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his article considers the overall crew management problem arising from the daily operation of an urban

transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic
complexity, the problem is divided in two distinct subproblems: crew scheduling and crew rostering. We have
investigated each of these problems using mathematical programming (MP) and constraint logic programming
(CLP) approaches. In addition, we developed hybrid column generation algorithms for solving these problems,
combining MP and CLP. The hybrid algorithms always performed better, when obtaining optimal solutions,
than the two previous isolated approaches. In particular, they proved to be much faster for the scheduling
problem. All the proposed algorithms have been implemented and tested over real-world data obtained from
the aforementioned company. The coefficient matrix of the linear program associated with some instances of
the scheduling problem contains tens of millions of columns; this number is even larger for the rostering
problem. The analysis of our experiments indicates that it was possible to find high-quality, and many times
optimal, solutions that were suitable for the company’s needs. These solutions were obtained within reasonable

computational times on a desktop PC.
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Introduction

The overall crew management problem concerns the
allocation of trips to crews within a certain planning
horizon. In addition, it is necessary to respect a spe-
cific set of operational constraints and minimize a cer-
tain objective function. Being a very hard problem,
when taken in its entirety, it is usually divided in two
smaller problems: the crew scheduling problem and the
crew rostering problem (Caprara et al. 1997). In the crew
scheduling problem, the aim is to partition the initial
set of trips into a minimal set of feasible duties. Each
such duty is an ordered sequence of trips to be per-
formed by the same crew and that satisfies a subset
of the original problem constraints: those related to
the sequencing of trips during a workday. The crew
rostering problem takes as input the set of duties out-
put by the crew scheduling phase and builds a roster
spanning a longer period, e.g., months or years. In the
latter case, the roster must satisfy a different set of con-
straints: those related to rest periods, vacations, and
other long-term operational restrictions.

This article describes the crew management prob-
lem stemming from the operation of a Brazilian bus
company that serves a major urban area in the city of
Belo Horizonte. This area serves more than two mil-
lion inhabitants in central Brazil. Because employee
wages may account for 50% or more of the company’s
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total expenditures, even small percentage savings
can be quite significant. The related crew schedul-
ing and crew rostering problems are solved by means
of hybrid column generation approaches involving
both integer programming (IP) and constraint logic
programming (CLP) techniques. We also present pure
IP and CLP solutions for these problems.

We started with the crew scheduling problem,
applying a pure IP formulation and using a classi-
cal branch-and-bound technique to solve the result-
ing set partitioning problem. Because this method
requires that all feasible duties are previously inserted
into the problem formulation, all memory resources
were rapidly consumed when we reached half a
million feasible duties. To circumvent this difficulty,
we implemented a column generation technique. As
suggested by Desrochers and Soumis (1989), the
subproblem of generating feasible duties with neg-
ative reduced cost was transformed into a con-
strained shortest-path problem over a directed acyclic
graph and then solved using dynamic programming
techniques. However, due to the size and idiosyn-
crasies of our real problem instances, this technique
did not make much progress toward solving large
instances.

The difficulties we faced when using the previ-
ous approaches almost disappeared when we turned
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to a language that supports constraint specification
over finite domain variables. We were able to develop
and implement our models in a short time, produc-
ing code that was both concise and clear. When exe-
cuted, it came as no surprise that the model showed
two distinct behaviors, mainly due to the huge size
of the search space involved. It was very fast when
asked to compute new feasible duties, but lagged
behind the IP methods when asked to obtain a prov-
ably optimal schedule. The search spaces of our prob-
lem instances are enormous, and there are no strong
local constraints available to help the resolution pro-
cess. A good heuristic to improve the search strategy
does not come easily, as noted in Darby-Dowman and
Little (1998).

To harness the capabilities of both the IP and CLP
techniques, we resorted to a hybrid approach to solve
the larger, more realistic, problem instances. The main
idea is to use the linear relaxation of a smaller core
problem in order to efficiently compute good lower
bounds on the optimal solution value. Using the val-
ues of dual variables present in the solution of the
linear relaxation, we can enter a generation phase that
computes new feasible duties. This phase is modeled
as a constraint satisfaction problem that searches for
new feasible duties with negative reduced cost. This
model is submitted to the constraint solver, which
returns new feasible duties. After introducing these
new duties into the IP problem formulation, the initial
phase can be taken again, restarting the cycle. When
the CLP solver announces the inexistence of new fea-
sible duties with negative reduced cost, the optimal-
ity of the current solution is proved. This algorithm
secures the strengths of both the pure IP and the pure
CLP approaches: Only a small subset of all the feasi-
ble duties is efficiently dealt with at a time, and new
feasible duties are quickly computed only when they
will make a difference. The resulting code was tested
on some large instances, based on real data. As of this
writing, we can solve, in a reasonable time and with
proven optimality, instances of the crew scheduling
problem with an excess of 150 trips and 12 million
feasible duties.

Some specific union regulations and operational
constraints make our rostering problem fairly distinct
from other known crew rostering problems found in
the literature (such as Caprara et al. 1998; Caprara
et al. 1998). In general, it is sufficient to construct
one initial roster consisting of a feasible sequencing
of the duties that spans the least possible number of
days. The complete roster is then built by just assign-
ing shifted versions of that sequence of duties to each
crew to have every duty performed in each day of
the planning horizon. In other common cases such as
Jachnik (1981), Carraresi and Gallo (1984), and Bianco

et al. (1992), the main concern is to balance the work-
load among the crews involved. Although we also
look for a roster with relatively balanced workloads,
these approaches will not, in general, find the best
solution for our purposes. We are not interested in
minimizing the number of days needed to execute
the roster, since the length of the planning horizon is
fixed in advance. Our objective is to use the minimum
number of crews when constructing the roster for
the given period. Another difficulty comes from the
fact that some constraints behave differently for each
crew, depending on the amount of work assigned to
the crew in the previous period. Moreover, different
crews have different needs for days off, imposed by
personal requirements.

Similar to the crew scheduling problem, we started
with models based on pure IP and CLP techniques
to solve the rostering problem. We also developed a
hybrid column generation approach for this problem,
which follows the same basic ideas of the one applied
in the crew scheduling phase.

This article is organized as follows. Section 1 des-
cribes the crew scheduling problem and includes a
number of subsections. In §1.4, we describe an IP
approach and report on the implementation of an
alternative technique using standard column genera-
tion. In §1.5 we consider a pure CLP approach, and in
§1.6 we present the hybrid approach. Section 2 gives a
detailed description of the crew rostering problem. Its
subsections present the different solution techniques
that were investigated. Section 2.4 explains the for-
mat of the input datasets used in our experiments.
In §2.5, we briefly comment on an IP formulation
used to solve the problem. Section 2.6 presents some
experiments that were conducted to evaluate the per-
formance of a pure CLP model for crew rostering.
The results achieved with a hybrid column generation
approach are analyzed in §2.7. Finally, we draw the
main conclusions and discuss further issues in §3.

All computation times presented in this text are
given in CPU seconds of a Pentium II 350 MHz with
320 MB of RAM. Execution times inferior to one
minute are reported as ss.cc, where ss denotes seconds
and cc denotes hundredths of a second. For execu-
tion times that exceed 60 seconds, we use the alterna-
tive notation hh:mm:ss, where hh, mm, and ss represent
hours, minutes, and seconds, respectively.

