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1. Introduction

Abstract. U.S. presidential elections are determined by the Electoral College. In all
but two states, a statewide winner-take-all system for electors can lead to decisive out-
comes based on narrow victories in key states. Small groups of voters can significantly
impact results, not only through turnout but also through a less-explored mechanism:
the strategic relocation of a relatively small number of dedicated voters across state
lines. The extent to which election outcomes are sensitive to such coordinated move-
ments has not been thoroughly investigated. We introduce an analytical framework
that integrates forecasting, simulation, and optimization to identify these pivotal voter
shifts. Our findings show that small-scale relocations can meaningfully alter election
probabilities under a range of parameter settings and polling data sources. Further-
more, we examine how the optimization-based recommendations align with actual
election results, demonstrating that the suggested movements would have been bene-
ficial in the 2024 U.S. presidential election—even when based on pre-election data.
Given the remarkably small number of individuals required and the fact that electoral
residency in many states can be established within about a month, our results have
direct implications for policymaking and campaign strategy. Moreover, they highlight

new opportunities for applying operations research methods to political science.

Key words: elections, network models, simulation

Can a small, coordinated interstate movement of voters sway the outcome of a U.S. presidential election?

While this idea is often dismissed due to perceived legal, financial, and logistical challenges, we demonstrate
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that even a modest, strategically coordinated movement of voters could significantly impacta U.S. presidential
election.

Our analysis is rooted in the intricate dynamics of the Electoral College, where in all but two states
(Maine and Nebraska) a winner-takes-all allocation of the electoral votes from that state is almost always
implemented. The power of the states in determining the outcome of a presidential election is heteroge-
neous (Rabinowitz and MacDonald 1986), and the current electoral system amplifies the importance of
swing states. Over the past 25 years, elections have been determined by remarkably narrow differences in
the popular vote within these states. One notable example is the 2000 presidential election, won by George
W. Bush with 271 electoral votes (versus 266 for Al Gore). In that election, the Republican candidate won
Florida’s 25 electoral votes by a margin of 537 popular votes—equivalent to a mere 0.005% of the state’s
eligible voters (Federal Election Comission 2000).

Beyond these thin margins of victory, another key factor to consider is the geographic proximity between
swing states and states with more predictable outcomes. For example, the neighboring swing states Nevada
and Arizona share a border with California, a Democratic stronghold. Similarly, the swing state of Georgia
is bordered almost entirely by Republican strongholds Tennessee, Florida, and Alabama. Referencing the
2000 election again and assuming one had access to perfect information, relocating 538 Democratic voters
from Alabama or Georgia to Florida would have changed the outcome of that presidential election. Building
on these two factors and through a combination of forecasting, simulation, and optimization, we demonstrate
how precisely coordinated, small-scale, short-distance moves could have dramatically influenced the outcome
of the 2024 U.S. presidential election.

Voter relocation strategies abound with questions about feasibility in practice. A close inspection of the
main potential hurdles indicates that it would be far less challenging to implement than what common
perception might suggest. In particular, and perhaps more importantly, current U.S. legislation does not
impose barriers on relocation strategies. There is a 30-day maximum limit on residency requirements for
voting in federal elections, including presidential elections, based on the 1970 amendments to the Voting
Rights Act (42 U.S.C. § 1973aa-1). This federal law stipulates that no state may impose a residency
requirement of more than 30 days for voting in any presidential election. Additionally, the U.S. Supreme
Court reinforced this in the 1972 case Dunn v. Blumstein (405 U.S. 330), where the Court ruled that
lengthy residency requirements violated the Equal Protection Clause of the 14™ Amendment, despite what
some politicians might have called for (Bump and Bronner 2023). Therefore, relocation translates to voting
eligibility in a relatively short period.

Another consideration is practicality, as the relocation burden for a voter would be far greater than just
voting in their current state of residence. Although turnout initiatives typically focus on motivating the less
engaged segments of voters, the result of our study involving relatively few movements suggest that attention

can be placed on enthusiastic voters who are already planning to vote; for reference, election rallies frequently
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have tens of thousands of people in attendance (Peoples et al. 2024). Note that interstate relocations already
happen in an organic way; in particular, nearly 8 million people have moved between states in recent years
in an uncoordinated fashion (Ismail 2023). Moreover, the 100 companies with the largest workforce in the
U.S. employ more than 80,000 people each (Stock Analysis 2024). As a result, even a corporate relocation
could inadvertently shift the electoral balance and prove decisive in a closely contested election.

From a financial standpoint, the cost involved with a small number of short-distance relocation movements
would be in line with donation to presidential campaigns. For example, as of August 15, 2024, the estimated
cost of moving a two-bedroom house from Lowell, MA to Nashua, NH is between $2,081 and $2,542 (Move,
Inc. 2024). Using the midpoint of this cost range, a rough estimate for the total cost of moving 50,000 people
is around $150 million. For reference, over 200,000 people had donated over $3,300 to 2024 presidential
election campaigns by August 15, 2024 (Open Secrets 2024). Rather than donating to a campaign—where
dollars do not necessarily translate to votes (Krasno and Green 2008)—highly motivated voters could instead
relocate and directly influence election outcomes. It is important to clarify that the authors neither endorse
nor condone these relocation strategies; instead, we aim to shed light on how such planned efforts could
impact the democratic process.

