Solving Very Large
Crew Scheduling Problems to Optimality

*
Tallys H. Yunes

Institute of Computing,

University of Campinas

tallys@acm.org

Arnaldo V. Moura
Institute of Computing,
University of Campinas

P.O. Box 6176, ZIP 13083-970

Campinas, SP, Brazil

. T
Cid C. de Souza
Institute of Computing,
University of Campinas

cid@dcc.unicamp.br

arnaldo@dcc.unicamp.br

Keywords

Crew Scheduling, Constraint Programming, Mathematical
Programming, Hybrid Algorithms, Column Generation

ABSTRACT

In this article, we present a hybrid methodology for the ex-
act solution of large scale real world crew scheduling prob-
lems. Our approach integrates mathematical programming
and constraint satisfaction techniques, taking advantage of
their particular abilities in modeling and solving specific
parts of the problem. An Integer Programming framework
was responsible for guiding the overall search process and
for obtaining lower bounds on the value of the optimal so-
lution. Complex constraints were easily expressed, in a
declarative way, using a Constraint Logic Programming lan-
guage. Moreover, with an effective constraint-based model,
the huge space of feasible solutions could be implicitly con-
sidered in a fairly efficient way. Our code was tested on real
problem instances arising from the daily operation of an or-
dinary urban transit company that serves a major metropoli-
tan area with an excess of two million inhabitants. Using
a typical desktop PC, we were able find, in an acceptable
running time, an optimal solution to instances with more
than 1.5 billion entries.

1. INTRODUCTION

Crew scheduling problems have their great practical impor-
tance based on the fact that, in most companies, employee
related expenses may rise to a very significant portion of
the total expenditures. Therefore, these notoriously difficult

*Supported by FAPESP grant 98/05999-4, and CAPES.

JrSupported by FINEP (ProNEx 107/97), and CNPq
(300883/94-3).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SAC '00 Villa Olmo, Como, Italy

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

combinatorial optimization problems deserve a great deal of
attention. In this article, we present a hybrid strategy that
is capable of efficiently obtaining provably optimal solutions
for some large instances of specific crew scheduling problems.
These instances stem from the operational environment of a
mass transit company that serves the metropolitan area of
the city of Belo Horizonte, in Brazil.

Previous attempts to solve similar crew scheduling problems
to optimality, either with Integer Programming (IP) or with
Constraint Programming (CP) techniques alone, faced dif-
ficulties when handling large scale instances due to a series
of factors [2; 6; 8].

In order to combine the capabilities of both the IP and CP
techniques, we developed a hybrid approach to solve larger,
more realistic, problem instances. The main idea is to use
the linear relaxation of a smaller core problem in order to
efficiently compute good lower bounds on the optimal so-
lution value. Using the values of the dual variables in the
solution of the linear relaxation, we can enter a column gen-
eration phase that computes new feasible duties. This phase
is modeled as a constraint satisfaction problem which is then
submitted to a constraint solver. The solver returns new
feasible duties to be inserted in the IP problem formulation,
and the initial phase can be taken again, restarting the cy-
cle. This approach secures the strengths of both the pure
IP and the pure CP formulations: only a small subset of
all the feasible duties is efficiently dealt with at a time, and
new feasible duties are quickly computed only when they
will make a difference. The resulting code was tested on
some large instances, based on real data. As of this writing,
we can solve, in a reasonable time and with proven opti-
mality, instances with an excess of 150 trips and 12 million
feasible duties. The resulting code was compiled under the
Linux operating system, kernel 2.0, and ran on a 350 MHz
desktop PC with 320 MB of main memory.

This article is organized as follows. Section 2 describes the
crew scheduling problem. In Section 3, we discuss some dif-
ficulties faced by the pure IP and CP approaches. In Section
4, we present the hybrid approach together with some imple-
mentation details, and also report on computational results
based on real data. Finally, in Section 5, we conclude and
discuss further issues.

2. THE CREW SCHEDULING PROBLEM

In a typical crew scheduling problem, a set of trips has to

be assigned to some available crews. The goal is to assign a
subset of the trips to each crew in such a way that no trip
is left unassigned. As usual, not every possible assignment
is allowed since a number of constraints must be observed.
Additionally, a cost function has to be minimized.