1. The Crew Scheduling Problem

In a typical crew scheduling problem, a set of trips
has to be assigned to some available crews. The goal
is to assign a subset of the trips to each crew in such
a way that no trip is left unassigned. As usual, not
every possible assignment is allowed since a number
of constraints must be observed. Additionally, a cost
function has to be minimized.
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1.1. Terminology

Among the following terms, some are of general use,
while others reflect specifics of the transportation ser-
vice for the urban area that is the source of the input
data. A relief point is a location where crews may
change buses and rest. The act of driving a bus from
one relief point to another relief point, passing by no
intermediate relief point, is named a trip. Associated
with a trip we have its start time, its duration, its depar-
ture relief point, and its arrival relief point. The duration
of a trip is statistically calculated from field collected
data, and depends on many factors, such as the day of
the week and the time of day of the trip start. A duty
is a sequence of trips that are assigned to the same
crew. By idle time we denote any of the time intervals
between two consecutive trips in a duty. Whenever
this idle time exceeds Idle_Limit minutes, it is called
a long rest. A duty that contains a long rest is called
a split-shift duty or simply a split shift. The rest time
of a duty is the sum of its idle times, not counting
long rests. The parameter Min_Rest gives the mini-
mum amount of rest time, in minutes, to which each
crew is entitled. The sum of the durations of the trips
in a duty is called its working time. The sum of the
working time and the rest time gives the total working
time of a duty. The parameter Workday is specified by
union regulations and limits the daily total working
time.

1.2. Input Data

The input data come in the form of a two dimen-
sional table where each row represents one trip. For
each trip, the table lists start time, measured in min-
utes after midnight; duration, measured in minutes;
initial relief point; and final relief point. We have used
data that reflect the operational environment of two
bus lines, Line 2222 and Line 3803, that serve the
metropolitan area around the city of Belo Horizonte,
in central Brazil. Line 2222 has 125 trips and one
relief point and Line 3803 has 246 trips and two relief
points. The daily number of trips and the number of
relief points in these instances are representative of
the lines in the transportation system of Belo Hori-
zonte, which is composed of 266 different bus lines.
The input data tables for these lines are called OS 2222
and OS 3803, respectively. Table 1 shows the first
10 rows of OS 3803. By considering initial segments
taken from these two input data tables, we derived
several other smaller problem instances. For example,
taking the first 30 trips of OS 2222 gave us a new 30-
trip problem instance. A measure of the number of
active trips along a typical day for both Line 2222 and
Line 3803 is shown in Figure 1. This figure was con-
structed as follows. For each (x, y) entry, the ordinate
y indicates how many trips are active at time x. We
could also have built smaller instances that span the
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Table 1 Sample from 0S 3803
Initial relief Final relief
Start time Time duration point point
1 38 1 2
50 40 2 1
90 38 1 2
130 38 2 1
170 38 1 2
210 38 2 1
250 39 1 2
290 38 2 1
285 45 1 2
335 45 2 1

entire day by selecting trips from the whole instances
in a sparser way. We decided not to do this because
sparser instances become easier to solve and are not
representative of the real situation.

1.3. Constraints

For a duty to be feasible, it has to satisfy constraints
imposed by labor contracts and union regulations,
among others. For each duty we must observe

total working time < Workday

rest time > Min_Rest.

If trip i precedes trip j in the same duty, we must
have

(start time); + (duration); < (start time);
(final relief point); = (initial relief point);.

Also, at most one long rest is allowed in each duty.
Restrictions from the operational environment
impose

Idle_Limit = 120,
Workday = 440,
Min_Rest = 30,

measured in minutes. A feasible duty is a duty that sat-
isfies all problem constraints. A schedule is a set of fea-
sible duties, and an acceptable schedule is any schedule
that partitions the set of all trips. Because the prob-
lem specification treats all duties as indistinguishable,
every duty is assigned a unit cost. The cost of a sched-
ule is the sum of the costs of all its duties. Hence,
minimizing the cost of a schedule is the same as min-
imizing the number of crews involved in the solution
or, equivalently, the number of duties it contains. A
minimal schedule is any acceptable schedule whose cost
is minimal.

1.4. Mathematical Programming Approaches
Let m be the number of trips and n be the total num-
ber of feasible duties. The pure IP formulation of the
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Figure 1 Distribution of Trips Along the Day
problem is in (2). In practice, this results in having crews riding

min ) x; (1)
j=1

i=1,2,...,m (2

n
subject to Za,—jx/- =1,
j=1

x]-e{O,l}, ji=1,2,...,n 3)
The x;’s are 0-1 decision variables that indicate which
duties belong to the solution. The coefficient a;; equals
1 if duty j contains trip i; otherwise, 4 is 0. This is a
classical set partitioning problem where the rows rep-
resent all trips and the columns represent all feasible
duties.

We developed a constraint program to count all fea-
sible duties both in OS 2222 and in OS 3803. Table 2
summarizes the results for increasing initial sections
(column “#Trips”) of the input data. The time (col-
umn “Time”) needed to count the number of feasi-
ble duties (FD—column “#FD”) is also presented. For
OS 2222, we get in excess of 1 million feasible duties,
and for OS 3803 we get more than 122 million feasible
duties.

It would be possible to adopt a set-covering for-
mulation if we replaced the “=" sign by a “>" sign

on buses just like ordinary passengers. Despite the
fact that a less expensive solution could arise from the
set-covering model, the latter was not used in prac-
tice since it may bring difficulties to the operational
control.

1.4.1. A Pure Integer Programming Approach. In
the pure IP approach, we used a constraint pro-
gram to generate an output file containing all feasi-
ble duties. A program was developed in C to make
this file conform to the CPLEX (ILOG 1999) input
format. The resulting file was fed into a CPLEX
LP solver. The node selection strategy used was
best-first, and branching was done upon the most frac-
tional variable. Every other setting of the branch-and-
bound algorithm used the standard default CPLEX
configuration.

The main problem with the IP approach is clear:
The number of feasible duties is enormous. Computa-
tional results for OS 2222 appear in Table 3, columns
under “Pure IP.” In that table, columns “Opt” and
“Sol” indicate, respectively, the optimal and com-
puted values for the corresponding run. It soon
became apparent that the pure IP approach using the
CPLEX solver would not be capable of obtaining the
optimal solution for the complete OS 2222 problem

Table2  Number of Feasible Duties for 0S 2222 and 0S 3803
08 2222 (1 relief point) 0S 3803 (2 relief points)

#Trips #FD Time #Trips #FD Time
10 63 0.07 20 978 1.40
20 306 0.33 40 6,705 5.98
30 1,032 0.99 60 45,236 33.19
40 5,191 5.38 80 256,910 00:03:19
50 18,721 21.84 100 1,180,856 00:18:34
60 42,965 00:01:09 120 3,225,072 00:57:53
70 104,771 00:03:10 140 8,082,482 02:59:17
80 212,442 00:05:40 160 18,632,680 08:12:28
90 335,265 00:07:48 180 33,966,710 14:39:21

100 496,970 00:10:49 200 54,365,975 17:55:26
110 706,519 00:14:54 220 83,753,429 42:14:35
125 1,067,406 01:00:27 246 122,775,538 95:49:54
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Table 3 Computational Results for 0S 2222 (1 Relief Point)
Pure IP CG+DP

#Trips #FD Opt Sol Time Sol Pricing time Total time
10 63 7 7 0.02 7 0.00 0.01
20 306 11 11 0.03 11 0.04 0.07
30 1,032 14 14 0.06 14 0.43 0.52
40 5,191 14 14 3.04 14 8.82 9.10
50 18,721 14 14 14.29 14 00:01.26 00:01:29
60 42,965 14 14 00:01:37 14 00:07:45 00:07:54
70 104,771 14 14 00:04:12 14 00:43:58 00:44:19
80 212,442 16 16 00:33:52 16 03:53:06 03:53:58
90 335,265 18 18 00:50:28 18 08:18:11 08:18:53

100 496,970 20 20 02:06:32 20 15:07:22 15:08:55

110 706,519 22 — (out of memory) — — (out of time)

125 1,067,406 25 — (out of memory) — — (out of time)

instance. Besides, memory usage was also increasing
at an alarming pace, and execution time was lag-
ging when compared with other approaches that were
being developed in parallel. As an alternative, we
decided to implement a column generation approach.