Our work contributes to the existing research on elections in the operations research and the political
science literature. Specifically, U.S. elections have been studied since the 1960°s (Hess et al. 1965, Garfinkel
and Nemhauser 1970), with emphasis on local (county-level and state-level) elections. Special attention has
been dedicated to political districting and gerrymandering (Validi and Buchanan 2022, Validi et al. 2022,
Swamy et al. 2023), examining how electoral boundary design can skew representation and affect the fairness
and outcomes of local elections. Fairness considerations also arise in the composition of citizens’ assemblies
for public policy deliberations, where descriptive representation (matching quotas on attributes such as age,
gender, and education) can conflict with democratic equality (each individual should have an equal chance
to serve; see, e.g., Flanigan et al. (2021). Another line of research addresses the location and consolidation of
polling places to promote voter participation (Haspel and Knotts 2005, Schmidt et al. 2024). For presidential
elections, howeyver, state-level popular votes are unaffected by these internal subdivisions (except in Maine
and Nebraska). The interest in election forecasts has also grown significantly over the years (Hummel and
Rothschild 2014, Kaplan and Barnett 2003), especially after numerous polls failed to predict the outcome of
the 2016 election, won by Donald Trump (Wright and Wright 2018). Additional applications of optimization
to political problems include the allocation of resources to maximize seats in parliament (Giiney 2018),
estimating the minimal fraction of the popular vote necessary to elect a president in the Electoral College
(Belenky 2008), designing test decks for logic-and-accuracy testing of voting machines (Crimmins et al.

2025), and composing citizens’ assemblies under fairness constraints (Flanigan et al. 2021).
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2. Problem Description

We investigate the problem from the perspective of the two main parties in the U.S. political system. We refer
to them as p; and p, in our model, and assume without loss of generality that we are solving the problem
for party p;. Let U be the set of electoral units, which is a partition U :=S U D of state units S and district
units . Each U.S. state has a one-to-one mapping to state units in S. In addition, Maine and Nebraska are
associated with two and three district units, respectively, in 9. Each unit « is assigned v, € Z, electoral
votes, with ), cq; v, =538 for the 2024 U.S. presidential election. A candidate who wins the popular vote
at a unit u receives all v,, votes.

Each unit u € U is composed of counties C,, where C := | J,,cq; Cy is the set of U.S. counties. Each county
belongs to exactly one state unit, and all votes in a county ¢ € C, count towards the state s. A county c in the
states of Maine and Nebraska belongs to at least one district unit Cy, d € D. Let f. 4 € [0, 1] be the fraction
of county c’s population within district unit d € . We assume that each vote in a county ¢ € C,; counts for
fe.a votes towards the district d € D.

We wish to identify a movement matrix X € le%lxlcl to most effectively increase the probability of p;
obtaining at least K electoral votes, where x; ; is the number of people relocating from county c; to county
c;; we set K to 270 in our study, as this was the minimum number of electoral votes needed to win the 2024
U.S. presidential election. We assume that each movement involves identifiable, highly engaged electors
of pi, i.e., individuals who will vote in the elections and choose p;. Specifically, let N, ,, and N, , be
random variables representing the number of votes parties p; and p; receive in unit u, respectively. We

consider the following stochastic problem:

r)I(leaé P(Z vuW, > K
uel

st Wu=I(T,>Np,u) YueU(=SUD)
TS =Np1,s+ Z Z (Xj’i—x,',j) VseS
c;i€Cs CjeC\Cs

Ta=Npa+ > fea . (xji-xi;) VdeD.
c;€Cy cj€C\Ca

P)

In formulation P, 7}, is a random variable that denotes the number of votes received by pi in unit u after the
relocations in and out of all counties in C,, as defined in the second and third constraints. Party p; obtains
all v, electoral votes if T, > N pa,us Which here is modelled as a Bernoulli random variable W, in the first
constraint. The objective maximizes the probability that p; secures at least K electoral votes. Finally, we
use set € to indicate that the set of feasible solutions to P may be subject to additional constraints, such as

limits on the number of people moving in and out of a county (see, e.g., Section 5.3).
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3. Analytical Framework and Models

We identify voter relocation strategies in a three-step process that considers the stochastic nature of the
problem. First, we design a simulation model to generate scenarios of voter turnout by party and county. Next,
we calibrate these scenarios using a Bayesian-style update with predictions from polling aggregation services.
Finally, we apply an optimization model based on sample average approximation (SAA) (Kleywegt et al.
2001) that processes scenarios from the simulation model to identify county-to-county voter movements.
The optimization is independent from the simulation model, so any alternative simulation model generating

voter turnout per party and county can substitute the one presented in this work.

3.1. Voter Turnout Simulation Model

The simulation model was designed to capture historical voter turnout per county, consider correlation in
voter turnout between counties, and reflect recent voting preference trends observed in polling data. For
this, we use growth models derived from county-level voting returns from previous elections. Our model is
designed to capture a well-known spatial correlation across counties under partisan stability across the years;
see, e.g., Kim et al. (2003), Fiorino et al. (2022), Bump and Bronner (2024). Specifically, the number of
voters per county per candidate is modeled as a collection of correlated lognormal distributions that defines
the baseline for simulating voter turnout.

For each party p, county ¢, and election year ¢, let v, ., be the number of people who voted for p in ¢ in
the election year . We define the number of voters for the party p in county ¢ as Vp,c ~ LN (Up.c,Tp.e),
that is, a log-normal distribution with the normal component having mean y,, - and standard deviation o, ..
The lognormal distribution was chosen because (a) it is positive, (b) captures counties with small voting
populations, (c) correlates variables based solely on historical trends, and (d) accounts for heteroskedasticity
observed in our data. Finally, we note that the discrete outcomes (number of votes) are sufficiently large so
that a continuous distribution is appropriate.