2.1 Terminology

Among the following terms, some are of general use, while
others reflect specifics of the transportation service for the
urban area where the input data came from. A depot is a
location where crews may change buses and rest. The act of
driving a bus from one-depot to another depot, passing by no
intermediate depots, is named a trip. Associated with a trip
we have its start time, its duration, its initial depot, and its
final depot. The duration of a trip is statistically calculated
from field collected data, and depends on many factors, such
as the day of the week and the start time of the trip along
the day. A duty is a sequence of trips that are assigned to
the same crew. Any time interval between two consecutive
trips in a duty is called an idle interval. Whenever this
idle interval exceeds Idle_Limit minutes, it is called a long
rest. During a long rest, crews can leave the premises and
return later to resume their shift. A duty that contains
a long rest is called a split-shift duty. The rest time of a
duty is the sum of its idle intervals, not counting long rests.
The parameter Min_Rest gives the minimum amount of rest
time, in minutes, that each crew is entitled to. The sum
of the durations of the trips in a duty is called its working
time. The sum of the working time and the rest time gives
the total working time of a duty. The time, in minutes,
that a crew member works in excess of Workday minutes is
called overtime and is given by max{0, total working time —
Workday}. The Workday is a given parameter, specified
by union regulations, that bounds the maximum time that
an employee can work without incurring in overtime. An
upper bound on overtime is established by the parameter
Maz_Overtime. Finally, the mazimum working time is given
by Workday + Maz_Overtime.

2.2 Input Data

The input data comes in the form of a two dimensional ta-
ble where each row represents one trip. For each trip, the
table lists four columns with information about this trip:
start time, measured in minutes after midnight, duration,
measured in minutes, initial depot and final depot. We have
used data that reflect the operational environment of two
bus lines, Line 2222 and Line 3803, that serve a major
metropolitan area. Line 2222 has 125 trips and one depot
and Line 3803 has 246 trips and two depots. The input data
tables for these lines are called OS 2222 and OS 3803, respec-
tively. By considering initial segments taken from these two
tables, we derived several other smaller problem instances.
For example, taking the first 30 trips of OS 2222 gave us
a new 30-trip problem instance. Table 1(a) shows the first
10 rows of OS 3803. A measure of the number of active
trips along a typical day, for both Line 2222 and Line 3803,
is shown in Table 1(b). This graphic was constructed as
follows. For each (z,y) entry, we consider a time window
T =[x,z + Workday]. The ordinate y indicates how many
trips there are with start time s and duration d such that
s € Tor s+d € T. The particular shapes of these two
curves represent a typical daily workload in the operation of
an urban bus company in Brazil.

2.3 Constraints

For a duty to be classified as feasible, it has to satisfy many
constraints imposed by labor contracts and union regula-
tions, among others. The most important constraints are,
for every duty:

i. For each pair of consecutive trips, 7 and j:
(1) (start time); + (duration); < (start time);
(it) (final depot); = (initial depot);

ii. total working time < mazimum working time;

iii. rest time + max{0, Workday — total working time} >
Min_Rest; and

iv. At most one long rest interval is allowed;

Due to union regulations and operational constraints, the
following values were used in our experiments: Idle_Limit =
120, Workday = 440, Min_Rest = 30 and Maz_Overtime =
0, measured in minutes. A duty which satisfies all problem
constraints is called a feasible duty. Any set of feasible duties
constitutes a schedule and for a schedule to be acceptable it
must partition the set of trips. The cost of a schedule is
the sum of the costs of all its duties. As we are interested
in minimizing the number of crews needed to operate the
bus line, all duties are treated equally and their costs are
set to one. With this assumption, minimizing the cost of a
schedule reduces to minimizing the number duties (crews) in
the solution. Finally, a minimal schedule is any acceptable
schedule with minimum cost.

3. PURE APPROACHES

The crew scheduling problem, as described here, presents a
classical difficulty: finding the optimal schedule reduces to
choosing from an extremely large set F' of feasible duties, a
minimal subset that partitions the set of trips to be serviced.
The very large size of F' poses serious problems, since a
provably optimal solution can only be found if all elements
of F are considered, either implicitly or explicitly.

