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John Deere & Company (Deere), one of the world’s leading producers of machinery, manufactures products composed of
various features, within which a customer may select one of a number of possible options. On any given Deere product
line, there may be tens of thousands of combinations of options (configurations) that are feasible. Maintaining such a large
number of configurations inflates overhead costs; consequently, Deere wishes to reduce the number of configurations from
their product lines without upsetting customers or sacrificing profits. In this paper, we provide a detailed explanation of
the marketing and operational methodology used, and tools built, to evaluate the potential for streamlining two product
lines at Deere. We illustrate our work with computational results from Deere, highlighting important customer behavior
characteristics that impact product line diversity. For the two very different studied product lines, a potential increase
in profit from 8% to 18% has been identified, possible through reducing the number of configurations by 20% to 50%
from present levels, while maintaining the current high customer service levels. Based on our analysis and the insights
it generated, Deere recently implemented a new product line strategy. We briefly detail this strategy, which has thus far
increased profits by tens of millions of dollars.
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1. Introduction
Deere & Company (Deere) manufactures equipment for
construction, commercial, and consumer applications, as
well as engines and power train components. As a major
player in many equipment markets, Deere maintains mul-
tiple product lines; within each line, there may be sev-
eral thousand, to several million, different product variants.
Variants are built by selecting for each feature available on
a machine (e.g., engine type, transmission, and axle) one of
a number of possible options (e.g., 200, 250, or 300 horse-
power (HP) for engines). Not all options are compatible; a
feasible combination of options is called a configuration.

Deere speculates that maintaining too many configura-
tions reduces profits, by elevating what Deere calls complex-
ity cost. This cost, over and above the inventory carrying
costs of each configuration, captures factors such as reduced
manufacturing efficiency, frequent line changeovers, and the
general overhead of maintaining documentation and sup-
port for a configuration. This definition is similar to that
given in Thonemann and Brandeau (2000, p. 1), where

complexity cost is “the cost of indirect functions at a com-
pany and its suppliers that are caused by component vari-
ety; complexity cost includes, for instance, the cost of
designing, testing, and documenting a component variant.”
In this paper, we describe the marketing and operational
methodology and tools we developed to reduce Deere’s
complexity costs by concentrating product line configura-
tions while maintaining high customer service, thus elevat-
ing overall profits. We illustrate our work with applications
to two lines at Deere; details of the products have been dis-
guised, but the lines differ in significant ways (e.g., costs,
profits, and sales), making them a diverse test bed for our
optimization algorithm.

A primary component in our algorithm is our customer
migration model, quantifying the behavior of Deere’s cus-
tomers: A customer may want a specific configuration, but
if his or her first choice is unavailable, he or she may
migrate to an alternative configuration that does not dif-
fer too greatly from the first choice. Using actual sales,
along with customer segmentations and part-worths utili-
ties provided by Deere, we probabilistically model every
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customer as individually identifying a set of acceptable
configurations, sorted in decreasing order of preference:
their migration list. When the top configuration on his/her
list is not available, a customer will buy the next avail-
able configuration. When no configuration is available, the
customer defects to a competitor.

Using each customer’s migration list, as well as costs
and profits for all feasible configurations (found via con-
straint programming; see Marriott and Stuckey 1998), we
build a mixed-integer program (MIP) to maximize Deere’s
profits within a product line. Application of our algorithm
provides: (i) a general method to determine which config-
urations are least profitable and thus may be candidates
for elimination; (ii) recommendations for how Deere can
significantly focus specific product lines; and (iii) identifi-
cation of the high-level drivers of product line efficiency.
Based on our results, Deere has instituted an incentive pro-
gram to steer customers toward a core subset of their prod-
uct lines, which has resulted in increased profit in line with
our predictions—tens of millions of dollars annually (see
§7 for details).

In §2, we begin with a review of the literature. In §3, we
give a high-level overview of our optimization algorithm,
including a description of how we generate and cost out all
feasible configurations for a product line. In §4, we detail
how we generate customer utilities and migration lists. The
development and solution of our MIP is related in §5. We
present results of the experiments on the Deere product
lines in §6, describe Deere’s actual implementation in §7,
and conclude by summarizing our work and findings in §8.

2. Literature Review
Reducing product line complexity is a common goal among
companies. For example, Raleigh (2003) describes how
Unilever uses its product logic framework to simplify its
global home and personal care product portfolio. Similarly,
Stalk and Webber (1993), Henkoff (1995), and Schiller
(1996) describe pruning of product lines in several other
industries. From a marketing perspective, there are often
fears that such a reduction may detract from brand image
or market share (Kahn 1995, Chong et al. 1998, Kekre and
Srinivasan 1990). Randall et al. (1998) discuss the dangers
of extending a product line. These latter concerns are in
keeping with findings that reducing the breadth of lines
and focusing resources on popular products (“favorites”)
may actually increase sales (see Quelch and Kenny 1994,
Broniarczyk et al. 1998, and Fisher et al. 1995). Our model
is consistent with both of these streams of thought: If a
customer finds a product that meets their needs (i.e., a
“favorite”), he or she will make a purchase; if such a prod-
uct is no longer part of the product line, they will not (and
market share will go down).

The motivation behind reducing product lines is often
cost containment; there is a long history of tying product
line complexity to increased costs. This has been done ana-
lytically by Hayes and Wheelright (1984), Abegglen and

Stalk (1985), and Kekre (1987), and empirically by Foster
and Gupta (1990), Anderson (1995), and Fisher and Ittner
(1999). Deere has spent considerable time prior to this
project establishing the linkage between variety and cost,
ultimately resulting in a proprietary function linking the
two, called the complexity cost.

Due to the ubiquitous and cross-functional nature of prod-
uct line optimization, interdisciplinary research has long
been advocated; Yano and Dobson (1998b) and Ramdas
(2003) provide an extensive literature survey, which we
briefly summarize. McBride and Zufryden (1988), Kohli
and Sukumar (1990), and Nair et al. (1995) use math pro-
grams to solve the product portfolio problem, but do not
include costs related to the breadth of the line, as this is
fixed. Kohli and Sukumar (1990) apply their method to data
from a real (but small) problem for telephone hand sets.
Green and Krieger (1985) and Dobson and Kalish (1988,
1993) present math-programming formulations and solu-
tion heuristics to the product selection and pricing problem,
which do include product line breadth costs. More gener-
ally, De Groote (1994), Raman and Chhajed (1995), and
Yano and Dobson (1998a) use iterative solution procedures
to determine attributes, prices, and production processes,
each having a specific fixed cost. Morgan et al. (2001) solve
a similar problem using a mathematical program. None of
these algorithms are suitable for problems anywhere near
the size of Deere’s because their models are not likely to
scale well. Likewise, none of these works include applica-
tions to any actual industrial data. Recently, there have been
alternative formulations: Chen et al. (1998) and Chen and
Hausman (2000) tested on very small, nonindustrial data.

Thus, while the problem of determining optimal prod-
uct lines has a long and important place within the mar-
keting and operations literatures, actual industrial scale
applications of analytical techniques to optimize product
lines based on detailed company data have never been per-
formed. We provide these for the first time.

3. Solution Overview
Our optimization procedure is comprised of three main
steps: (1) build and cost out feasible configurations, (2) cre-
ate migration lists, and (3) optimize using a MIP. We out-
line these steps here and discuss them in greater detail in
the subsequent sections.