1.4.2. Column Generation with Dynamic Pro-
gramming. Column generation is a technique that
is widely used to handle linear programs that have
a very large number of columns in the coefficient
matrix (see Barnhart et al. 1998). The method works
by repeatedly executing two phases. In a first phase,
instead of solving a linear relaxation of the whole
problem in which all columns are required to be
loaded in memory, we quickly solve a smaller prob-
lem, called the master problem, that deals only with a
subset of the original columns. That smaller problem
solved, we start Phase 2, looking for columns with
negative reduced cost. If there are no such columns,
we have proved that the solution at hand indeed
minimizes the objective function. Otherwise, we aug-
ment the master problem by bringing in a number of
columns with negative reduced cost, and start over
on Phase 1. From the pure IP formulation above, the
reduced cost of a feasible duty d is given by 1 —
> jer 4j, where T is the set of trips contained in d
and u; is the value of the dual variable associated
with trip j. The problem of computing columns with
negative reduced cost is called the slave subproblem.
When the original variables have integer values, this
algorithm must be embedded in a branch-and-bound
strategy. The resulting algorithm is also known as
branch-and-price.

Generating Columns. In general, the slave subprob-
lem can also be formulated as another IP problem. In
our case, constraints like the one on split-shift duties
substantially complicate the formulation of a pure IP
model. As another approach, Desrochers and Soumis
(1989) suggest reducing the slave subproblem to a
constrained shortest path problem (CSPP). Since this

technique is still considered to be one of the most effi-
cient (see Crainic and Laporte 1998; Dror 2000), we
decided to apply it to our problem.

Implementation and Results. To implement the
branch-and-price strategy, the use of the ABACUS
(OREAS 1999) branch-and-price framework saved a
lot of programming time. We refer the reader inter-
ested in more details to Yunes et al. (2000). In
Table 3, columns under “CG + DP” show the com-
putational results for OS 2222. Within the maximum
allowed Central Processing Unit time of 24 hours, this
approach did not reach a satisfactory performance.
Because the constrained shortest-path subproblem is
solved by means of a pseudopolynomial algorithm,
the state space at each node has the potential of
growing exponentially with the input size. The num-
ber of feasible paths that the algorithm has to main-
tain became so large that the time spent looking for
columns with negative reduced cost (pricing time)
was responsible for more than 90% of the total execu-
tion time, on average, over all instances (see Table 3).

1.5. A Constraint Logic Programming Approach

Modeling with finite domain constraints is rapidly
gaining acceptance as a promising programming
environment to solve large combinatorial problems.
This led us to model the crew scheduling problem
using pure CLP techniques. We were able to find
feasible schedules in a very short time using the
CLP system ECLPS® (IC-Parc 2001), but obtaining
provably optimal solutions was out of reach for our
CLP approach. The details can be found in Yunes
et al. (2000a). Guerinik and Caneghem (1995) and
Darby-Dowman and Little (1998) also report diffi-
culties when trying to solve crew scheduling prob-
lems with a pure CLP approach. Finding the optimal
schedule reduces to choosing, from an extremely large
set of elements, a minimal subset that satisfies all the
problem constraints. The huge search spaces involved
can only be dealt with satisfactorily when pruning is
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enforced by strong local constraints. Besides, a simple
search strategy, lacking good problem-specific heuris-
tics, is unlikely to succeed. When solving scheduling
problems of this nature and size to optimality, none
of these requirements can be met easily, rendering it
intrinsically difficult for pure CLP techniques to pro-
duce satisfactory results in these cases.

1.6. A Hybrid Approach

Gervet (1998) shows that, in some cases, neither the
pure IP nor the pure CLP approaches are capable of
solving certain kinds of combinatorial problems sat-
isfactorily, but a hybrid strategy might outperform
them.

When contemplating a hybrid strategy, it is nec-
essary to decide which part of the problem will be
handled by a constraint solver, and which part will
be dealt with in a more classical way. Given the
huge number of columns at hand, a column gener-
ation algorithm seemed to be almost mandatory. On
the one hand, as reported in §1.4.2, we knew that
the dynamic programming column generator used
in the pure IP approach did not perform well on
the largest instances. On the other hand, a declar-
ative language is particularly suited to express not
only the constraints imposed by the original problem,
but also the additional constraints that must be sat-
isfied when looking for feasible duties with negative
reduced cost. Given that, it was a natural decision to
implement a column generation approach where new
columns were generated on demand by a constraint
program. In addition, the discussion in §1.5 indicates
that the CLP strategy implemented was very efficient
when identifying feasible duties. It lagged behind
only when computing a provably optimal solution
to the original scheduling problem, due to the mini-
mization constraint. Because it is not necessary to find
a column with the most negative reduced cost, the
behavior of the CLP solver was deemed adequate. It
remained to program the CLP solver to find a set of
new feasible duties with the extra requirement that
their reduced cost should be negative.

There have been other attempts that somehow
explore the idea of integrating IP and CLP into
column generation algorithms. We identify their
main similarities and differences with respect to our
approach in the following paragraphs.

An early work treating the cooperation of linear
and finite-domain constraint solvers for column gen-
eration is Leconte et al. (1996). A bin-packing config-
uration problem is modeled, posting constraints both
to a linear solver (a revised Simplex algorithm) and to
a finite-domain constraint solver. All possible bin con-
figurations (columns) are generated at the start, and
a pure integer linear model is solved in order to find
the right quantities for each type of bin.

In Junker et al. (1999a), the authors solve an airline
crew assignment problem where the column genera-
tion subproblem is modeled as a CSPP on a directed
acyclic graph (DAG). This subproblem is formulated
as a constraint satisfaction problem. Nevertheless,
although they argue that their results are encourag-
ing, the models and computational results are not
explicitly described. Moreover, they introduce some
heuristic pruning techniques that may prevent the
algorithm from finding a provably optimal solution.

Chabrier (1999) describes an iterative cooperation
between CLP and linear programming optimizers
for solving the pairing generation problem for air-
line companies. In this case, the generation process
is guided by heuristics for choosing “nice” pair-
ings and metaheuristics that restrict the exploration
of the search tree. Also, this algorithm is not a
branch-and-price algorithm and the computational
experiments are not quite elucidative because of the
small number of instances.

Junker et al. (1999b) present a general framework
for column generation based on constraint program-
ming (CP). Sometimes the subproblem of finding new
columns with negative reduced cost is too compli-
cated for traditional operations research (OR) meth-
ods. In these cases, formulating the column generator
as a constraint satisfaction problem might help. This
is more or less the same idea presented in our previ-
ous work (Yunes et al. 1999). It is interesting to note
here that these two investigations, although leading
to similar proposals, have been developed indepen-
dently and in parallel. Junker et al. (1999b), instantiate
the framework for solving a crew assignment problem
and discuss the implementation of an efficient path
constraint for the subproblem. Their application does
not give rise to the need of integrating this framework
inside a branch-and-price algorithm but, according to
them, this would not be a problem.