When adopting IP approaches to solve this problem, one
usually ends up with a set partitioning formulation where
the elements of F' constitute the columns of the coefficient
matrix. The pure IP formulation of the problem is:

n
minZa:j (1)
j=1
subject to Zaijl']‘ =1, i=12,...,m (2)
j—1

5e{01}, =120 (3

where m is the total number of trips and n is the size of
F. The z;’s are 0-1 decision variables that indicate which
duties belong to the solution. The coefficient a;; equals 1 if
duty j contains trip ¢, otherwise, a;; is 0.

Due to the size of F', an implicit way to treat the set of fea-
sible duties is needed. Column generation [1] is a technique
that is widely used to handle linear programs which have a
very large number of columns in the coefficient matrix. The
method works by repeatedly executing two phases. In a first
phase, instead of solving a linear relaxation of the whole
problem, in which all columns are required to be loaded in
memory, we quickly solve a smaller problem. This problem
is called the master problem, and deals only with a subset
of the original columns. That smaller problem solved, we

Table 1: (a) Sample from OS 3803 (b) Distribution of trips along the day

120
[Start | Dur [L dep. | F. dep. | 0S 3803
1 33 i 2 100 4
50 | 40 2 1 %0 |
90 | 38 1 2
130 38 2 1 Number of g0 —|
(a) 170 38 1 2 (b) active trips 0S 2992
210 38 2 1 40—
250 | 39 1 2
200 | 38 2 1 20
285 | 45 1 2 0
335 | 45 2 L 0 200 400 600 800 1000 1200 1400

start phase two, looking for columns with a negative reduced
cost. If there are no such columns, we have proved that the
solution at hand indeed minimizes the objective function.
Otherwise, we augment the master problem by bringing in
a number of columns with negative reduced costs, and start
over on phase one. From the IP formulation above, the re-
duced cost of a feasible duty d is given by 1 — ZjeT uj,
where T is the set of trips serviced by d and wu; is the value
of the dual variable associated with trip j. The problem
of computing columns with negative reduced costs is called
the slave subproblem. When the original variables are re-
stricted to integer values, this algorithm must be embedded
in a branch-and-bound strategy. The resulting algorithm is
usually referred to as branch-and-price. The slave subprob-
lem can be modeled as a constrained shortest path prob-
lem over a directed acyclic graph and it can be solved by
a dynamic programming algorithm [3]. Nevertheless, the
pseudo-polynomial algorithms that arise from this strategy
turn out to be very time consuming. This is mainly because
of the looseness of our problem constraints [8].

Difficulties also arise when trying to solve crew scheduling
problems using pure constraint satisfaction techniques [2; 6;
8]. The huge search space can only be dealt with efficiently
when pruning is enforced by strong local constraints. Be-
sides, a simple search strategy, lacking good problem specific
heuristics, is very unlikely to succeed. When solving schedul-
ing problems of this naturem to optimality, none of the these
requirements can be easily met, rendering it intrinsically dif-
ficult for pure CP techniques to produce satisfactory results
in these cases.

4. A HYBRID APPROACH

Recent research [4] has shown that, in some cases, neither
the pure IP nor the pure declarative CP approaches are ca-
pable of solving certain kinds of combinatorial problems sat-
isfactorily. But a hybrid strategy may outperform these two
methods. When contemplating a hybrid strategy, it is neces-
sary to to decide which part of the problem will be handled
by a constraint solver, and which part will be dealt with
in a classical way. Given the huge number of columns at
hand, the use of a column generation approach seemed to
be almost mandatory.

A declarative constraint language is particularly suited to
express the feasibility constraints imposed by the original
problem in a clear and concise way. Furthermore, a con-

Time (minutes)

straint model of the original problem can also be easily
turned into an efficient column generator by adding one
extra constraint to the model: the generated duties must
have a negative reduced cost so as to improve the objective
function value [1]. Moreover, when looking for new feasi-
ble duties (columns) to enter the basis in the current set
partitioning formulation, it is not necessary to find the one
with the most negative reduced cost. This removes the mini-
mization constraint from the formulation, rendering it much
more efficient. Our hybrid strategy implemented a column
generation approach where new columns were generated on
demand by a declarative constraint program.