Given an arbitrary ordering of the counties and parties, we let u and X be the vector of the expected
values and the covariance matrix of the normal components of the number of votes per county and party,
respectively. We estimate them as fi and £ using the following procedure. We model voter turnout using
estimates of the average growth rate g, . for each party p and county c based on historical voter data for the

previous 7T elections as follows:

T

Z (vp,c,ra1) = (Vp,c,t)-

Vp,c,t

8p.c =

S| —

t=1

Based on the growth rates above, the expected turnout for the election of interest is estimated as
Ap,c:=E [ln (VP,C)] =In(vp,ci-1-8p.c)-

We derive 3 by computing the sample covariance of the log-transformed voter turnout (for each p and

¢ in the same order as they appear in g) from previous elections. If the resulting matrix is not positive
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semidefinite, we replace it with the nearest symmetric positive semidefinite matrix based on the Frobenius
norm (Higham 1988). Given & and 3, we generate z scenarios of voter turnout as follows:

1. (Normal Data Simulation) We sample z matrices A, € R¥*2ICD) for g € [z] := {1,...,z} from the
distribution N (@, ). Each sample ag,p,c represents the log-transformed voter turnout of party p in county
¢ sampled in scenario g € [z] :={1,...,z}.

2. (Lognormal Rescale) We exponentiate the adjusted normal data to recover the sampled voter
= e%arc,

turnout & for each party, county, and scenario, i.e., &

’ ’
q.pP,¢ q.p,¢

, eRixelC\

The matrix E is the result of the process described above, which includes sampled data

describing voting turnout in each scenario. We refer to E’ as the calibration set.

3.2. Bayesian-style Update Model

The voter turnout simulation model described in §3.1 is based on historical voter trends and does not account
for up-to-date information available from recent polls and prediction services. To incorporate this data, we
develop a Bayesian-style update to transform the calibration set &’ into an optimization set 2 such that the
proportion of simulations in which a party wins a state matches a given prediction. This section focus on
the case with two parties, as our study is dedicated to the U.S. elections; a generalization of this model
encompassing three or more parties is presented in §7.2.

Formally, consider a state unit s € S for which a party’s exogenous winning probability 6 is greater than
the winning probability of that state over all simulations in 2’ by more than 0.01. We refer to such a party
as the increasing party ps, as its number of votes must increase for the winning probability to match 6.
The adversarial party, in turn, is referred to as the decreasing party p|. Our goal is to switch the smallest
fraction A of votes in state s from p| to py across all simulations in Z’ to obtain the optimization set =.
In particular, we wish to minimize A to move the fewest number of people to bring the estimates of win
probability to match that of the polling site; we refer to A as Bayesian update factor. We assume a uniform
redistribution of voters across each state, meaning the same fraction A of voters “flips” in each county of s.

We use the following mixed-integer programming formulation to identify A7%:

A= r/lllin A (la)
W
St = Yt A D E Vg € [z] (1b)
ceCs ceCs
ysl =(1-2) Z g;,pl,c Vq € [7] (lc)
ceCys

Yol + M(1=wg) 2yt +w, Vg € [7] (1d)
1
- Z Wy > 6 (le)
. q¢€(z]

A€ [0,1],wg €{0,1},yg" 2 0,y4" 20, Vg € [z].
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In addition to variable A, which is minimized in (1a), the model uses auxiliary variables yg and yé to represent
the updated number of votes for each party and county in the g-th scenario. Moreover, formulation (1) uses
binary variables w,, to indicate whether or not the increasing party wins s in scenario g. Constraints (1b)
and (1c¢) set the values of yII and y(ll based on A. Constraints (1d) set each binary variable w, = 1 if and only
if py receives more votes than p | in the g-th scenario; M is a sufficiently large constant. Lastly, (1e) asserts
that our win probability estimate for p; matches the prediction 6,. We remark that this constraint can be
tightened by replacing 6 on the right-hand side with [z6,], since we are dealing with a discrete number of
scenarios.

Given an optimal solution A, we update the voter turnout scenarios in Z’ for state s as follows:

é‘:qvaac :fél,pT,C +/l§§’q,pl,c VC € CS‘)Vq € [Z]a

‘fq,pl,c:(l_/lz)f:l,pl,c Ve e G, Vg € [7].

Section 7.2 discusses a generalization of formulation (1) for switches involving an arbitrary (three or
more) number of parties. In the specific case of the U.S. elections, such a generalized model would allow

for switches involving candidates from alternative parties that are aggregated in our model.

3.3. Network Flow Model
Let L € N be a fixed upper limit on the number of relocation movements. We identify an optimal relocation

strategy based on a given optimization set = using the following network flow model:

1

R I 2
q€(z]
St veg= ), [qret D) (pi—xi)) VseS,Vq e [z] (2b)
ci€Cs cj€C\Cy
Yd.q= Z Jerd|Eq.e + Z (xj.i —xi ) Vd € D,Vq € [7] (20)
ci€Cqy cjeC\Cq
Vg M= W) = D" Eq2ie+ Wiug VueUVgelz] ()
CiGCu
Z VuWu,g = Ky Vq € [z] (2e)
uel
Z xij<L (2f)
(i,j)eA
D xij < min {£g 16} Ve €C 2¢)
“ q€lz]
cjeC
Z Xij < on; Ve, €C (2h)
C‘,'EC
Z Xji< on; Ve, €C (21)

CjEC
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Wwq €{0,1} Vq € [z]
X j >0 VC,',C]' eC.