Before selecting which configurations to include in a
product line, we need to know which configurations can
feasibly be built, along with their corresponding unit costs
and profits. Generating this data is no trivial task, as
Deere’s machines can have as many as 23 features (engines,
transmissions, attachments) and multiple options within
each feature (tires may have 25 options). In principle, this
could create millions of possible configurations. In practice,
however, many combinations of options are not physically
possible; for example, certain transmissions cannot be used
with certain axles. Consequently, every product line has a
unique set of configuration rules that determine how the
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line’s options can be combined. These rules typically take
the form “if A is true then B must be true,” where A and B
may be complicated sequences of conjunctions, negations,
and disjunctions. The two product lines we considered at
Deere, referred to as the Gold Line and Silver Line, have
39 and 68 combination rules, respectively. Each line also
has pricing rules (35 for the Gold Line and 212 for the
Silver Line), which determine the total cost of a machine
given a choice of options. Once the price and total cost for
a specific configuration are known, its profit contribution
can be computed.

We use Eclipse, a constraint-programming (CP) language
(Tsang 1993, Mariott and Stuckey 1998) to build, cost out,
and find the profit for all of the valid configurations, lever-
aging CP’s inherent expressive power and intelligent search
mechanisms. After all necessary constraints are added to
the CP model, the solver outputs all feasible configurations
as well as their prices. We provide examples of configura-
tion and pricing rules in Appendix A.

Our next step is to model customer behavior; we require
a construct to represent how customers evaluate different
configuration choices that will also lend itself well to our
MIP formulation. To accomplish this task, we devised the
concept of a customer migration list, which can be thought
of as a personal ranking of configurations each customer
carries around in his or her mind. In §4, we discuss the
construction of customer migration lists based on marketing
data provided by Deere. Once we have generated the all
of the possible configurations, or the solution space of our
problem, and calculated our customer migration lists, or
the customer data, we combine these in a MIP with the
objective of maximizing profit. We describe the formulation
of this program, including how it uses the migration list
data, in §5.

4. The Customer Migration Model
When Deere approached us, they did not have a spe-
cific customer behavior model in mind, but they did know
which product features were important and what types of
trade-offs customers were likely to make. We were tasked
with giving structure to this knowledge; we were to pro-
vide a tool to harness Deere’s understanding, incorporate
customer purchase data (over 15,000 data points), and be
well suited for use by our optimization engine. We were
not tasked with evaluating customer behavior, for example,
by estimating utility values; rather, we were to provide a
framework for Deere to use, now and in the future, based
on their understanding of customer behavior.

To accomplish this task, we first sought a high-level view
of how a typical Deere customer behaves. We posited the
following model: If provided with the entire selection of
Deere products, the customer would rank them in a mental
list in order of preference, based on the different options
each configuration possessed. If money was no object, the
customer would purchase the configuration at the top of

their list, if available. If it was too expensive or not avail-
able, the customer would move down their list until they
found an available and affordable machine. At some point,
if too many of their top choices were either unavailable or
exceeded their budget, a customer would give up and leave
the Deere dealer without making a purchase.

This idea formed the basis for our construct capturing
customer behavior: the customer migration list. To opera-
tionalize this model, guided by Deere’s marketing research,
we generated a set of randomized migration lists for each
product line—one list for each purchase from Deere’s sales
history. The lists are generated prior to solving our MIP to
increase solution speed and allow study of the lists in their
own right. This also facilitates experimental replication and
sensitivity analysis (see §6).

What remains is to explain how we model customers’
formation of migration lists, i.e., which configurations they
will consider (their potential configurations), how they
evaluate these potential configurations and decide what is
“too much to pay,” and at what point give up and leave. In
§4.1, we discuss how (and why) we probabilistically place
customers into different segments, how we then specify key
parameter values (contingent on segment), and determine
the customer’s potential configurations—those configura-
tions that could possibly satisfy what the customer wants.
These are then ranked, according to part-worths utilities, as
described in §4.2. The final migration list is formed accord-
ing to these rankings, with probabilistic cut-offs based on
price and utility. This is described, along with a complete
summary of our generation algorithm, in §4.3. We discuss
extensions of our migration list algorithm in §4.4.

Throughout, when discussing the generation of the
migration list of an individual customer, C0 will denote the
configuration this customer purchased, with price P0, and
summed part-worths utilities equal to U0.

4.1. Segmenting Customers and Determining
Parameter Values

Our first step was to identify customer segments that accu-
rately capture market behavior. Different segments corre-
spond, for example, to private users and commercial users
in different industries. While this is not mandatory for our
algorithm, Deere felt that there were a number of distinct,
but overlapping customer segments for their products—
three for the Gold Line and four for the Silver Line.
Because different segments make purchases from the same,
single-product line, they must be considered simultane-
ously. Below we define the parameters that place customers
into segments and the parameters that determine potential
configurations for customers within each segment.

The most direct way to place a customer into a segment
is to match the options on his or her purchased configu-
ration to a segment likely to purchase it. If options on a
configuration are attractive to different segments, then the
configuration will have to be assigned in some probabilis-
tic manner. Moreover, for those configurations that are not
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Table 1. Segments for the customer segmentation
example.

Segment cond q s

1 Engine= 450 HP 0�9 0�2
2 Axle= 2WD and transmission= SST 0�75 0�55
3 Stereo= six-disc CD 0�2 0�25

(probabilistically) assigned, there will have to be a pro-
cedure to place these into segments as well. These ideas
are formalized in the two segmentation parameters below,
which are defined for each segment. We then present an
illustrative example.

(cond, q): Based on whether certain options denoted by
the logical condition cond (e.g., “engine is 400 HP and
axle is 4WD”) are present in C0, the customer is placed in
the segment with probability q (the proportion of purchases
with these options from that segment). Multiple segments
for which C0 satisfies cond are considered sequentially,
until the customer is assigned. Should a customer fail to be
placed, he or she is assigned according to s, below:
s: This is the percentage of unit sales that come from the

segment. All customers not assigned according to the rule
above are randomly assigned based on these probabilities.
The sum of s values over all segments is thus equal to one.

Customer Segmentation Example. Assume that there
are three customer segments with the parameters in Table 1.

Assume that configuration C has a 450 HP engine, 4WD
transmission, and a six-disc CD stereo. It will be placed in
segment 1 with 90% probability. If this does not happen,
segment 2 will be bypassed, as C is not 2WD. Because C
has a six-disc stereo, it will then be tried in segment 3, and
assigned there with a 20% probability. If C is not being
assigned after these attempts, it will be assigned to one of
the three segments with probabilities equal to 20%, 55%,
and 25%, respectively.

After placing the customer into a segment, we assign
values to five key parameters—proxies for the critical ele-
ments of customer behavior.
c: This is the commonality factor, the minimum num-

ber of options a configuration must have in common with
C0 for the customer to be willing to purchase it. If c = 0,
all machines may be considered; as c grows, fewer devi-
ations from C0 are allowed, until (when c is maximal) no
configuration except C0 will be considered.
� = 
f1� f2� � � � � fk�: This is a list (possibly empty) of

fixed features. Any feature that appears in this set must not
have its option changed from that on C0.
r : This models customers’ reservation prices. A cus-

tomer who purchased a machine with price P0 has his
or her reservation price drawn uniformly from the inter-
val �P0� �1+ r�P0�. Customers are willing to buy machines
costing at most their reservation price.
u: Thismodels customers’ reservationutilities.Analogous

to r , a customer who purchased a machine with summed
part-worths utilities equal to U0 has his or her reservation

utility drawn uniformly from the interval ��1− u�U0�U0�.
Customers are willing to buy machines with summed part-
worths utilities equal to no less than their reservation utility.
�: This is the first-choice probability. With probabil-

ity �, C0 will be placed first on the customer’s migration
list, independent of the utilities generated by the model.
With probability 1−�, the position of C0 on the list will be
determined by its utility. If �= 0, we have a pure choice
model, and if � = 1, customers always prefer their initial
purchase.

