0.00 0.00 – – – 0.00 0.00 0.00 31.32 98.73 0.00
CP-ROUNDS – – – 0.00 0.00 – – – 0.00 – 0.00 0.00 98.73 0.00
CP-ARCS-POLY 88.46 98.65 0.00 0.00 0.00 96.06 0.00 0.00 0.00 64.31 0.00 31.32 98.73 0.00
CP-ORDERING – – – 0.00 0.00 – – – 0.00 0.00 0.00 0.00 – 0.00

We first analyze the results for the smallest instances from ∆X with respect
to the number of vertices in their largest SCCs (see Table 1). Instances X04, X05,
X09, and X14 were solved by each of the formulations in at most 200 seconds
per execution, although most of these executions took only a few seconds.

Instance X10 was solved only by the IP-ORDERING and CP-ORDERING mod-
els in 532 and 17 seconds, respectively. Instance X11 was solved by all models,
except for IP-ROUNDS, and optimal solutions were obtained in less than 2 min-
utes, except for CP-ROUNDS, which took 18 minutes. Instance X12 was solved by
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the CP-ROUNDS and CP-ORDERING models in 278 and 73 seconds, respectively.
The CP-ORDERING model was the only one capable of solving all the instances
mentioned so far, always needing less than 2 minutes to prove optimality.

The remaining instances are larger than the previous ones with respect to
their largest SCCs. In this case, the executions with CP-ORDERING were halted
due to lack of memory, most likely due to the large number of constraints (29).

Instance X03 was solved by the CP-ARCS-POLY, IP-ORDERING, IP-ARCS and
IP-ARCS-POLY models, taking less than 3 minutes for the first three. Instances
X07 and X08 were solved only by the CP-ARCS-POLY model in less than 3 minutes.
The remaining instances, namely X01, X02, X06, and X13, were not solved by
any model. For these instances, the smallest optimality gaps were achieved, most
of the time, by either the IP-ARCS or the CP-ARCS-POLY formulation.

In conclusion, for the ∆X dataset, the CP-ORDERING formulation had the best
overall performance on instances with relatively small strongly connected com-
ponents. For instances whose LSCCs had more than 104 vertices, CP-ORDERING
ran into memory limitations, and for these cases the IP-ARCS and CP-ARCS-POLY
formulations were the most effective ones.

7 Concluding Remarks and Future Work

In this paper, we study different formulations and preprocessing approaches for
the LDPAP. We propose two new IP models and three new CP formulations. We
also design and perform experiments to test the existing and new models on a
set of small synthetic instances and a new collection of large instances obtained
from the X social network.

Based on our results, the new CP-ROUNDS formulation is more suitable, both
in terms of efficiency and effectiveness, to solve LDPAP instances with up to 100
vertices. With this model, we managed to increase the number of known solved
instances from the ∆syn dataset from 93 to 278 (out of 300). For this group of
instances, every CP model outperformed its IP counterpart.

Regarding the 14 large instances from the ∆X dataset, we learned that the
CP-ROUNDS model does not scale well with respect to the number of vertices
in the graph. Our results suggest that CP-ORDERING is the most efficient and
effective formulation for large instances with fairly small SCCs. For instances
containing larger SCCs, the IP-ARCS and CP-ARCS-POLY formulations appear to
be better suited.

As for future research directions, we believe that both the CP-ROUNDS and
CP-ORDERING formulations can be employed in the development of heuristics for
the LDPAP based on large neighborhood search or even on techniques grounded in
the decomposition of large instances into smaller ones. For the second case, the
smaller instances can, in turn, be quickly solved with these models depending
on their topological characteristics. Also, it is our view that the possibility of
applying Benders decomposition to the IP-ARCS model is worth investigating.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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