Variable y, , represents the number of votes for party p; in unit u under the g-th scenario after the
relocations. Binary variable w, , equals 1 if and only if p; wins the popular vote in « under g. Similarly,
binary variable W, indicates if p; wins the election in g. Each variable x; ; represents the (non-negative)
number of people moved from county ¢; to county c ;. The objective (2a) maximizes the estimated probability
of p; obtaining at least K votes. Constraints (2b) and (2c¢) count the votes for each state and district,
respectively, per scenario after the relocations; recall that f., 4, used in (2¢), is the fraction of county c;
within district unit d. Constraints (2d) and (2e) set the activation variables indicating the victory per state and
nationwide, respectively. Constraint (2f) limits the total number of movements to L voters. Constraints (2g)
limit the total number of movements out of each county to the minimum number of voters in that county
across all scenarios, while Constraints (2h) and (21i) limit the total number of movements in and out of
each county to a fraction ¢ € [0, 1] of the county’s population n;. The values n; are estimates on the county
population for each county using data from the U.S. Census Bureau (U.S. Census Bureau (2024)). This data
provides actual county populations from 2020, and estimates of county populations for 2021 and 2022. For
each county, we take the average of the growth rates from 2020 to 2021 and from 2021 to 2022, and then

multiply the 2022 county populations by that value twice to estimate the county population in 2024.

3.4. Out-of-Sample Evaluation Sets

To ensure that the probability of winning is not overly tied to the optimization set E, we use the same
simulation procedure to generate a fresh set 2" of evaluation scenarios to assess solution quality, i.e., almost
surely 2N E* = (. Namely, whereas E is used within the network flow model (2), Z* is used exclusively to
evaluate the quality of the prescribed movements. With that, we have an out-of-sample prediction for the

probability that each candidate will win.

3.5. Practical Considerations and Refinements

We incorporate additional aspects into our model for practicality. First, we ensure that relocation distances
are limited to counties located at most 100 miles apart. Moreover, we only consider movements into swing
states, which we define as those states for which the winner has at most a 70% chance of winning. We
also implement a post-optimization routine that tries to reduce the total distance traversed by all movements
while maintaining the same aggregate flows out of each state and the same aggregate flows into each state

as in the original solution, noting that such modifications do not change the estimated win probability.
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With respect to the Bayesian-style update, we use a modified model to account for district units in
Maine and Nebraska. Instead of defining a single multiplier for the whole state, we consider two multipliers
per district, each denoting the switch of voters between the parties in one district to the other. To ensure
consistency, we impose constraints requiring that the updated estimated probabilities for both the state and
its districts remain within a small tolerance of the exogenous winning probability. Finally, the objective is to

minimize the sum of all the multipliers, again aiming to switch the least amount of people.

4. Simulation Model Validation

We present validation procedures conducted to ensure that the simulations are sufficiently accurate. We first
detail our specific implementation, give reasons for the adequacy of the log-normality assumption, and then
show how our simulations were quite accurate when compared with actual voter turnout in 2024, on the

county level. We complete the section with a discussion on the magnitude of the Bayesian update factors.

4.1. Implementation Details
We trained a voter turnout simulation model (see §3.1) that simulates the number of votes received by each
candidate in each of the 3,150 counties participating in the 2024 U.S. presidential election using county-
level voting returns for the last five elections (2004-2020) with data from the MIT Election Data Science
Lab (https://electionlab.mit.edu/). All voters for candidates other than the primary Republican
or Democratic candidate are grouped into a single “other” category. Thus, our model consists of 9,450
lognormal random variables, where 6,300 variables are associated with the two main candidates.

Recall that our Bayesian-style update model relies on recent poll data. Predictions about election outcomes
vary across polling services, so we use three sources in this study:

1. NS: “Silver bulletin 2024 presidential election forecast” (Silver and McKown-Dawson 2024), extracted
on 10/9/2024;

2. HILL: “The Hill’s 2024 Election Center” (The Hill 2024), extracted on 11/4/2024; and

3. RACE: “Race to the WH” (Race to the WH 2024), extracted on 11/5/2024.

4.2. Adequacy of Log-normality Assumption

Recall that our model assumes that voter turnout follows a lognormal distribution. We employed a Breusch-
Pagan test for heteroskedasticity using 2020 county population data, which yields a Lagrange multiplier of
1,289.73, p-value < 0.0001, when fit to votes for the Democratic candidate. That is, the variance of the
residuals is not constant when using the 2020 county population, thereby justifying the use of a distribution

that can accommodate such variability.

4.3. Voter Turnout per Party and County
To validate our statistical model, we compare the actual and predicted voter turnouts by county. Figure 1

depicts the actual voter turnout in the 2024 election and a distribution of the predicted voter turnout scenarios,


https://electionlab.mit.edu/
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using evaluation sets derived from the three polling services. Specifically, we produce two scatter plots with
the calibration sets (one per party) plus two scatter plots per polling site, which show the actual number
of votes for the Republican and Democratic candidates (x-axis) versus the average of the number of voters
per county observed in our simulations (y-axis). We also include a shaded region in the y-axis to show
plus-and-minus one standard deviation from the mean over our 5,000 simulations in the evaluation set.

Lastly, Table 1 shows the accuracy of uncalibrated and calibrated scenarios across different pool services.