Both Fahle and Sellmann (2000) and Sellmann et al.
(2000) make use of the constraint-based column gen-
eration framework presented in Junker et al. (1999b).
Fahle and Sellmann (2000) address one kind of cutting
stock problem where the column generation subprob-
lem is a constrained knapsack problem (CKP) rather
than the usual CSPP. However, the paper concentrates
on solving the subproblem efficiently and does not
give details about the whole master-slave interaction
and the results obtained for the overall cutting stock
problem. Sellmann et al. (2000) describe an algorithm
that integrates a direct constraint programming based
approach (DCPA) and a CP-based column genera-
tion approach (CPCGA), in an iterative way, for the
crew assignment problem. The pool of columns for
the master problem is initialized with a set of initial
feasible solutions found by the DCPA. The CPCGA
then finds a solution for a set covering formulation
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and the DCPA tries to generate a set partitioning solu-
tion through deassignment of variables. Some local
refinements on this solution are performed and the
CPCGA is called again. They show that, in the long
run, this cooperation performs better than both the
DCPA or CPCGA alone. However, it is difficult to
have a good notion with respect to the effectiveness of
their approach since the computational experiments
are restricted to two instances. In addition, there is
no guarantee of optimality and no presentation of the
idea of the quality of the solutions.

Our hybrid approach differs from the aforemen-
tioned approaches due to the following main aspects:
We make use of a complete branch-and-price frame-
work, i.e., the linear relaxation of every node of the
branch-and-bound tree is solved by means of a col-
umn generation algorithm; since the total number
of feasible columns is enormous, we do not gener-
ate them all in advance; the subproblem of column
generation is not formulated as a CSPP on a DAG;
our experiments are conducted over large real-world
datasets; and we guarantee the optimality of the final
solutions.

1.6.1. Implementation Issues. The basis of this
new algorithm is the same as the one developed for
the column generation approach, described in §1.4.2.
The dynamic programming routine is substituted for
an ECL'PS° process that solves the slave subprob-
lem and communicates with the ABACUS process
through a network connection. When the ABACUS
process has solved the current master problem to opti-
mality, it sends the values of the dual variables to the
CLP process. If there remain columns with negative
reduced cost, some of them are captured by the CLP
solver and are sent back to the ABACUS process, and
the cycle starts over. If there are no such columns, the
linear programming (LP) solver has found an opti-
mal solution. Having found the optimal solution for
this node of the enumeration tree, its dual bound is
also available. The normal branch-and-bound algo-
rithm can then proceed until it is time to solve another
program. This interaction is depicted in Figure 2. For
branching purposes, we selected the active node with
best LP bound and we branched on a variable with
fractional value closest to one half.

Branch O

ECL'PS¢ | _ Dual Vars. | ABACUS | New Cols. CPLEX
Gen. Cols. | B&B Current
RC <0 New Cols, |  Tree LP Sol. | Master LP
+
¢ Dual Vars.
Optimal Solution
Figure 2 Simplified Scheme of the Hybrid Column Generation Method

The code for the CLP column generator is almost
identical to the code for our pure CLP model referred
to in §1.5. That is, we use the same representation
of the problem constraints. However, there are three
major differences. First, we are not looking for a com-
plete schedule any more—just feasible duties. Sec-
ond, there are two additional kinds of constraints.
One states that the sum of the values of the dual
variables associated with the trips in the duty being
constructed should represent a negative reduced cost.
The other states that variables that have been fixed
to zero by previous branching decisions must not be
generated again. This is done by sending the list of
branching variables to the column generator. Finally,
we no longer need to use a minimization predicate.
Instead, we use a predicate that keeps on looking for
new feasible duties until the desired number of feasi-
ble duties with negative reduced cost have been com-
puted, or until there are no more feasible assignments.
By experimenting with the datasets at hand, we deter-
mined that the maximum number of columns with
negative reduced cost to request at each iteration of
the CLP solver was best set to 50. Redundant mod-
eling techniques (Caseau and Koppstein 1992; Cheng
et al. 1999), as well as more advanced labeling heuris-
tics (Jourdan 1995), both used to improve the per-
formance of the original CLP formulation, became
unnecessary and were removed. This model is thor-
oughly explained in Yunes et al. (2000b).

1.6.2. Computational Results. The hybrid ap-
proach was able to construct an optimal solution
to substantially larger instances of the problem in a
reasonable time. Computational results for OS 2222
and OS 3803 appear in Tables 4 and 5, respectively.
Column headings “#Trips,” “#FD,” “Opt,” “DBR,”
“#CA,” “#LP” and “#Nodes” stand for, respectively,
number of trips, number of feasible duties, opti-
mal solution value, dual bound at the root node,
number of columns added, number of linear pro-
gramming relaxations solved, and number of nodes
visited. Column headings “PrT,” “LPT,” “HT,” and
“TT” stand for, respectively, time spent generating
columns, time spent solving linear programming
relaxations, time spent by a primal heuristic, and total
execution time. In every instance the dual bound at
the root node was equal to the value of the optimal
integer solution. Hence, the LP relaxation of the prob-
lem already provided the best possible lower bound
on the optimal solution value. This motivated the
use of a primal heuristic after the solution of each
linear relaxation of the problem. For this purpose,
we implemented the set covering heuristic devel-
oped by Caprara et al. (1999). This heuristic won the
FASTER competition jointly organized by the Italian
Railway Company and AIRO, solving, in a reason-
able time, large set covering problems arising from



Yunes, Moura, and de Souza: Hybrid Column Generation Approaches

280 Transportation Science 39(2), pp. 273-288, ©2005 INFORMS

Table 4 Hybrid Algorithm, 0S 2222 Dataset (1 Relief Point)

#Trips #FD Opt DBR #CA #LP #Nodes PIT LPT HT T
10 63 7 7 53 2 1 0.08 0.02 0.00 0.12
20 306 11 11 159 4 1 0.30 0.04 0.00 0.42
30 1,032 14 14 504 11 1 1.48 0.1 0.00 2.07
40 5,191 14 14 901 18 1 4.75 0.08 0.00 4.83
50 18,721 14 14 1,007 20 1 6.35 0.12 0.02 6.49
60 42,965 14 14 1,802 35 1 46.38 0.41 0.02 46.81
70 104,771 14 14 2,862 55 1 00:01:12 1.02 4.80 00:01:18
80 212,442 16 16 3,260 69 1 57.00 1.97 5.38 00:01:04
90 335,265 18 18 6,360 121 1 00:02:21 8.45 00:01:41 00:04:10

100 496,970 20 20 7,632 148 7 00:04:40 21.42 00:04:45 00:09:46

110 706,519 22 22 10,494 200 3 00:08:40 26.55 00:02:52 00:11:59

125 1,067,406 25 25 13,303 258 11 00:17:05 00:01:03 00:01:01 00:19:09

crew scheduling. Using our own experience and addi-
tional ideas from the chapter on Lagrangian Relax-
ation in Reeves (1993), an implementation was written
in C and went through a long period of testing
and benchmarking. Tests executed on set covering
instances coming from the OR-Library showed that
our implementation is competitive with the original
implementation in terms of solution quality. Although
this is a set covering heuristic, it was able to find,
in many cases, coverings that were indeed parti-
tions. In those cases that it did not find partitions,
we implemented a simple local search algorithm that
would try to transform the covering into a parti-
tion of the same size by removing trips whenever
possible.