Because these behaviors vary across segments, they are
defined for each segment. Moreover, to capture heterogene-
ity within segments, many of the parameters are either
probabilities themselves or are selected probabilistically.
Taken together, these five parameters determine a cus-
tomer’s potential configurations; they describe how closely
the elements of the migration list will hew to the purchased
configuration, C0, that spawned it. The first two, c and � ,
determine the size of the search space a customer is will-
ing to consider in the neighborhood of C0. The next two, u
and r , determine how flexible the customer is willing to be
within this search space, with respect to price and summed
part-worths utilities of configuration. The final parameter,
�, controls whether or not C0 will be forced to the top of
the migration list. Values for each of these parameters, by
segment, were determined by Deere.

After a customer is placed into a segment and the
above parameters are established, we use constraint pro-
gramming to determine the customer’s set of potential
configurations—those configurations having at least c fea-
tures in common with C0, including all of those on list � ,
and price no more than the customer’s reservation price.
The next step is to determine how the customer will evalu-
ate these configurations, i.e., how he or she will rank them
on his or her migration list.

4.2. Using Option Utilities to Rank Configurations

To model customers’ ranking of configurations, we utilize
part-worths utilities; in a standard application of part-worth
utilities, the (static) value of all of the options on a con-
figuration would be summed to give the total value of the
configuration. We randomize this procedure to allow for
greater heterogeneity between customers within the same
segment. This randomization is crucial to our algorithm;
without it, customers in the same segment who purchased
the same configuration would have identical, or nearly iden-
tical, migration lists. They could differ only in where they
end, due to reservation price, and whether C0 was first, if
� �= 
0�1�.

Within each feature (for example, engine), we initially
assign values determined by Deere, by segment, to all avail-
able options (for example, 200 HP, 400 HP). This also
defines the feature’s mean relative importance—the differ-
ence between the largest and smallest utility value for any
of its options—which captures the feature’s baseline impor-
tance to customers in the segment. For each customer, we
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then randomly perturb these mean relative importance val-
ues using deviation parameters, again estimated by Deere.
This captures the fact that individual customers from the
same segment may vary considerably in how they value
different features. We could have defined subsegments to
capture this phenomenon, but given the data available (het-
erogeneity is known to be present but is hard to quantify),
we preferred the current method.

To perturb relative importance values, our algorithm ran-
domly selects a fixed number of features and rescales their
relative importances using a factor uniformly drawn from
the feature’s mean relative importance plus or minus its
deviation parameter. We then rescale the relative impor-
tances of those features not selected to keep the sum of
all the relative importance parameters constant. Next, the
option utilities within each feature are rescaled by the ratio
of the new relative importance value to the old. Only then
do we sum the individual part-worths utilities, yielding the
total value for each configuration. This operation is done
uniquely for all customers within the segment. We formal-
ize this procedure below and then provide an example.

First, we randomly select n features, where n is a fixed
parameter for all customers, in all segments. Next, we ran-
domly generate a relative importance for each of the n fea-
tures using a uniform distribution over the feature’s mean
relative importance, plus or minus its deviation. Then, we
determine the relative importance of the remaining features
by scaling them such that the total sum of relative impor-
tances has the same value as it had before the perturbation
step. Finally, we rescale all option utilities based on the
new relative importances of their features.

Utility Calculation Example. We consider a simpli-
fied machine with three features—engine, transmission, and
axle. For a given customer segment, Table 2 first presents
coded options available in each feature, with their corre-
sponding initial utilities. The relative importance of the
three features �mean�deviation� are �21�5�, �20�3�, and
�15�4�, respectively.

The sum of the mean relative importances is 56. Assume
that n= 1 and transmission was selected to have its relative

Table 2. Initial and perturbed utilities for the utility cal-
culation example.

Engine Transmission Axle

Option Utility Option Utility Option Utility

Initial utilities
200 HP 0 MPT 0 AWD 0
250 HP 7 HWT 10 NWD 15
300 HP 14 LBT 20
350 HP 21

Perturbed utilities
200 HP 0 MRT 0 AWD 0
250 HP 6�61 HWT 11 NWD 14�17
300 HP 13�22 LBT 22
350 HP 19�83

importance changed to 22 (Steps 1 and 2). Thus, the new
relative importances of engine and axle have to sum to
34 (=56− 22); the relative importance of engine becomes
19.83 (=21/�21 + 15�× 34), and the relative importance
of axle becomes 14.17 (=15/�21 + 15� × 34) (Step 3).
We then rescale the option utilities by new RI of feature/
old RI of feature (Step 4). The lower part of Table 2 shows
the results.

4.3. Formation of the Final Migration List

After we have obtained all of a customer’s potential config-
urations (as described at the end of §4.1) and determined
their part-worths utilities (as outlined in §4.2), we form the
customer’s final migration list. We list all of the potential
configurations in decreasing order of their summed part-
worths utilities, stopping when we reach a configuration
with summed utility less than the customer’s reservation
utility. More formally, for every customer in the sales his-
tory, we generate a migration list as follows (recall that C0

is the configuration bought by the customer):
1. Assign the customer to a segment as described in

§4.1; this determines c, � , and �;
2. Determine reservation price and reservation utility for

the customer, as defined in §4.1;
3. Determine the customer’s potential configuration

list—all configurations that have at least c features in com-
mon with C0, including all those on list � , with price no
more than the reservation price. Call this list L;

4. Determine the option utility values for the customer
as in §4.2;

5. Sort L in decreasing order of summed part-worths
utilities, truncating the list when a configuration has utility
value less than the reservation utility;

6. Use the parameter � to determine whether to move
C0 to the top of L;

7. Optionally, truncate L, ensuring that C0 remains in L
after truncation (in accordance with wishes of Deere);

8. Output the resulting list L.

4.4. Summary and Extensions

Our algorithm generates a set of lists; each list models an
individual customer’s choices, while in aggregate the lists
capture behavior over segments. Customer heterogeneity is
captured in two ways: based on their initial purchases, dif-
ferent customers consider different potential configurations.
Within these potential configurations, due to our random-
ization of features’ relative importances, customers may
value configurations differently.

We can use lists generated from different parameter set-
tings to explore the sensitivity of product lines to different
beliefs about customer behavior (as in §6.5). If lists are
generated via a different method, such as expert surveys,
these could be used in our MIP, enabling us to compare the
solutions to tune customer behavior parameters. In addition,
we can optimize different random replications of the same
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customer behavior parameters to estimate the variation of
the optimal product portfolio for the same parameter set (as
in §6.3).

Our list generation algorithm could be extended to
include machines from Deere’s competitors, possibly with a
utility for brand equity, modeling a richer competitive envi-
ronment. Likewise, we could allow customers to make mul-
tiple purchases, include “lost” customers who were unable
to make purchases due to factors at the dealers, and/or cus-
tomers who did not find their first choice, but did buy a
different machine. In the first case, we could generate mul-
tiple identical (or correlated) lists for selected customers,
based on historical purchase data. To deal with “lost” cus-
tomers, we could generate an additional set of customers
and their initial choices, possibly using the s parameters.
Finally, we could assign an explicit probability that any
customer’s purchase was not actually his or her first choice
(although the � parameter captures this to some extent).
None of these actions was used for the project reported.