Pool Service Republican (R) Democrat (D)
Calibrated Uncalibrated Calibrated Uncalibrated

NS 78.3% 74.8%

HILL 79.1% 86.4% 76.3% 70.9%

RACE 81.3% 75.7%

Table 1 Percentage of scenarios with turnout predictions within 1 standard deviation for calibrated and

uncalibrated models, split by party and polling site.

The results show that the voter simulation model was accurate for the 2024 U.S. presidential election, with
most counties having voter turnout within one-standard deviation of the mean. The pre-calibrated Republican
model was the most accurate, with 86.4% of the simulations being within one standard deviation, versus only
70.9% for Democrats. In contrast, the accuracy of the Republican model degrades after the Bayesian-style
update, whereas the Democrat model becomes better aligned with the actual turnout and closely equates the
errors for both models.

This behavior becomes clear when examining Figure 2, which illustrates the progression of voter turnout
for the Republican and Democratic candidates in the past six U.S. presidential elections (Leip (1993)).
Whereas Republican candidates have seen a relatively steady increase in support, Democratic candidates
have exhibited more variability, with a notable surge in 2020. The reliance on historical voter turnout led to
general overestimation of votes for the Democratic candidate. However, the calibration process ensured that
actual voter turnout remained within one standard deviation of the mean for 75%—80% of counties across all

prediction pools, aligning with expectations for normal random variables and other common distributions.

4.4. Magnitude of Bayesian Update Factors

Figure 3 shows a histogram of the magnitude of the Bayesian update factors per electoral unit across the
three polling services. One can readily see that modest updates are needed to calibrate to live polling data.
The average Bayesian update factors are 0.041, 0.025, and 0.013, for NS, HILL, and RACE, respectively. This
shows that while polling updates are necessary, the baselines from the population growth model are not

heavily misaligned.
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5. Optimization Results

This section presents our optimization results. We describe our implementation details, the elevated win
probability resulting from the movements prescribed by our optimization models, and evaluate the impact of
varying levels of constraints on the change in win probability. All data used in this section was from before

the 2024 U.S. Presidential Election. Our data and code are available on GitHub (Cardonha et al. 2025).

5.1. Implementation Details

Our code was implemented in Java. We ran our experiments on an Intel(R) Xeon(R) CPU E5-1650 v4 at

3.60GHz with 32GB of RAM. We used CPLEX 20.1 with default settings to solve all the MIPs.
Movements into and out of a few states were prohibited, either for simplicity or due to data challenges.

Specifically, a) due to distance, we do not allow movements in or out of Alaska and Hawaii; b) due to district

electoral units, we do not allow movements in or out of Maine and Nebraska; and c) due to discrepancies

in naming conventions, movements in and out of Connecticut were also prohibited. In the voting data for

Connecticut, the voting records are broken down by Planning Regions, as opposed to CT Counties (see,
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e.g., https://portal.ct.gov/csl/research/ct-towns-counties?language=en_US). A similar
discrepancy is also present in Alaska, noting that movements are restricted in the model anyways.

The distance between two counties is calculated as the distance between the centroid of their cities weighted
by the population of their component cities. Specifically, for every city, we first extract the population,
latitude, longitude, and county from SimpleMaps (https://simplemaps.com/). Next, we compute the
coordinates of the county centroids as the weighted average of the latitude and longitude of the cities in each
county, weighted by population size.

For our experimentation, we used 1,000 and 5,000 scenarios in the optimization and evaluation sets,
respectively. The limit of 1,000 scenarios for the optimization set was dictated by computational bottlenecks
and the 5,000 scenarios for evaluation were used to get a refined estimate for win probability. Given that each
scenario is a random outcome, the estimate for the confidence interval for the true population proportion
p at 95% confidence has width at most 1.39% according to the classical population proportion confidence

interval length of 24/p(1 — p)/n, which provided a fairly narrow range.

5.2. Win Probability Elevation

Table 2 presents the win probability elevations derived from our optimization results. Each row indicates
the polling site used to generate the optimization set. The columns report the elevation in estimated win
probability over the evaluation sets from the three polling sites, resulting from the prescribed movements for
25,000, 50,000, 100,000, 150,000, and 200,000 voter movements. To evaluate the win probability elevation,
we fix the movement decisions, identify the fraction of times the candidate wins in the respective evaluation
sets, and compare it with the baseline win probability. The first line of the table shows the pre-movement
win probability estimate by polling site. We optimize and evaluate over all combinations to get a robustness
check on the estimated win probability change. Lastly, our network flow model does not allow movements
changing any county population by more than 5% in these experiments, i.e., 6 = 0.05.

The results show significant win probability elevations even for relatively small movements. To put these
results in perspective, there are roughly 250 million eligible voters in the U.S. A movement of 100,000
people involves approximately 0.04% of the voting population. In particular, across all three polling sites,
a movement of 100,000 voters in favor of the Republican candidate results in a change in win probability
of between 4.1% to 9.0%. For the Democratic candidate, that change is between 2.5% to 5.7%. We note
that each of the polling sites identified varying swing states, and so the resulting movements change based
on which optimization set is used; one example is the state of New Hampshire, which qualifies as swing
state in NS but not in HILL and RACE. However, as can be seen in Table 2, the solutions are robust to the
various evaluation sets, i.e., the movements are impactful even when the polling data used for optimization

is different from the one used for evaluation.


https://portal.ct.gov/csl/research/ct-towns-counties?language=en_US
https://simplemaps.com/
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Republican Validation  Democrat Validation