For the purpose of comparison, when we solved
instances with two relief points without using this
primal heuristic within the same time limit of 24
hours, we were only able to find optimal solutions for
instances with up to 150 trips. Moreover, in this case
the search tree ended up having 25 nodes and the
time needed to prove optimality was about 22 hours.

As we can see in Table 5, using the primal heuris-
tic we were able to prove optimality for instances of
up to 210 trips in approximately 14.5 hours. Notice
that this 210-trip instance has roughly five times as
many columns as the 150-trip instance. When solving
instances with one relief point the heuristic helped us
drop the maximum number of nodes in the enumer-
ation tree from 41 to 11. For the instances with two
relief points, the maximum number of nodes dropped
from 25 to 7.

Finally, note that the number of columns added by
the algorithm was kept small. The sizable gain in per-
formance is shown in the last four columns of each
table. Note that the time to solve all linear relaxations
of the problem was a small fraction of the total run-
ning time, for both datasets.

It is also clear, from Table 4, that the hybrid
approach was capable of constructing a provably opti-
mal solution for the smaller dataset using 19 minutes
of running time on a 350 MHz desktop. That problem
involved in excess of one million feasible columns and
was solved considerably faster when compared with

Table 5 Hybrid Algorithm, 0S 3803 Dataset (2 Relief Points)

#Trips #FD Opt DBR #CA #LP #Nodes PrT LPT HT T
20 978 6 6 278 7 1 2.1 0.08 0.00 2.24
30 2,890 10 10 852 19 1 9.04 0.20 0.00 9.38
40 6,705 13 13 2,190 48 1 28.60 1.03 0.00 30.14
50 17,334 14 14 4,187 80 1 00:01:03 1.27 0.00 00:01:04
60 45,236 15 15 8,027 175 1 00:03:48 14.81 0.00 00:04:06
70 107,337 15 15 11,622 258 1 00:07:42 40.59 0.00 00:08:37
80 256,910 15 15 8,553 225 1 00:10:07 4712 0.00 00:10:58
90 591,536 15 15 9,827 269 1 00:14:34 00:02:04 0.00 00:16:43

100 1,180,856 15 15 13,330 375 1 00:39:03 00:04:37 0.00 00:43:49

110 2,015,334 15 15 13,717 387 1 01:19:55 00:03:12 0.00 01:23:19

120 3,225,072 16 16 20,011 379 1 02:01:07 00:02:35 00:01:14 02:04:56

130 5,021,936 17 17 10,303 199 7 01:00:07 57.31 00:01:31 01:02:35

140 8,082,482 18 18 8,703 303 7 02:06:40 00:01:18 57.92 02:08:56

150 12,697,909 19 19 9,487 182 5 01:54:09 00:01:25 00:01:19 01:56:53

200 54,365,975 25 25 22,154 419 1 14:06:45 00:08:01 00:06:21 14:21:07

210 67,756,512 26 26 23,691 451 7 14:13:49 00:10:41 00:15:08 14:39:38
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the best performer (see §1.4.1) among all the previous
approaches.

The structural difference between both datasets
can be observed by looking at the 100-trip row, in
Table 5. The number of feasible duties on this line
is, approximately, the same number of 1 million fea-
sible duties that are present in the totality of 125
trips of the first dataset, OS 2222. Yet the algorithm
used roughly twice as much time to construct the
optimal solution for the first 100 trips of the larger
dataset as it did when taking the 125 trips of the
smaller dataset. In essence, the instances with two
relief points are harder to solve than those with one
relief point because they involve more trips per time
unit. In other words, they are denser, as can be seen
in Figure 1 and Table 2.

Finally, when we fixed a maximum running time
of 24 hours, the algorithm was capable of construct-
ing a solution and proving its optimality for as many
as 210 trips taken from the larger dataset. This cor-
responds to an excess of 67 million feasible duties.
It is noteworthy that less than 30 MB of main mem-
ory were needed for this run. By efficiently dealing
with a small subset of the feasible duties, our algo-
rithm managed to surpass the memory bottleneck and
solve instances that were very large. This observation
supports our view that a CLP formulation of column
generation was the right approach to solve these very
large crew scheduling problems.

The comparative performance of the hybrid model
against the isolated IP model over the OS 2222 and OS
3803 datasets is depicted in Figures 3 and 4, respec-
tively. We chose the IP approach for this comparison
because it was the best one among the exact isolated
approaches. The curves are identified as follows: “IP”
is the integer programming approach and “Hybrid”
is the hybrid column generation approach.
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2. The Crew Rostering Problem

The duties obtained as output from the solution of
the crew scheduling phase must be assigned to crews
day after day, throughout an entire planning hori-
zon. This sequencing has to obey a set of constraints
that differs from the constraints that are relevant to
the crew scheduling problem. This set includes, for
example, the need for days off, with a certain period-
icity, and a minimum rest time between consecutive
workdays.

2.1. Input Data

The set of duties to be performed on weekdays is
different from the set of duties to be performed on
weekends or holidays, due to fluctuations of customer
demand. For each case, the crew scheduling problem
gives a number of distinct sets of duties as input for
the rostering problem.

The planning horizon we are interested in spans
one complete month. It is important to take into
account as input data many features of the month
under consideration, such as the total number of days,
which days are holidays, and which day of the week
is the first day of the month (the remaining week-
days can be easily figured out from this information).
The differences in the input data from one month to
the next one may lead to variations of the number of
crews actually working in each month. Consequently,
some rules must be observed in order to select the
crews that are going to be effectively used. If, say,
in month m 40 crews were needed, and in month
m+1 only 38 will be necessary, how do we select the
2 crews that are going to be left out? Furthermore,
suppose that, after eliminating those crews that can-
not work in the current month for some reason, the
company has 50 crews available. Even if the number
of crews remains the same, e.g., 40, from one month
to the next, it is important to evenly distribute the
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work among them. This balance can be obtained con-
sidering the number of days each crew has worked
since the beginning of the year, for example, or with
the aid of another kind of ranking function for the
crews. Finally, because some constraints refer to a
time window that spans more than one month (see
§2.2), some attributes for each crew have to be carried
over between successive months.

The input data needed to build the roster for month
m are the following:

* The sets of duties D, Dq,, Dy,, and Dy, that have
to be performed on weekdays, Saturdays, Sundays,
and holidays, respectively.

¢ The number of days, d, in month m.

¢ The occurrence of holidays in month m.

* The day of the week corresponding to the first
day in month m.

* The whole set of crews, C, employed by the com-
pany.

* For each crew i in C.

— The set of days, OFF;, in which i is off duty
(due to vacations or sickness), excluding’s ordinary
weekly rests;

— The number of days, Is;, between the last Sun-
day i was off duty and the first day of month m;

— A binary flag, wr;, that is equal to 1 if and
only if i had a weekly rest in the last week of month
m—1;

— A binary flag, sl;, that is equal to 1 if and only
if i performed a split-shift duty during the last week
of month m —1;

— The difference in minutes, [w;, between the
last minute i was working in month m —1 and the
first minute of the first day of month m.