One extension not readily made is to include negotia-
tions with customers, as all prices are taken as exogenous.
Endogenous pricing raises significant and complex model-
ing issues outside of the scope of this project, but if data
on actual sales prices were made available, profits could be
rescaled if discounts were significant. In general, if Deere
were to provide us with more detailed data, our algorithm
should improve. Additional information which would be
most helpful would focus on customer migration behavior,
for example: How long should customer migration lists
be? Should these lengths change according to segment?
How elastic are reservation prices and utilities (and utilities
in general)? How do incentives affect migration behavior
and customer impressions? Through their implementation
(see §7), Deere is gathering some of this data now.

5. The Optimization Model
In this section, we describe the MIP model that selects the
configurations to build in order to maximize total profit.
Although it is in theory potentially of exponential complex-
ity (it enumerates the search space), our MIP can efficiently
solve Deere’s base problem (5,000–15,000 customers and
3,500–24,000 configurations) using commercially available
solvers, and also allows the incorporation of additional
managerial constraints. Examples of these include limits
on the number of configurations built, a minimum service
level, and specifying configurations that must be included
(or dropped). The performance of our algorithm with some
of these constraints is shown in §6.6.

The input for the optimization problem consists of the
following data:
• T : set of all relevant configurations, T = 
1�2� � � � � t�.
• C: set of all customers.
• Li: ordered set of configurations in the migration list

of customer i ∀ i ∈C.
• Nj : set of customers whose migration lists contain j:

Nj = 
i ∈C � j ∈ Li�.

• pj : profit (price − cost) of configuration j ∈ T .
Our model uses two sets of binary decision variables:
• yj = 1 if configuration j is produced, 0 otherwise

(j ∈ T ).
• xij = 1 if customer i buys configuration j , 0 otherwise

(i ∈ C, j ∈ Li). Determining the yj values likewise deter-
mines the xij values, given a set of migration lists.

Our model uses the following constraints:

xij � yj ∀ j ∈ T � i ∈Nj� (1)∑
k after j in Li

xik + yj � 1 ∀ j ∈ T � i ∈Nj� (2)

yj ∈ 
0�1� ∀ j ∈ T � (3)

xij ∈ 
0�1� ∀ i ∈C� j ∈ Li� (4)

Constraints (1) prescribe that only available configurations
can be purchased, and Constraints (2) that configurations
that appear earlier in a migration list of a customer have
higher priority. Note that Constraints (2) also ensure that
every customer buys at most one configuration.

Deere wishes to maximize the following objective, which
is similar to many in the literature (for example, it is a more
detailed version of that in Dobson and Kalish 1988, 1993):

max shareholder value added (SVA)

=∑
j∈T

(
�pj −K�

∑
i∈Nj

xij

)
− a− overhead� (5)

Overhead is the sum of fixed costs, and the constant K
captures the inventory and capital equipment costs incurred
for each unit sold. Reducing the number of configurations
in the product line will not reduce K; only selling fewer
units will. Thus, K differs from complexity cost, a, which
does depend on the number of configurations in the product
line via (6)–(10) below.

The term a in (5) is our piecewise-linear approxima-
tion of Deere’s complexity cost function. Use of this cost
form dates from before the initiation of our project; its
determination and/or validation was outside of the scope of
our work. We discuss the use of an alternative, and poten-
tially more accurate, complexity cost function in Equations
(11)–(13).

To define a, we need an extra set of variables and con-
straints. Let B be the set of grid points we choose to
approximate the complexity function. For every k ∈ B, let
nk and ok be, respectively, the number of configurations
and Deere’s complexity cost corresponding to the kth grid
point. Finally, let $k be real-valued variables that determine
a convex combination of two consecutive grid points. Then,
using SOS2, a device available in most commercial MIP
solvers that ensures at most two of its arguments assume
positive values (and if two arguments are positive they are
consecutive), we have∑
j∈T

yj =
∑
k∈B

nk$k� (6)

a=∑
k∈B

ok$k� (7)
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∑
k∈B

$k = 1� (8)

SOS2�$1� � � � � $�B��� (9)

$k ∈ �0�1� ∀k ∈ B� (10)

An alternative formulation of a complexity cost could use
a step function over B. Let zi (i ∈ 
1� � � � � �B��) be a binary
variable indicating whether the number of configurations
is at least ni. Setting ozero = 0, we modify the previous
objective function by substituting

∑�B�−1
i=1 �oi − oi−1�zi for a

in (5). To complete this new formulation, we drop (6)–(10)
and include (11)–(13):

∑
j∈T

yj �
�B�−1∑
i=1

�ni+1 − ni�zi + n1� (11)

zi+1 � zi ∀ i ∈ 
1� � � � � �B� − 2�� (12)

zi ∈ 
0�1� ∀ i ∈ 
1� � � � � �B� − 1�� (13)

We illustrate the performance of our algorithm under this
objective function in §6.6.

We conclude this section by noting that while our ini-
tial formulation presented satisfactory computational per-
formance for Deere’s problems, solving larger problems
may require adding additional constraints (cuts) to the MIP
given by (1)–(4). A discussion of some potential constraints
is given in Yunes (2006).

6. Computational Results
In this section, we report computational results from two
product lines at Deere, henceforth referred to as the Gold
Line and the Silver Line. The fundamental characteristics
of these lines can be gleaned from Tables 3–5: the Silver
Line is a higher-cost, higher-margin product line with fewer
sales and a larger number of features and feasible config-
urations. Not surprisingly, the Silver Line’s customer base
is also more heterogeneous than the Gold Line’s—the Sil-
ver Line has more segments, and the differences between
how segments value features is greater. In addition, within
segments many Silver Line features are of approximately
the same importance to customers. This leads to larger and
more variable migration lists, seen in Table 4, which sig-
nificantly affects optimization.

We first report in §6.1 instance sizes and representative
generation times for the feasible configurations and migra-
tion lists. Sections 6.2 to 6.6 detail solutions of particular

Table 3. Features, feasible configurations, and genera-
tion times.

Feasible Typical generation
Features configurations time (seconds)

Gold 9 3,696 2
Silver 23 24,144 60

Table 4. Customers, typical migration lists, and gener-
ation times.

Typical mean/std. dev. Typical generation
Customers of list size time (hours)

Gold 15,844 8.18/5.81 0�8
Silver 5,278 606.18/191.86 28�5

instances of the problems introduced in §6.1. Section 6.7
summarizes our findings. All execution times are expressed
as CPU time of a Pentium 4, 2.3 GHz, with 2 GB of RAM.
Execution parameters have been disguised to maintain pro-
prietary information.

6.1. Generating Feasible Configurations and
Migration Lists

The first step in the optimization is to determine the number
of configurations in a product line, as described in §3. As
seen in Table 3, in all cases configuration generation was
quite swift.

The next step is to generate the migration lists, as out-
lined in §4. The commonality factor, c, plays a significant
role in this process by limiting potential configurations:
a smaller c allows a customer to vary more features, or
be more flexible with respect to what he or she will buy,
reducing the weight the algorithm places on C0. We allow
customers on the Gold Line and the Silver Line to vary
two and three features, respectively, from their C0 (we
experimented with this; see §6.5). In addition to making
customers closer to their purchases, thus preserving hetero-
geneity, these restrictions had the practical effect of keeping
list-generation times manageable, as seen in Table 4. Nev-
ertheless, list generation is time consuming, but because
the lists may be generated off-line and stored, this does not
adversely impact the performance of the algorithm. More-
over, if new customers needed to be added to an extant set
of lists, their list could simply be appended to the older set,
as long as the problem parameters were consistent.