Optimization Site  Number of Movements NS~ HILL RACE NS  HILL RACE

Baseline 0 41.7% 49.4% 43.2% 58.0% 49.5% 56.2%
NS 25000 34% 04% 1.0% 09% 1.1% 1.4%
NS 50000 T71% 32% 47% 1.7% 19% 2.6%
NS 100000 83% 4.1% 62% 28% 2.5% 3.2%
NS 150000 91% 59% 8.1% 4.2% 4.4% 5.2%
NS 200000 11.0% 9.8% 12.3% 5.7% 4.2% 4.3%

HILL 25000 0.7% 1.0% 1.4% 04% 1.1% 1.1%
HILL 50000 1.9% 33% 39% 1.6% 2.6% 2.9%
HILL 100000 44% 6.0% 7.6% 2.6% 4.7% 5.2%
HILL 150000 52% 7.4% 89% 39% 6.1% 8.0%
HILL 200000 6.7% 9.6% 11.7% 4.6% 7.1% 9.8%
RACE 25000 1.3% 1.0% 1.8% 1.0% 12% 1.5%
RACE 50000 21% 32% 4.0% 13% 2.4% 2.7%
RACE 100000 52% 6.6% 9.0% 2.5% 4.6% 5.7%
RACE 150000 6.9% 88% 11.0% 39% 59% 8.0%
RACE 200000 10.0% 9.7% 13.3% 4.5% 6.9% 10.4%

Table 2 Elevation in Win Probability

5.3. Sensitivity to Movement Cap

Next, we study the sensitivity of our results to 6, which defines the fraction by which the population of a
county may change. Note that arbitrarily large moves would allow for unrealistic or impractical situations.
For example, an origin county may be completely depleted from inhabitants, or a destination county
may observe a major increase in population size. Additionally, the identification of a large number of
enthusiastic supporters in a small county may be challenging. Finally, other logistic limitations, such as
housing availability, may hinder large-scale moves.

Figure 4 shows the results of these experiments. We run the modified network flow model for 100,000
movements and parameters ¢ € {1,0.1,0.05,0.025,0.01}, using optimization and evaluation sets derived
from NS, HILL, and RACE in Figures 4a, 4b, and 4c, respectively. Differences in estimates are reflected in the
plots, but the results are overall consistent. In particular, the results show significant gains even under strict
limitations on movements. For the Republican candidate, larger values of ¢ result in higher increases in win
probabilities, but we still obtain 5.3% even if 6 =0.01. In contrast, the results for the Democratic candidate
are relatively stable, regardless of 6.

A closer inspection of the states used for movements for the Republican and Democratic candidates
explain these results. Namely, Republican moves involve states with relatively few counties, so small values

of 6 impose significant restrictions. In contrast, Democratic moves involve states with several neighboring
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counties, so the rearrangement of moves is easier and ¢ is therefore less impactful. Table 3 shows the largest
state-to-state aggregated movements prescribed by the model with no constraints on movements (i.e., § = 1)
for each of the polling sites, for both the Republican and Democratic candidates. We also report the number
of counties on the shared border between those states, and the numbers of pairs of counties along their shared
borders. This uncovers the discrepancy between the sensitivity of the solutions to 6. For the Republicans,
the movements are between states with relatively fewer counties along the shared border, thereby making

the constrained movements more impactful.
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Figure 4  Sensitivity of win probability increases on §

Candidate Polling Site Origin Destination Movements Origin Counties Destination Counties Pairs

Republican NS MA NH 41116 4 3 12
Republican HILL IL WI 73307 6 6 36
Republican RACE IL WI 93509 6 6 36
Democratic NS SC NC 61193 11 15 165
Democratic HILL IL WI 37721 6 6 36
Democratic RACE CA NV 39944 9 7 63

Table 3 Largest state-to-state prescribed movements with no constraints (i.e., § = 1) along with the number of

counties on the shared border.

6. Pre-Election Optimization Results

This section presents the results from our original submission on October 9, 2024, prior to the 2024 U.S.
presidential election. While we have supplemented our analysis in response to the insightful suggestions of
the review team and added a collection of results in Section 5 (which are also based only on pre-election
data), we retain our original results from the initial submission. We do so for two reasons. First, they
offer valuable insights that would have been relevant and informative before the election. Second, they
substantiate the findings since there were no election results at the time, thereby solidifying the quality of
the models. In these experiments, we solve (2) for each party with the number of relocation movements

bounded by 10,000, 15,000, 20,000, 25,000, 50,000, 100,000, 150,000, 200,000, and 250,000 voters. We
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used NS data at the time, using state-by-state predictions as of August 18, 2024. We also adopt an additional
post-optimization procedure to avoid excessively small relocation sizes by consolidating county-to-county
movements involving fewer than 1,000 people with other movements whenever possible; if the resulting
aggregation violates any upper bound constraints, our post-optimization routine simply reverts back to the
original solution. Finally, we use ¢ = 1.0 in these experiments, i.e., movements are bounded only by the

minimum number of votes in each county across all scenarios.

6.1. Prescribed Moving Strategy

The line plot in Figure 5 shows the increase in win probability that would be realized for each candidate as
a function of the number of people moving. Surprisingly, for 10,000 moves, the Republican candidate could
already realize a 1.06% increase in election win probability, and with 250,000 moves, an 18.92% increase.
For the Democratic candidate, changes are still substantial but less effective: 10,000 and 250,000 moves

increase the Democratic win probability by 0.34% and 9.8%, respectively.
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—— Democrats
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Figure 5 Movement patterns for 50,000 people for Republicans (top) and Democrats (bottom), and impact of the

number of people moved on the probability of winning for different relocation sizes (line plot).