¢ For each duty k in D, UD,, UD,, UDy:

— The start and end times of k (ts, and te,
respectively), given in minutes after midnight;

— A binary flag, ss;, that equals 1 if and only if
k is a split-shift duty.

o A list of all crews in C sorted according to a
certain ranking function. This ordering will be used
to assign priorities to the crews when identifying the
subset of C that is going to work in month m.

2.2. Problem Constraints
The constraints associated with the sequencing of the
duties are:

(a) The minimum rest time between consecutive
workdays is 11 hours.

(b) Every employee must have at least one day off
per week. Moreover, for every time window spanning
seven weeks, at least one of these days off must be on
a Sunday.

(c) When an employee performs one or more split-
shift duties during a week, his day off in that week
must be on Sunday.

(d) In every 24-hour period starting at midnight,
within the whole planning horizon, each crew can
start to work on at most one duty.

2.3. Objectives

For each month, we are looking for the cheapest
solution in terms of the number of crews needed to
perform all the duties required. In addition, it is desir-
able to have balanced workloads among all the crews,
but the models we present in this article are not con-
cerned with this issue.

2.4. The Format of the Input Datasets

Before describing the IP and CLP models for the
rostering problem, it is important to understand the
format of the instances used in the computational
experiments. These instances correspond to the actual
schedules constructed by the crew scheduling phase
described in §1.

Using the duties built during the crew scheduling
phase, we have constructed a set of instances ranging
from small to large that are typically encountered by
the management personnel in the bus company. The
main features of these instances appear in Table 6.
The “Name” is just a string identifying the instance.
The number of crews available for the roster, c,
appears under the heading “#Crews.” The column
“#Days” shows the number of days in the planning
horizon in the format d(h), where d indicates the total
number of days and h indicates how many of those
d days are holidays. The next four columns show the
number of duties that must be performed in each kind
of the possible working days: weekdays, Saturdays,
Sundays, and holidays, respectively. The format used
is ss/tt, where tt is the total number of duties and
ss is how many of the tt duties are split-shift duties.
To begin, we set the following parameters for every
crew i: OFF, =@, 1s; =0, wr; =1, sl; =0, and [w,; = 660.
This is the same as ignoring any information from the
previous month when constructing the roster for the
current month.

2.5. An IP Approach

Let n be the total number of crews available and let
d be the number of days in the current month m.
Moreover, let p, g, r, and s be the numbers of duties
to be performed on weekdays, Saturdays, Sundays,
and holidays, respectively (i.e., |Dyi| =p, |Dl =9,
|D,,| =1, and |D,,| =s). The IP formulation of the ros-
tering problem is based on x;; binary variables that

Table 6 Description of the Instances for the Experiments

#Duties
Name #Crews #Days Week Saturday  Sunday  Holiday
string c d(h)  SSyltty  SSqultly  SSq/tly  SSpe/thy,
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are equal to 1 if and only if crew i performs duty k
on day j. If j is a weekday, k belongs to {0, 1, ..., p}.
Analogously, if j is a Saturday, Sunday, or holiday, k
ranges over {0,p+1,...,p+4q}, {0, p+g9+1,...,p+
g+r},or{0,p+q+r+1,..., p+q+r+s}, respectively.
The duty numbered 0 is a special duty indicating that
the crew is off duty on the given day. Thus, if x;;, =
1 it means that crew i is not working on day j. For
modeling purposes, we set ts; to a very large number,
te, =0, and ss; = 0. Given a day j in m, D; repre-
sents its set of duty indexes, except for the duty 0. For
instance, if j is a Saturday then D; ={p+1,...,p+q}.

The main objective is to minimize the number of
crews working during the present month. This is
equivalent to maximizing the number of crews that
are idle during the whole month. Given this choice
of variables and objective function, an IP model for
this problem can be easily written. Our complete for-
mulation is presented in detail in Yunes et al. (2000b).
The linear relaxations and the integer programs were
solved with the CPLEX solver. This model appears
to suffer from symmetry, as discussed in Barnhart
et al. (1998), and finding optimal solutions, even for
small instances, turned out to be a difficult task.
For example, when looking for optimal solutions
for instances with tens of duties in a workday, not
even a feasible answer could be found within 30
minutes of computation time. Therefore, we decided
to experiment with a pure CLP formulation of the
problem.

2.6. A CLP Approach

Having found difficulties when solving the crew ros-
tering problem with a pure IP model, as described
in §2.5, we decided to try a constraint-based formu-
lation. We used the ECL'PS® finite domain constraint
solver to solve the model.

Letn, d, p, q, v, and s be defined as in §2.5. The main
idea of the CLP model for the rostering problem is to
represent the final roster as a two-dimensional matrix,
X, where each cell Xj; contains the duty performed by
crew i on day j, forie{l,...,n}, and je{1,...,d}.
The X;/’s are finite domain variables whose domains
depend on the value of j. For the complete details see
Yunes et al. (2000b).

2.6.1. Computational Results. When compared to
the IP model of §2.5, this model performed much
better both in terms of solution quality and compu-
tation time. As can be seen in Table 7, it was possi-
ble to find feasible solutions for fairly large instances
in a few seconds. Again, no minimization predi-
cate was used and the solutions presented here are
the first feasible rosters encountered by the model.
The column “LB” in Table 7 shows the LP lower
bound.

Some special cases deserve further consideration.
When providing 15 crews to build the rosters for
instances s16 and s17, the model could not find a
feasible solution even after 10 hours of search. Then,
after raising the number of available crews in these
instances to 16 (s16a) and 18 (s17a), respectively, we
easily found the model solutions. Another interest-
ing observation arises from instance s19. This instance
comes from the solution of a complete real-world
crew scheduling problem. In this problem, the opti-
mal solution for weekdays contains 25 duties, 22 of
which are split shifts. Because we did not have access
to the input datasets for the other workdays, the sets
of duties for Saturdays, Sundays, and holidays are
subsets of the solution given by the scheduling algo-
rithm for a weekday. Instance s19a is made up of the
same duties, except that all of them are artificially
considered non-split shifts. Notice that the value of
the first solution found is significantly smaller for
instance s19a than it is for instance s19. This is an
indication of the severity of the influence of the con-
straints (2.2) introduced in §2.2. Moreover, we can see
from Table 7 that the values of the solutions grow
quickly as the number of split-shift duties increases.
With this point in mind, we generated two other solu-
tions for the same crew scheduling problem where the
total number of duties used was increased in favor
of a smaller number of split shifts. These are s20
and s21. Despite the larger number of duties in the
input, the final roster for these instances uses fewer
crews than it did for instance s19. This strengthens
the remark made by Caprara et al. (1997) that, ide-
ally, the scheduling and rostering phases should work
cyclically, with some feedback between them.

Similar to the IP approach, this CLP model was not
efficient to compute optimal solutions. Because we
were limited to run for 24 hours, we could only find
provably optimal solutions for instances s01, s02, and
s03.

2.7. Proving Optimality

In §§2.5 and 2.6, we showed that it is difficult to find
provably optimal solutions for this rostering prob-
lem. Moreover, it is possible to see from Table 7 that
the lower bound provided by the LP relaxation of
the problem is always equal to the largest number of
duties that must be performed on a workday. This is
clearly a trivial lower bound and probably not a very
good one. We decided then to try another formula-
tion for the problem, to find better lower bounds or,
at least, better feasible solutions.