6.2. Single-Instance Optimization

Initially, for both the Gold Line and the Silver Line, cus-
tomer migration lists were truncated to length at most four
(we experimented with this later; see §6.5). This limitation
made customers more selective and reduced solution times
(typically to a few hours). The majority of this time was
spent making incremental improvements or verifying opti-
mality. In all instances, the algorithm found an optimal or
near-optimal solution (true gap within 0.5%) in under an
hour.

As shown in Table 5, reducing product lines can lead
to a significant increase in optimal expected profit, listed
in millions of dollars, as compared to the initial profit,
of Deere’s original product portfolio. Table 5 also reports
the number of configurations sold by Deere in the initial
portfolio (see the column “Initial configs.”). This does not
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Table 5. Optimal solutions for the Gold Line and the Silver Line.

Initial Optimal Profit Service Initial Optimal Time
profit profit ratio level configs. configs. (hours)

Gold 40�180 47�627 1�1853 96�30 698 282 1�62
Silver 292�720 316�600 1�0816 99�96 816 539 2�18

include those configurations produced, but not sold. Our
solutions reduce the number of configurations even below
these levels, but our service level, defined as (1−number of
customers lost/total number of customers), remains high:
96% on the Gold Line and virtually 100% on the Silver
Line. Moreover, if the migration lists of customers who
defect from the system are extended to their untruncated
length without reoptimization, the actual service levels (and
profits) would increase. Note that the solutions in Table 5
are to single instances, and as such show the potential for
improvement. Whether or not a single portfolio can be con-
structed to perform this well across different instances is a
different question. This will be explored in §6.4.

An important measure of customer satisfaction is the per-
centage of customers who found their “favorite” product,
i.e., who purchased machines at the top of their migration
list. Table 6 shows that in both instances, at least 76% of
the customers had either their first or second choice as part
of the product line, and well over 90% had one of their top
three. Customers are more focused around their top choices
for the Gold Line than for the Silver Line; this is a mani-
festation of the greater customer heterogeneity in the Silver
Line. We will see it repeated in later experiments.

6.3. Replicate Experiments

Recognizing that the solution to a single instance would
typically not be sufficient to construct an effective prod-
uct portfolio, we solve replicate instances with identical
parameter settings to identify common characteristics of
optimal portfolios. Each instance uses the same parameter
settings, but due to our randomization results in a differ-
ent set of migration lists, or a different set of “customers.”
As with all sampling-based optimization, generating addi-
tional replications would provide additional data on effec-
tive portfolios; nevertheless, after generating 10 instances
for the Gold Line and the Silver Line, some fundamental
properties become apparent. Using these properties, in §6.4
we will explore different ways of building good product
portfolios.

Table 6. Percentage of sales per position
in the migration list.

Customers buying (%)

1st 2nd 3rd 4th

Gold 43�64 40�32 9�54 2�78
Silver 31�14 44�69 15�57 8�56

Table 7 reports the solution of 10 instances for the Gold
Line. These 10 instances’ optimal configurations vary by
less than 10%, between 274 and 295, and the ratios of
optimal profit to Deere’s solution are even closer, differing
by less than 0.01. Likewise, running times were in general
similar, with one outlier. (This was instance 2, which also
has the lowest profit and largest number of configurations,
likely due to lists that were unusually disjoint.) Overall, this
table paints a relatively consistent high-level picture of the
optimal product line, particularly with respect to breadth
and profit. Looking at the 10 solutions in detail though,
yields a slightly different picture.

In Figure 1, we display a histogram of the number of
appearances of individual configurations in the 10 optimal
solutions, where for reasons of scale we show only the
612 configurations that appear at least once among these
10 instances of the problem. From the figure, we can iden-
tify the “core” of the optimal product line, the 103 con-
figurations that appear in every optimal solution. On the
other end of the spectrum, there are 245 configurations that
appear only once or twice—these are configurations that fill
out a portfolio, and likely are substitutes for each other. In
between are the configurations that appear more frequently,
but are not absolutely critical. We will see in §6.4 that this
relatively large core (over 35% of any instance’s optimal
portfolio) implies that there are many different ways of
constructing a good portfolio for the Gold Line—as long
as Deere gets the core right, they will do quite well. The
Silver Line is more challenging.

We show similar results for the Silver Line in Table 8
and Figure 2. Looking first at Table 8, the Silver Line solu-
tions are again largely consistent; there is one outlier with
respect to the optimal number of configurations—instance
1 has 539, well below the others, this time likely due to
less disjoint migration lists—but the ratios of optimal profit
are nearly identical, varying no more than 0.003. Running
times did show some variation, but were reasonable in all
cases.

Despite this consistency, the frequency histogram gen-
erated by the Silver Line experiments is qualitatively dif-
ferent from that of the Gold Line. As seen in Figure 2,
again showing only the 2,208 configurations that appear at
least once, there is a much smaller “core” to the product
line—94 configurations, or roughly one sixth of an opti-
mal product line, appear in at least nine of the optimal
solutions. In contrast to this, 1,042 configurations, almost
twice a product line, appear only once. There are two fac-
tors driving this dispersion: the first is the heterogeneous
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Table 7. Optimal solutions for 10 instances of the Gold Line.

Choice %
Profit Service level % Opt. Time

Instance ratio trunc. 4/nontrunc. configs. (hours) 1st 2nd 3rd 4th

1 1.1853 96.30/97.08 282 1.62 43.64 40.32 9�54 2.78
2 1.1790 96.01/97.07 295 7.45 41.85 39.16 12�19 2.81
3 1.1866 96.52/97.13 283 0.63 43.45 41.23 9�11 2.73
4 1.1848 96.50/97.16 283 0.74 42.90 41.17 10�10 2.32
5 1.1855 96.55/97.26 291 1.05 45.32 37.57 10�91 2.76
6 1.1848 96.28/97.08 287 0.83 45.13 34.39 12�96 3.79
7 1.1847 96.23/97.00 279 0.94 42.79 40.63 9�81 2.99
8 1.1855 96.50/97.30 288 0.71 45.36 36.35 12�08 2.71
9 1.1871 96.01/96.74 280 0.84 43.81 37.74 11�05 3.41

10 1.1850 96.30/97.22 288 1.28 46.82 34.47 12�38 2.63

Silver Line customer base, as described in §6. The sec-
ond factor is the (virtually) 100% service level in all 10
Silver Line instances; due to the larger margins for these
machines, even customers whose preferences make them
outliers are being served. (By comparison, service levels
are typically 96%–97% on the Gold Line.) Satisfying these
outliers is expensive, but worthwhile, on the Silver Line due
to higher profit margins. This combination of heterogeneity
and profitability leads our algorithm to make less dramatic
reductions in the number of configurations on the Silver
Line as compared to the Gold Line, and thus our algorithm
increases profits on the Silver Line by 8% as compared to
18% on the Gold Line. Thus, high margins combine with
customer heterogeneity to broaden product lines.

The combination of a heterogeneous customer base and
very high service level also increases the percentage of cus-
tomers served with lower choices in their migration lists:
the model forces more of them to accept substitute config-
urations. Whether such substitution is likely within a cus-
tomer base, and what strategies may make such substitution
more likely, is a question Deere (or any similar company)
must study very closely. A salient question thus becomes
whether our algorithm can ascertain whether such substitu-
tion is likely. We will see this in the next section.

Figure 1. Histogram of Gold Line configuration fre-
quency in optimal solutions from Table 7.
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6.4. Constructing Good Product Portfolios

Our ultimate goal is to find a small set of configurations
that are highly profitable, i.e., that appeal to the major-
ity of the customer base. We call this a good portfolio.
Based on the results of the previous section, in particular,
the relatively large core of the Gold Line as compared to
the Silver Line, we would expect constructing a good Gold
Line portfolio to be easier than constructing a good Silver
Line portfolio. To explore this, we tested two methods of
constructing portfolios. In the first, we simply tested four
of the optimal portfolios for the Gold Line and the Silver
Line on 10 additional randomly generated instances. The
performance of this method is reported in the first two rows
of Table 9.