To explain the cause of this disparity between the candidates for the current election, the maps in Figure 5

depict the prescribed relocation strategies for 50,000 people, for both the Republican (top) and the Democratic
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(bottom) candidates. We observe that 7.72% and 1.76% win probability increases could be attained for
the Republican and Democratic candidates in this setting, respectively. For the Republican candidate, the
model suggests large movements into New Hampshire (34,755) and Nevada (15,244). For the Democratic
candidate, the focus is on Pennsylvania (41,754), accompanied by relatively few moves into Nevada (4,072)
and North Carolina (4,173). In this scenario, the average weighted distances traveled by Republican and
Democratic supporters are a mere 57.31 and 33.94 miles, respectively.

We hypothesize that the difference in relocation strategy efficiency between the two parties is due to New
Hampshire’s small size and political leaning based on NS. With only four electoral votes and about 800,000
registered voters, a significant shift in New Hampshire’s outcome can be achieved with just a few relocations.
Specifically, relocating 35,000 Republican voters would increase their candidate’s win probability from
24.71% to 73.02%, and considering a total number of movements of 50,000, this still allows additional moves
into Nevada, boosting its win probability. In this plan, Republican voters are moving only from Massachusetts
and California, states where the Republican candidate is unlikely to win. In contrast, Democrats focus on
Pennsylvania, where the candidate has a 55.58% chance of winning. Pennsylvania’s larger population of 8.8
million registered voters requires more relocations — 42,000 voters only increase the Democratic candidate’s
win probability to 61.62%. The remaining 8,000 relocations are insufficient to significantly impact other
states, unlike the Republican candidate’s dual strategy with New Hampshire and Nevada.

These results are surprising for two reasons. First, they suggest that engaging less than 0.02% of the
U.S. voting population is sufficient to increase the Republican candidate’s chance of winning by almost 8%.
Second, with the same number of movements, the increase in the Democratic candidate’s chances of winning
do not exceed 2%. Asymmetries like this are not uncommon; for example, rain and snow hurt turnout, and
these fluctuations have historically been more beneficial for Republicans (Gomez et al. 2007).

Note that the long-term impact of the movement patterns suggested is complex to estimate. The 50,000-
person movement for Republican voters, for example, involves relocating individuals from Democratic
strongholds to purple states, potentially achieving a dual effect: flipping a purple state red and increasing the

Republican electoral vote count (after a new census) in future elections.

6.2. Impact of the recommended solutions

The study identified New Hampshire, Nevada, Pennsylvania and North Carolina as the most impactful targets
at this level of voter relocation. For the Republican candidate, the optimal movements placed voters into
New Hampshire and Nevada. For the Democratic candidate, the analysis recommended directing voters
into North Carolina, Nevada and Pennsylvania. Post-election results highlight the accuracy and significance
of our research. Four states—New Hampshire, Wisconsin, Nevada, and Alaska—were ultimately decided
by fewer than 50,000 votes (note that we prohibit movements into or out of Alaska). For the Republican

candidate, 100% of the suggested movements were into these four states. For the Democratic candidate,
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only 4,072 of the 50,000 movements were into Nevada, with the majority into Pennsylvania (41,754) and a
similar level into North Carolina (4,173).

For the Republican candidate, the focus was on movements into New Hampshire (34,755), where he
lost by approximately 22,000 votes. The shared border with Massachusetts makes the movement into New
Hampshire perhaps within the scope of reasonability and shows that the model indeed focused on a key state.
The prescribed solution also suggested movements into Nevada, where he won, which would have indeed
been a good safeguarding measure.

For the Democratic candidate, the largest focus was into Pennsylvania. This state was ultimately lost by
approximately 120,000 votes, but it was a critical state to the outcome of the election given its large number
of electoral votes (19). No other state with more electoral votes than Pennsylvania’s was decided by a smaller
margin. We note that it was well understood that Pennsylvania was a critical state, with a Brookings Institute
article from October 1, 2024 stating “In all probability, the winner of Pennsylvania will win the election”

(Hudak 2024).

7. Extensions
This study examines the U.S. presidential election, which employs a system with several unique characteris-
tics that significantly influenced our algorithmic developments. This section explores the limitations of our

modeling assumptions and potential extensions of our algorithms to broader contexts.

7.1. Turnout and Budget of Moved Voters

Model (2) assumes that all relocated voters will participate in the election and vote for the party’s candidate.
Our analysis focuses on a relatively modest number of voter movements, so identifying a sufficiently large
number of enthusiastic supporters—i.e., individuals who will reliably vote for a given party—is a plausible
assumption for both parties. Nevertheless, we can derive a more conservative variant of (2) parameterized
by a turnout parameter 3 € [0, 1], representing the fraction of relocated individuals who actually participate

in the election. This modification replaces equations (2b) and (2c) with the following:

ys,q:Z Eq.1,ci+B Z (xji—xij)| Vs€8,Vqez]

C,'ECS C_,'GC\CS

Yaq= D, fend|éqrc+B D, (xji—xi,)| VdeD,vgelz].

ci€Cy c;j€C\Cq
Similar adjustments apply to other variants where moved people may actually vote for a different party.
One can also extend the network flow model to account for a budget for movements, by replacing (2f) with
a knapsack constraint that accounts for moving costs and a unified budget to cover those expenses. Namely,

if we denote the cost of moving from county i to county j by ¢; ; and the unified budget by B, we would

Z Ci,jXi,j < B.