2.7.1. A Hybrid Model. Another possible mathe-
matical model for the rostering problem turns out to
be a typical set partitioning formulation, where 7 is
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Table 7 Computational Experiments with the CLP Model
# Duties

Name #Crews #Days Week Saturday Sunday Holiday LB Sol Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 4 5 0.08
s02 10 15 (2) 00/04 00/01 00/01 00/01 4 5 0.18
s03 10 20 (2) 00/04 00/01 00/01 00/01 4 5 0.23
s04 10 25 (2) 00/04 00/01 00/01 00/01 4 5 0.36
s05 10 30 (2) 00/04 00/01 00/01 00/01 4 5 0.48
s06 10 30 (2) 01/04 00/01 00/01 00/01 4 5 0.52
s07 10 30 (2) 02/04 00/01 00/01 00/01 4 5 0.50
s08 10 30 (2) 03/04 00/01 00/01 00/01 4 6 0.52
s09 10 30 (2) 04/04 00/01 00/01 00/01 4 7 0.52
s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 0.52
s11 10 30 (2) 04/04 01/01 00/01 01/01 4 7 0.53
s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 0.90
s13 15 30 (2) 00/10 00/06 00/05 00/05 10 13 1.22
s13a 15 10 (1) 00/10 00/06 00/05 00/05 10 13 0.28
s14 15 30 (2) 03/10 01/06 00/05 01/05 10 13 1.35
s15 15 30 (2) 03/10 03/06 00/05 03/05 10 15 1.36
s16 15 30 (2) 05/10 03/06 00/05 03/05 10 ? >10:00:00
s16a 16 30 (2) 05/10 03/06 00/05 03/05 10 16 1.49
s17 15 30 (2) 0710 03/06 00/05 03/05 10 ? >10:00:00
s17a 18 30 (2) 07/10 03/06 00/05 03/05 10 18 1.78
s18 30 30 (2) 00/20 00/10 00/10 00/10 20 25 4.96
s18a 30 10 (1) 00/20 00/10 00/10 00/10 20 25 1.09
s19 50 30 (2) 22/25 12/15 12/15 12/15 25 47 14.46
s19a 40 30 (2) 00/25 00/15 00/15 00/15 25 33 9.36
s20 40 30 (2) 06/26 02/15 02/15 02/15 26 34 10.50
s20a 40 7(1) 06/26 02/15 02/15 02/15 26 34 1.56
s21 36 30 (2) 00/31 00/20 00/20 00/20 31 36 8.30
s21a 36 7(1) 00731 00/20 00/20 00/20 31 34 1.29

the number of rosters:

min ) x;
j=1
subject to Za,-jszl, viell,..., e}
=1
x;€{0,1}, Vjefl, ..., nk

All numbers a;; in the coefficient matrix A are 0 or 1
and its columns are constructed as shown in Figure 5.
Each column is composed of d sequences of numbers,
where d is the number of days in the planning hori-
zon. For each k € {1, ..., d}, the kth sequence, [}, has
length h;, where h, is the number of duties that must
be performed on day k. Also, at most one number
inside each sequence is equal to 1. The number of
rows e, in A, equals YI_, h,.

A column in A must represent a feasible roster for
one crew. More precisely, let t = (1, u,, ..., u;) be a

hy ho hi ha
(0---010---00---010---0 ---0---0 ...0...010...0>T

Figure 5 A Column in the Coefficient Matrix of the Set Partitioning

Formulation

feasible roster for a crew, where u;, k€ {1,...,d} is
the number of the duty performed on day k. Remem-
ber from §2.5 that u; € D, U {0}, where Dy is equal to
{1,....pL {p+1,...,p+q}, lp+g+1,...,p+q+r}, o1
{p+g+r+1,...,p+q+r+s}, depending on whether
k is a weekday, a Saturday, a Sunday, or a holiday,
respectively. For every such feasible roster t, A will
have a column where, in each sequence [, the ith
number will be equal to 1 (i {1, ..., k}) if and only
if u, is the ith duty of D;. In case u; =0, all numbers
in sequence I, are set to 0.

With this representation, the objective is to find a
subset of the columns of A, with minimum size, such
that each line is covered exactly once. This is equiva-
lent to finding a number of feasible rosters that exe-
cute all the duties in each day of the planning horizon.

It is not difficult to see that the number of columns
in the coefficient matrix is enormous and it is hopeless
to try to generate them all in advance. For example,
the coefficient matrix for an instance as small as s03
already has billions of columns. Hence, we decided
to implement a branch-and-price algorithm to solve
this problem, generating columns as they are needed.
This approach is deemed hybrid because the column
generation subproblem is solved by a CLP model.
The whole algorithm follows the same basic ideas
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Table 8 Computational Experiments with the Hybrid Model
#Duties

Name #Crews #Days Week Saturday Sunday Holiday LB Opt Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 4 5 0.66
s02 10 15 (2) 00/04 00/01 00/01 00/01 4 5 2.12
s03 10 20 (2) 00/04 00/01 00/01 00/01 4 5 4.56
s04 10 25 (2) 00/04 00/01 00/01 00/01 4 5 16.72
s13a 15 10 (1) 00/10 00/06 00/05 00/05 10 13 12.73
s18a 30 10 (1) 00/20 00/10 00/10 00/10 20 25 00:04:03
s20a 40 7(1) 06/26 02/15 02/15 02/15 26 26 21:23:36
s21a 36 7(1) 00/31 00/20 00/20 00/20 31 31 05:39:50

described in §1.6. The model for the column gener-
ator is a variation of the CLP model of §2.6. Now,
instead of looking for a complete solution for the ros-
tering problem, we are only interested in finding, at
each time, feasible rosters corresponding to columns
in A with negative reduced cost.

2.7.2. Preliminary Results. The best results for
the hybrid model were achieved when initializing the
columns of matrix A as the ones obtained by the
first solution found by the CLP model of §2.6. Also,
the ordinary labeling mechanism worked better than
labeling according to the first-fail principle.

With this model, we could find provably optimal
solutions for small instances of the rostering problem,
as shown in Table 8, where column “LB” gives the
LP bound at the root node and column “Opt” gives
the optimal value. By “small instances” we mean
either instances with a small number of duties to be
executed in each day or instances with a short plan-
ning horizon. This is already a noticeable improve-
ment over the pure IP model of §2.5, which was not
able to find any optimal solution, even for the small-
est instances. Besides, when comparing Tables 7 and
8, we can see that the first solutions found by the pure
CLP model for instances s01 to s04, s13a, and s18a are
indeed optimal.

We believe that the main reason for the poor per-
formance of this algorithm over larger instances is
because the IP formulation of §2.7.1 may lead to
degenerate problems, as is the case with many par-
titioning problems with unit cost functions. When
trying to solve larger instances, the pricing subrou-
tine keeps on generating columns for a long time,
with little or no improvement in the value of the
objective function. As a consequence, the linear relax-
ation of the first node of the branch-and-price enu-
meration tree could not be completely solved in
the medium- and large-sized instances. For example,
Figure 6 shows the progress on the value of the objec-
tive function in terms of the number of column gen-
eration iterations for instance s20a. Notice that it took
more than 3,737 iterations to decrease the objective
function from the initial value of 34 to something

below 33. In this case, the solution of the first LP relax-
ation was already integer. Out of the 21.4 hours of
computation, 20.1 hours (94%) were spent generating
columns and 1.3 hours (6%) were spent solving linear
programs.

As can be seen in Figure 6, the stalling on the value
of the cost function occurs during the first few thou-
sand iterations. Recall that, at each iteration, the CLP
solver returned the first 50 columns with negative
reduced cost that it could find. As the iterations pro-
gressed, the dual variables tended to contain more
information, thus helping the CLP solver produce bet-
ter columns.