We see from the table that this provides good perfor-
mance for the Gold Line, but the Silver Line is not broad
enough; its service level has declined dramatically. Note
that the performance for the Silver Line rebounds when we
use nontruncated lists—(virtually) all of the customers do
want machines in the portfolios, but these machines are not
among their top four choices. This is a manifestation of
the fact that Silver Line customers place similar weights on
different features, so our perturbation of features’ impor-
tances can dramatically reshuffle lists. This implies that
Deere must be careful when trying to reduce the Silver
Line—having features that customers value roughly equiv-
alently means that customers may be willing to substitute,
but customer heterogeneity implies that there may be a sig-
nificant amount of substitution, and this may come at a
price. We will see how Deere acted on this insight in §7.

Given that a single optimal Silver Line portfolio may be
too narrow, we tried the more conservative solution of tak-
ing every configuration that appeared in one of the optimal
solutions, or the union of the elements on the histograms
of Figures 1 and 2. As seen in the last two rows of Table 9,
this is still quite good for the Gold Line, although less than
using a single instance, and better (but still not satisfac-
tory) for the Silver Line, at least for the truncated lists.
This reinforces the message that constructing a good port-
folio for the Gold Line is relatively easy, due to this line’s
large core, but for the Silver Line it is more difficult, due
to customer heterogeneity and high optimal service levels.
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Table 8. Optimal solutions for 10 instances of the Silver Line.

Choice (%)
Profit Service level (%) Opt. Time

Instance ratio trunc. 4/nontrunc. configs. (hours) 1st 2nd 3rd 4th

1 1.0816 99.96/99.96 539 2.18 31.14 44.69 15.57 8�56
2 1.0800 100/100 580 1.39 29.30 43.72 17.60 9�38
3 1.0817 100/100 570 1.04 29.12 44.00 18.39 8�49
4 1.0827 100/100 563 0.79 29.30 44.67 17.08 8�94
5 1.0803 100/100 582 0.82 29.46 46.51 15.86 8�18
6 1.0796 100/100 583 5.14 29.23 44.80 16.63 9�34
7 1.0800 100/100 575 1.01 30.44 43.80 16.52 9�24
8 1.0807 100/100 578 5.31 29.30 46.94 15.44 8�32
9 1.0820 100/100 582 0.90 26.86 45.05 17.96 10�13

10 1.0809 100/100 569 1.40 29.15 42.28 19.21 9�36

From Table 9, as well as the results in §6.3, it appears
that for the Gold Line a good portfolio can be constructed
with approximately 300 configurations. The number of con-
figurations in a good Silver Line is less clear. To try to
establish this, we used weighted sampling from Table 2 to
construct four different Silver Line portfolios, and then var-
ied each portfolio’s size. We “offered” these portfolios to
a single instance of the Silver Line problem, plotting the
profit of each of portfolio as a function of its size. Figure 3
shows the results of this experiment; a good target port-
folio size for the Silver Line appears to be around 1,400
configurations, and 1,200, twice a single optimal portfolio,
appears to be a minimum.

Figure 2. Histogram of Silver Line configuration fre-
quency in optimal solutions from Table 8.
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6.5. Sensitivity Analysis

In this section, we conduct experiments varying parameters
affecting: (i) customers’ potential configurations or their
search space (§6.5.1), and (ii) how customers evaluate these
potential configurations (§6.5.2). In the former case, we
vary c, the number of features a customer may vary around
C0; the truncation point of the migration lists (default was
four); and u and r , which affect reservation prices and
utilities. With respect to how customers evaluate configu-
rations, we experimented with changing n, the number of
features having their relative importance scaled; the magni-
tude of these variations; and finally �, which captures how
true customers are to their purchases. All experiments were
conducted on instances of the Gold Line from Table 7.

6.5.1. Parameters Affecting Search Space. We first
studied increasing c from two (the default for the Gold
Line) up through seven. Surprisingly, the effects of these
changes were negligible; simply allowing customers to
change more features from C0 left migration lists, and
hence optimal portfolios, largely unaffected. We hypothe-
size that this is because changing c did not affect how most
customers evaluated configurations; the same set of config-
urations tended to be preferred, even though customers had
more potential choices, because the initial C0 was likely
a high-utility configuration (so customers tended to stick
to configurations “close” to C0). This need not have been
the case; if a large proportion of customers purchased con-
figurations with features that do not have high estimated
utilities, increasing c would have likely had a more dra-
matic effect on the migration lists, and hence the optimal
portfolios.

Does this insensitivity carry over to changing parameters
affecting reservation prices and utilities, r and u, because
these also only affect the configurations a customer will
consider? No. Even though relaxing these constraints (mak-
ing r and u larger) does not change how customers evalu-
ate configurations, this does lead to product lines that have
higher profits and contain fewer variants, by enabling our
algorithm to concentrate customers around higher end mod-
els. (The correlation between utility and margin for the
Gold Line is 0.9038.) We see this in detail in Table 10,
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Table 9. Portfolio characteristics.

Choice %
Profit Service level % Opt.

Method Line ratio trunc. 4/nontrunc. configs. 1st 2nd 3rd 4th

Single instance Gold 1.1499 93.82/95.43 289 44.16 35�54 9�11 3.00
Single instance Silver 0.9345 87.96/99.84 571 28.27 40�92 12�45 6.31

Union Gold 1.1284 98.36/98.66 612 60.22 33�5 4�08 0.56
Union Silver 0.9922 100/100 2�208 53.93 40�21 4�88 1.09

where we vary p and u for Gold Line instances 1, 2, 3, and
10 from Table 7.

Note that there is one less obvious effect of this
change—the proportion of customers purchasing their first
choice decreases dramatically as reservation price (or util-
ity) relaxes—customers are being “steered” toward higher
end products. Increasing u also makes the problem corre-
spondingly more difficult to solve—for the four instances
with 2u, the algorithm only comes to within the optimality
gap shown in parentheses in 24 hours. We saw very similar
effects when increasing the truncation point for migration
lists: solution times and profits increased as service levels
remained virtually unchanged, as optimal portfolios served
the same number of customers using fewer configurations.

Summarizing the effects of changing c, r , u and trun-
cation points, we conclude that simply giving customers
more choices will not necessarily increase profits, but if
increasing their choices makes customers more flexible (or
if such flexibility can be induced; see §7), then lines may
be condensed and profits increased.

6.5.2. Parameters Affecting Evaluation. Now we al-
ter how customers evaluate configurations, examining the
effects of changing n (number of features selected to have
their importance rescaled), feature importance variation,
and �.

Figure 3. Profit vs. portfolio size for four Silver Line
instances.
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Similar to c, changing n had no significant effect on our
solutions. This is not overly surprising—recall from §4.2
that the features not selected also have their importances
scaled to keep the summed mean feature values constant.
Thus, all utilities are in fact being scaled for n> 0.

We next investigated changing the variance of feature
importance, experimenting with Gold Line instances 1, 2,
3, and 10 from Table 7. We found the Gold line to be
very stable; Table 11 reports the results of optimizing these
instances after increasing these variations by 20 times. At
this point, profits decrease by just over 10% (essentially to
Silver Line levels) as service levels remain constant, but
require more configurations to be achieved. Increasing fea-
ture variability elevates customer heterogeneity, making the
Gold Line customers behave more like the Silver Line’s.
Note that the Gold Line’s customers still have more in com-
mon than their Silver Line counterparts: they agree on their
first choices much more, as over 80% now receive their first
choice. This “agreement” does not lead to higher profits as
compared to the Silver Line, as Silver Line customers pay
higher margins on average.