(i.j)eA

replace (2f) with the following:
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We note that the legal acceptability of the weighted version of the problem with a unified budget is

questionable, as a centrally sponsored, coordinated relocation of voters could be interpreted as vote buying.

7.2. Extension to Multiple Parties
The U.S. electoral system is dominated by two political parties. This aspect is important in our analysis
because it allowed us to restrict the simulation model to three entities: the two main parties and the aggregation
of the others. We discuss possible extensions of our models to handle scenarios where an arbitrary number
of parties must be incorporated into the formulations without aggregation.

The extension of our voter turnout simulation model to scenarios with multiple parties is straightfor-
ward. As for our Bayesian-style update model, we must consider all possibilities of vote transference. The

formulation below extends our model to this case, using the sum of the percentages as objective function.

min - > App, (3a)
pP1,pP2

StoVE= Y et D A D E = Y Ay Y €, Vgelz,peP (3b)

ceCs p'eP\{p} ceCs p'eP\{p} ceCys
Y+ M1 =wh) >y +w, Vgelzl,pe®P (3¢
1
- wh > 6 (3d)
q€(z]

dowh=1 (3e)
pPeEP

The constraints and variables in (3) have similar interpretation as in (1). The main differences is that we use
variables 4, ,, to indicate the percentage of votes from p; moved to p,. Moreover, binary variables wf;
indicate the winning party p in simulation ¢, and equality constraints (3e) assert that there exists exactly one
winner per simulation.

The network flow model focuses on a single party, so its extension to a multi-party scenario requires only
modifications in (2d), which must be consider all parties. More precisely, when solving the problem for

party p, (2d) is replaced with the following family of inequalities:

Vg +M(L=wig) 2 D &g peitwug  VueUNVgelzl,p' eP\{p}.

ci€Cy
Lastly, multi-party systems would allow interactions between voter movements that could lead to complex
outcomes, such as vote-splitting or coalition dynamics, which are absent in the two-party context. There
is no trivial extension of the proposed models that considers such aspects, and we believe that the topic is

interesting enough to deserve a dedicated study.



Cardonha, et al.: U.S. Election Sensitivity
20 Article submitted to INFORMS Journal on Computing

7.3. Alternative Electoral Systems

Several features distinguish the U.S. electoral process from other indirect election systems, such as the
winner-take-all mechanism. Our study specifically examines the interaction between a population-weighted
Electoral College and the winner-take-all assignment method used by nearly all states, a combination that
makes election outcomes highly sensitive to small fluctuations in voter turnout within swing states. Extending
our results to other electoral systems has technical challenges with potentially smaller impact.

Some electoral systems are inherently complex to model. For instance, the D’Hondt and Sainte-Lagué
methods, widely used in Europe, allocate seats using a scaling mechanism that adjusts each party’s “bid”
for its k-th seat. This bid is calculated as the number of votes received by the party divided by a decreasing
factor that depends on the number of seats the party has already secured. Specifically, the D’Hondt method
divides by 1,2, 3, ..., favoring larger parties, whereas the Sainte-Lagu€ method divides by 1,3, 5, . . ., offering
a relative advantage to smaller parties. In such systems, voter relocation alters these ratios, meaning that
solving our problem in this context would require ordering constraints to properly assign seats—a challenge
that typically leads to complex mixed-integer linear programming (MILP) formulations. Similar challenges
arise in quota-based systems such as the Largest Remainder Method (LRM), used in countries like Brazil,
Israel, and Argentina. Under LRM, parties receive seats based on a predefined quota, with any remaining
seats allocated in descending order of leftover votes. Modeling the impact of voter relocation in these systems
introduces additional constraints, further increasing computational complexity. Additionally, countries like
Ireland, Northern Ireland, Scotland, Australia, New Zealand, and India adopt variants of the Single Transfer-
able Vote (STV), in which voters rank candidates. Integrating such systems into a MILP-based framework
like ours presents significant difficulties, primarily due to the conditional vote reallocation mechanisms.

In addition to the technical challenges, the impact of voter relocation on alternative electoral systems
may not be as striking as those presented in our work. Specifically, the aforementioned electoral systems
primarily govern the allocation of seats, and modest voter relocation strategies are unlikely to yield anything

more than marginal shifts in expected win probabilities.

8. Conclusions
In this paper, we explore whether a small but strategic movement of people could meaningfully influence
the outcome of a U.S. presidential election. Specifically, we approach this question through an analytical
lens, leveraging predictive models and operations research methodologies. Although this idea has often been
dismissed as impractical, politicians have, in fact, called on people to relocate to vote in key elections (Yang
2020). By building on the structure of the electoral college and examining the proximity of swing states
to neighboring states with solid partisan majorities, we demonstrate that even modest population shifts can
significantly alter win probabilities.

However, these movements would require careful coordination. One could envision a grassroots effort

where motivated voters from critical border counties unite to push their preferred candidate over the finish
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line. Even more alarming is the prospect of a well-funded, malicious actor paying voters to relocate,
amplifying their political power in a targeted way. It is important to emphasize that the authors neither
endorse nor condone these relocation strategies; instead, we aim to shed light on how such planned efforts
could be exploited and their potentially profound impact on the democratic process.

Whether or not these tactics should be considered a violation of voting laws, or merit new legislative
measures to detect or prevent such collective actions, is beyond the scope of this paper. Nonetheless, it is an
issue that warrants further policy discussion and debate. We hope this work will inspire future research in

operations modeling and algorithms, contributing to more resilient and equitable election systems.
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