Another problem concerns the labeling policy that
follows the simplest possible strategy. In the next sec-
tion, we present some ideas that were implemented
with these deficiencies in mind.

2.7.3. Performance Improvements. We imple-
mented three major modifications in the hybrid
algorithm presented so far with the intent of finding
provably optimal solutions for larger instances of the
rostering problem. These modifications are outlined
below.

Because the cost of all the columns in our formula-
tion is equal to 1, we have an undesirable symmetry
in the sense that any column is, in principle, as suit-
able for the solution as any other. We decided then to
implement a strategy similar to what was presented
in Grotschel et al. (1996) and Uchda and Poggi de
Aragao (1999). The basic idea is to add a small per-
turbation, ¢ € [—6, 8], to the cost of each column. For
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Figure 6 Stalling of the Objective Function Value on Instance s20a
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this mechanism to function correctly, the value of o
was chosen according to a simple rule: One solution
S with k+1 columns must always cost more than one
solution S with k columns. The most critical situa-
tion occurs when all columns in S cost 1 — 6 and all
columns in S’ cost 1+ 8. Then, we must have

(k+1)(1 - 8) > k(1+9)

or, equivalently,
1

o< TR 4)
Because the number of columns in an optimal solu-
tion will never be greater than the total number of
lines, e, in the coefficient matrix, we set k = e in (4).
One final observation is relevant. If we were solv-
ing an integer program with all columns loaded in
memory, the value of g, for each column, could be
randomly chosen inside the interval [—&, 6]. How-
ever, because we are generating columns on demand
and the negative reduced cost constraint depends on
the cost of the column in the objective function, the
choice of & must be deterministic. Our approach was
to divide the [—§, 8] interval into v discrete values
and then use a mod-type hash function to map each
column to a specific value of perturbation . Cormen
et al. (1990) suggest that v should be a prime num-
ber not too close to a power of 2. We decided to set
v=1,531.

Set Covering Formulation. With the problem con-
straints described in §2.2, it is easy to see that any
subroster of a feasible roster is itself another feasible
roster. Hence, if we change the set partitioning formu-
lation of §2.7.1 to a set covering formulation, the final
covering solution can be transformed in a partition
just by removing from some rosters those duties that
are performed more than once, if any. This idea was
motivated by the fact that, in general, a set covering
formulation of a problem is easier to solve than a set
partitioning formulation for the same problem.

New Labeling Criterion. Recall from §1.4.2 that the
reduced cost constraint for column ¢ reads

> u; > Cost,, )

]EDL

where D, is the set of duties covered by c, u; is the
value of the dual variable associated to duty j, and
Cost, is the coefficient of c in the objective function.
Following a greedy criterion, we decided to label the
variables in the CLP column generator, taking into
account their contribution to the left-hand side of
(5). In other words, after choosing one variable to
label next, the values in its domain are initially sorted
according to the nonincreasing order of their corre-
sponding u; values. That is, the duties with the largest
corresponding dual values are tried first. Because the
sum of u;'s must be greater than Cost,, if the largest
u; values are not large enough, then there is no need
to test the smallest values.

Looking for Better Dual Prices. We tried different
pricing strategies available in CPLEX such as the vari-
ants on dual steepest-edge pricing. Also, we tried to
use a barrier method to solve the LP relaxation, since
these methods have a tendency to converge to strictly
complementary and, therefore, nondegenerate solu-
tions with more useful dual prices.

2.7.4. Computational Results with the Improved
Algorithm. The inclusion or exclusion of each one of
the previous suggested improvements leads to vari-
ous possible versions of the hybrid algorithm. After
comparing the results obtained with all these possi-
ble combinations, the best overall performance was
achieved by an algorithm using the simplest label-
ing strategy over a set covering formulation without
perturbations on the costs, and with CPLEX'’s default
pricing rule. The results are summarized in Table 9.
On the other hand, when tackling the specific instance
s20a, the best overall performance was achieved by an
algorithm using the improved labeling strategy over

Table 9 Computational Results with the Best Configuration of the Improved Hybrid Model
#Duties

Name #Crews # Days Week Saturday Sunday Holiday LB Opt Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 4 5 0.31
s02 10 15 (2) 00/04 00/01 00/01 00/01 4 5 0.47
s03 10 20 (2) 00/04 00/01 00/01 00/01 4 5 0.62
s04 10 25 (2) 00/04 00/01 00/01 00/01 4 5 0.73
s05 10 30 (2) 00/04 00/01 00/01 00/01 4 5 0.85
s06 10 30 (2) 01/04 00/01 00/01 00/01 4 5 0.89
s07 10 30 (2) 02/04 00/01 00/01 00/01 4 5 0.87
s13a 15 10 (1) 00/10 00/06 00/05 00/05 10 13 7.34
s18a 30 10 (1) 00/20 00/10 00/10 00/10 20 25 20.05
s20a 40 7(1) 06/26 02/15 02/15 02/15 26 26 12:40:42
s21a 36 7(1) 00/31 00/20 00/20 00/20 31 31 00:17:19
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a set partitioning formulation without cost perturba-
tion. The latter configuration could find an optimal
solution for instance s20a in less than 16 minutes,
whereas Table 9 reports more than 12 hours of com-
putation for the same instance.

When comparing Tables 8 and 9, we notice signif-
icant gains both in terms of the time needed to find
the optimal solutions and in terms of the sizes of the
instances that were optimally solved by the algorithm.
The improved versions of the hybrid algorithm still
do not scale up to an entire planning horizon of one
complete month with a large number of duties in each
day. Nevertheless, we were able to construct optimal
weekly rosters for real-world instances. We believe
that further developments on the labeling strategy
through the inclusion of more sophisticated guiding
heuristics can be used to improve the performance of
this algorithm.

3. Conclusions and Future Work
Real-world crew management problems often give
rise to large set covering or set partitioning models.
We have given a detailed description of urban transit
crew management problems that are part of the daily
operation of a medium-size Brazilian bus company. In
particular, their rostering problem is rather different
from some other bus crew rostering problems found
in the literature.

We have shown a way to integrate pure IP and
declarative CLP techniques into hybrid column gen-
eration algorithms that solved, to optimality, huge
instances of these real-world crew management prob-
lems. It was difficult to obtain provably optimal
solutions for these problems for both IP and CLP
approaches when taken in isolation. Our hybrid
methodology combines the strengths of both sides,
while overcoming some of their main weaknesses.

Another crucial advantage of our hybrid approach
over a number of previous attempts is that it consid-
ers all feasible duties. Therefore, the need does not
arise to use specific rules to select, at the start, a subset
of “good” feasible duties (or rosters). This kind of pre-
processing could prevent the optimal solution from
being found. Instead, our algorithm implicitly looks
at the set of all feasible duties (rosters), when acti-
vating the column generation method. When declara-
tive constraint satisfaction formulations are applied to
generate new columns on demand, they have shown
to be a very efficient strategy, in contrast to dynamic
programming, for example.

We believe that our CLP formulations can be
further improved. In particular, the search strat-
egy deserves more attention. Earlier identification of
unpromising branches in the search tree can reduce
the number of backtracks and lead to substantial

savings in computational time. Techniques such as
dynamic backtracking (Ginsberg 1993) and the use of
nogoods (Lever et al. 1995) can be applied to traverse
the search tree more efficiently, thereby avoiding use-
less work.
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