Finally, we turn to the effects of changing �, and how
likely it is that C0 is forced to the top of a migration list.
In Figure 4, we see how the profit ratio, service level,
and first choice probability change with � for Gold Line
instance 1 from Table 7. As � changes from zero to one
(customers’ preference for their purchased machine grows),
profits decrease by approximately 5%, service levels drop
slightly, and first choice percentage drops dramatically.
(Although not shown, changes in the the breadth of the
product line show no discernable pattern.) This effect of �
on profit is somewhat surprising, as changing � does not
change the contents of any customer’s migration list; only
the order in which the items appear: Any solution to an
instance with � = 0 will satisfy exactly the same set of
customers as in the �= 1 instance. So what is driving this
change? The answer lies, again, in the correlation between
utility and margin for the Gold Line.

When �= 0, customers are sorting their choices solely
by utility, so their first choices tend to be machines with
large margins. The optimization offers these, giving cus-
tomers their first choices while also reaping greater profits.
Conversely, when �= 1, customers will choose C0 when-
ever it is available. Thus, to steer customers to higher mar-
gin machines, the optimization does not offer as many first
choices. Thus, estimating � is critical; it affects the struc-
ture of the optimal product line and also has potentially
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Table 10. Sensitivity analysis with respect to reservation price and utility for the Gold Line.

Choice %
Profit Service level % Opt Time

Change ratio trunc. 4/nontrunc. configs. (hours) 1st 2nd 3rd 4th

r/2 1.1295 96.79/97.22 296 0.51 61.03 24.38 8�71 2.67
r/2 1.1285 96.93/97.34 311 0.79 56.14 30.12 8�19 2.48
r/2 1.1279 96.52/97.15 276 1.14 64.37 21.62 7�88 2.64
r/2 1.1278 96.46/96.92 288 0.71 60.02 26.72 7�09 2.63

2r 1.2897 95.83/96.94 276 0.73 34.85 43.81 13�92 3.26
2r 1.2944 96.12/96.98 263 0.48 35.50 45.34 12�41 2.88
2r 1.2872 96.25/97.30 263 0.60 38.18 42.34 13�02 2.70
2r 1.2876 96.27/97.34 268 3.98 39.37 41.63 11�94 3.33

u/2 1.1670 96.50/97.21 298 0.44 55.54 30.08 8�66 2.23
u/2 1.1664 96.30/97.15 295 0.80 50.44 35.43 8�39 2.02
u/2 1.1661 96.35/97.10 286 1.32 54.82 31.27 8�12 2.16
u/2 1.1665 96.45/97.02 293 1.05 52.71 33.61 7�95 2.19

2u 1.2252 97.55/98.64 280 >24 (0.14%) 27.03 46.01 19�32 5.19
2u 1.2270 97.07/98.45 260 >24 (0.12%) 27.28 46.06 18�82 4.90
2u 1.2247 97.39/98.62 277 >24 (0.18%) 26.62 48.06 17�51 5.21
2u 1.2244 97.15/98.50 268 >24 (0.24%) 26.29 45.76 19�55 5.55

significant ramifications regarding the number of customers
who find their “favorite” machine.

6.6. Algorithmic Modifications and
Additional Constraints

We now briefly examine the effect on algorithm perfor-
mance of (i) modifying the objective function to a step-wise
form (as described in §5), and (ii) including additional man-
agerial constraints in the MIP. Specifically, the constraints
we add establish:

1. A lower bound � on configurations (to preserve prod-
uct line breadth);

∑
j∈T yj ��;

2. An upper bound on configurations, � (to contain
complexity costs);

∑
j∈T yj ��; or

3. A lower bound on service level, ';
∑

i∈C
∑

j∈Li
xij � '.

These are only a few of the possible modifications of the
MIP; many others can be considered, for example, ensuring
that certain “flagship” or “core” configurations are present
in the solution.

Adding constraints on the number of configurations
(�400 or �200) tends to speed the algorithm, while requir-
ing a higher service level or using the stepwise complex-
ity function tends to increase solution times, but in both
cases the computational times remained reasonable. Thus,

Table 11. Optimal solutions of four Gold Line instances when relative importances vary widely.

Choice %
Profit Service level % Opt. Time

Instance ratio trunc. 4/non trunc. configs. (hours) 1st 2nd 3rd 4th

1 1.0779 96.28/97.98 314 9.36 80.59 5.69 3.17 6.82
2 1.0781 96.51/98.14 332 3.74 80.42 6.27 3.53 6.29
3 1.0771 96.12/97.95 308 3.27 80.54 5.86 3.31 6.41

10 1.0773 96.33/98.16 326 3.27 80.69 5.66 3.70 6.29

our algorithm, at least in these preliminary tests, is robust
with respect to running time for typical problem variants.

Managerially, we examine how increasing the Gold Line
service level affects solutions. In Table 12, we report
average profit and portfolio size for different service levels,
over instances 1, 2, 3, and 10 from Table 7. As expected,
increasing the service level broadens the product line appre-
ciably, but it has only a slight effect on profits: the extra
cost of the additional configurations is almost compensated
for by the additional revenue. Thus, for the Gold Line,
Deere need not be overly aggressive in reducing the line—
keeping a broader line and serving more customers is still
very profitable.

6.7. Summary of Computational Results

Our computational results illustrate a number of charac-
teristics of Deere’s problem, and portfolio optimization in
general. With respect to Deere, the Gold Line and the Silver
Line exhibit significant differences under our optimization:
the Gold Line more readily accepts optimization because
Gold Line customers more readily accept optimization—
they have more in common than their Silver Line counter-
parts. As such, a well-defined “core” of an optimal Gold
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Figure 4. Profit, service level, and first choice vs. � for
a single Gold Line.
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product line is apparent in our replicate experiments. Any
reduced line that includes this core should lead to a sig-
nificant increase in profits, through offering fewer configu-
rations and possibly “steering” customers to higher-margin
machines.

The Silver Line is more tricky—there is a much smaller
core visible through replication. We can trace this to a spe-
cific type of heterogeneity among Silver Line customers—
many Silver Line configurations have roughly equal mean
parts-worth utility, so different customers may have quite
different tastes, even though they are shopping for “com-
parable” machines (having similar total utility and price).
When this fact is combined with the high Silver Line mar-
gins, which imply that serving all customers is optimal,
broader Silver Lines result. This means that Deere should
be more conservative in their efforts to reshape the Silver
product line.

Our sensitivity analysis focused on those parameters
that affect customer behavior. We isolate two different
types of parameters affecting customer behavior: those that
affect the configurations a customer will consider, and
those that affect how these configurations are evaluated.
In general, widening the search space without changing
customers’ evaluations does not change the problem. In
contrast, changing how customers think by relaxing their
reservation price or utilities, making them more or less vari-
able in their evaluation of feature values, or tying them
more or less closely to their purchased configuration, does
change the problem considerably. In a nutshell, if customers
can be made more flexible, lines can more easily be con-
solidated, and profits can be improved. This is the message
we brought to Deere, and this is the message that shaped
their implementation.

7. Implementation at Deere
There was a cross-functional team at Deere responsible for
implementation, comprised of representatives from Deere’s
corporate analysis group, the order-fulfillment groups of
the appropriate business units, Deere’s product marketing
group, sales leadership, and their dealer council. Given the
insights from our analysis, they decided that rather than
remove configurations, they would offer discounts on spe-
cific options to “steer” customers toward a smaller set of
configurations. This reduced set may be thought of as the
“core” of the product line; we will call this set C. Clearly,
offering greater incentives will increase migration, but also
increase costs; thus, there is a trade-off that regulates how
much effort Deere should exert to induce those customers
outside of C to migrate into C. The results of our analysis
helped Deere determine specific migration targets for each
of the two product lines (both in excess of 50%) for the
percentage of customers who migrate, as well as the level
of incentives to offer.

Based on the demand before and after the incentives
were implemented, Deere has already achieved their targets
by providing discounts of 10%–15% on selected options
(accounting for 0.5% to 2% of total model cost) without
having to publicly announce a product line compression,
or “force” customers away from their first choices. Deere
also found, in line with our results, that more migration is
possible, with smaller incentives, in the Gold Line than in
the Silver Line.

This implementation raises a question: Without actually
discontinuing products, can Deere reap profits from more
concentrated product lines, especially in a primarily make-
to-stock environment? The short answer is yes: so far,
Deere has estimated savings in the tens of millions of dol-
lars for the two studied project lines. To calculate these sav-
ings, Deere forecasted what their profits would have been
without the modifications suggested by our analysis. Then,
Deere subtracted this amount from the actual profits post
implementation. The portion of this difference attributable
our project, rather than other initiatives, constitutes the esti-
mated savings.

Where are these increased profits coming from? Pre-
viously, Deere built more configurations, some of which
were not even sold once. Now Deere builds fewer variants
in advance (but still provides customers with any feasible
configuration, custom built, that they want). Moreover, a
smaller set of configurations are eventually sold, reducing
the complexity of servicing these configurations throughout
their lifetime.

Table 12. Impact of service level constraints
for the Gold Line.

Service level (%) Profit ratio Opt. configs.

97 1.1835 312
98 1.1808 359
99 1.1743 433
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8. Summary and Conclusions
While the literature contains much work on optimizing
product lines, there have been no industrial applications, nor
even any algorithm presented, capable of solving problems
of the size and level of complexity found at Deere. We
optimally solve such instances—with tens of thousands of
customers and possible configurations—in several hours.
One factor critical to this efficiency is our use of cus-
tomer migration lists, capturing customer behavior in a
form amenable to optimization.

Leveraging the efficiency of our algorithm, we solve dif-
ferent variants of Deere’s basic model, as well as multiple
randomized replications of the same instance. This helps
us to identify the configurations that form the core of any
good solution, which is useful in building optimal portfo-
lios. It also led to several insights into the product line
optimization problem, specifically regarding the effects of
different modeling choices for customer flexibility and het-
erogeneity. Moreover, by quantifying the benefits of cus-
tomer flexibility, we have helped Deere design incentive
program which has proved to be very effective at steer-
ing customers to a smaller set of configurations, elevating
profits by tens of millions of dollars. In addition, Deere’s
incentive program has helped them avoid the appearance
of denying customers their first choice by discontinuing
models.

Our work is being applied more widely at Deere; our
tool is now part of the standard decision-support process
they use when product enhancements are undertaken. In
addition, we are currently in the process of applying our
methodology at another leading company in the heavy
equipment sector. In general, our algorithm can likely be
applied by any company with high-margin products hav-
ing many product variants. This will require data similar to
that gathered by Deere, and might also include additional
data such as scenario-based estimates of future demand.
Such data should be available, or obtainable, from the com-
pany’s marketing department or directly from their cus-
tomer base. Obtaining this data, and leveraging it as we do,
holds the promise of greater efficiencies, increased profits,
and greater customer satisfaction as resources are focused
on products that better reflect their desires.

Appendix A. Examples of Configuration
and Pricing Rules
We provide examples of configuration and pricing rules
below, and then illustrate how the first of these rules would
be incorporated as a constraint into our CP formulation.

Sample configuration rules(
1. Feature MidPTO unavailable on machines with both

a 2WD axle and SST transmission;
2. For engine 32_130DLV and transmission PRT, axle

cannot be 2WD.

Sample pricing rules(
1. If engine type is 28_129DLV and the machine does

not have a MidPTO, SST transmission costs $1,000 for a
2WD axle and $1,200 for a 4WD axle;

2. If engine type is 32_130DLV, MidPTO costs $250 in
two circumstances: either the axle is 4WD, or the axle is
2WD and the transmission type is not SST.

Configuration Rule Example. Let the line under con-
sideration have n different features. A vector x of n vari-
ables x1� � � � � xn represents an option choice for each of
the n features; if feature i has mi different options, the
domain of xi is defined as 
1� � � � �mi�. We write all com-
bination and pricing rules as constraints on the x variables.
For instance, if transmission is the second feature and SST
is its third option for transmissions, axle is the third feature
and 2WD is its first option, and MidPTO is the fifth fea-
ture and it is present when x5 = 1, then configuration rule 1
above is

x2 = 3∧ x3 = 1 =⇒ x5 �= 1�

Appendix B. Properties of Optimal
Solutions to the Optimization Model
Proposition 1. When looking for optimal solutions, im-
posing integrality on all the y variables alone implies inte-
grality of all the x variables, and vice versa. Moreover, at
least one of the integrality conditions (3) or (4) is neces-
sary to avoid the possibility of fractional optimal solutions.

Proof. Let yj ∈ 
0�1� for all j ∈ T . Let Y0 = 
j ∈ Li �
yj = 0� and Y1 = 
j ∈ Li � yj = 1�, the sets of configurations
on the list which are not, and are, produced, respectively.
Constraints (1) say that xij = 0 for all j ∈ Y0. For every
customer i ∈ C, let ji ∈ Y1 be the produced configuration
that appears earliest in Li. If configuration k comes before
ji in Li, (1) makes xik = 0. If configuration k comes after
ji in Li, (2) makes xik = 0. Finally, xiji will be equal to
one due to the objective function (here we assume that all
configurations have positive profit). If no such ji exists for
a given customer i, then all x variables for customer i are
set to zero because of (1).

Now let xij ∈ 
0�1� for all i ∈ C and j ∈ Li. Let Y2 =

j ∈ T � xij = 1 for some i ∈C� be those configurations that
have to be produced. Constraints (1) will force yj = 1 for
all j ∈ Y2. Also, (2) will make yj = 0 whenever there exists
a customer i ∈ C such that xik = 1 and j precedes k in Li.
Finally, all remaining y variables that have not been fixed
will be set to zero because we are maximizing, and a is a
nondecreasing function of the sum of all y variables.

For the second part, let us consider an example in which
constraints (3) and (4) are relaxed, i.e., 
0�1� is replaced
by �0�1�. Let C = 
1�2�3�, T = 
1�2�3�, L1 = 
1�2�,
L2 = 
2�3�, and L3 = 
3�1�. In addition, let p1 − K =
101, p2 −K = 103, p3 − K = 102, overhead = 0, and let
the complexity cost of producing 1, 2, or 3 configurations
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be 200, 250, and 300, respectively. If we decide to build
only one configuration, the best choice is to make y2 = 1,
which yields a profit of 2× 103− 200 = 6. If we decide to
build two configurations, the best choice is to make y2 =
y3 = 1, which yields a profit of 2 × 103 + 102 − 250 =
58. Finally, if we make y1 = y2 = y3 = 1, our profit is
equal to 101+ 103+ 102− 300 = 6. But, if we make y1 =
y2 = y3 = 0�5, we will have the maximum profit of 101 +
103 + 102 − 225 = 81. This gives us an integrality gap of
�81− 58�/58≈ 39�7%. �
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