We decided to use the ABACUS' branch-and-price frame-
work in order to save programming time. The Linear Pro-
gramming relaxations of the set partitioning formulation of
the problem are solved inside ABACUS with the help of
a CPLEX? 3.0 LP solver. When the ABACUS process has
solved the current master problem to optimality, it sends the
values of the dual variables to the constraint solver, together
with the number of columns with negative reduced costs it
would like to get. If there remained some such columns, a
subset of them is captured by the CP solver and sent back
to the ABACUS process, and the cycle starts over. If there
are no such columns, the LP solver has found an optimal
solution. Having found the optimal solution for the current
node of the enumeration tree, its dual bound has also been
determined. The normal branch-and-bound algorithm can
then proceed until it is time to solve another LP at a differ-
ent node of the implicit enumeration tree. By experimenting
with the data sets at hand, we determined that the number
of columns with negative reduced cost to request at each call
of the CP solver was best set to 53.

4.1 The Column Generator

Modeling with finite domain constraints is rapidly gaining
acceptance as a promising declarative programming environ-
ment to solve large combinatorial problems. All models de-
scribed in this section were formulated using the ECL'PS® 3
syntax, version 4.0. Due to its large size, the ECL'PS® for-
mulation for each run was prodiced by a program generator
that we developed in C.

When creating the constraint-based column generator, our

"http://www.informatik.uni-koeln.de/1ls_juenger/
2CPLEX is a registered trademark of ILOG, Inc.

Shttp://www.icparc.ic.ac.uk/eclipse

aim was to facilitate the direct representation of algebraic
constraints. The model is based on a vector X of integers.
The number of elements in X is an upper bound on the size
of any feasible duty (UBdutyLen). To calculate UBdutyLen,
we start by summing up the durations of the trips, taken in
non-decreasing order. When we reach a value that is greater
than mazimum working time minutes, UBdutyLen is set to
the number of trips used in the sum. Each X; element, called
a cell, represents a single trip and is a finite domain variable
with domain [1..NT], where NT = N + UBdutyLen — 1 and
N is the number of real trips. Trips numbered N +1 to NT
are dummy trips. The start time of the first dummy trip
equals the arrival time of the last real trip plus one minute
and its duration is zero minutes. All the subsequent dummy
trips also last zero minutes and their start times are such
that there is a one minute idle interval between consecutive
dummy trips, i.e., they start at each following minute. Their
departure and arrival depots are equal to 0. These choices
prevent incompatibilities arising from time intersection and
mismatching of depots among the dummy trips. Besides,
we avoid the occurrence of dummy trips between real trips
in a feasible duty.

Note that, the way UBdutyLen is calculated assures that at
least one dummy trip appears in X. Moreover, their start
times guarantee that the dummy trips occupy consecutive
cells at the end of X. This is on purpose, to facilitate the
representation of some constraints.

Five additional vectors were used: Start, End, Dur, DepDe-
pot and ArrDepot. The i-th cell of these vectors represents,
respectively, the start time, the end time, the duration, and
the departure and arrival depots of the trip assigned to X;.
Next, we state constraints of type element (X;, S, Start;),
where S is a list containing the start times of all NT trips.
The semantics of this constraint assures that the value of
Start; is the k-th element of list S where k is the value in
X;. This maintains the desired relationship between vectors
X and Start. Whenever X; is updated, e.g. due to con-
straint propagation, Start; is also modified, and vice-versa.
Similar constraints are stated between X and each one of
the four other vectors. Now, we can use these new vectors
to easily state additional constraints, like:

Endi S Startiﬂ (4)
ArrDepot; + DepDepotiv1 # 3 (5)
Idlei = BDi X (StartiJrl — Endl)(ﬁ)
for alls € {1, ..., UBdutyLen —1}. Equation (4) guarantees

that trips overlapping in time are not in the same duty. Since
the maximum number of depots is two, an incompatibility
between consecutive trips occurs only when the ending de-
pot is 1 and the starting depot is 2, or vice-versa. Equation
(5) forbids that situation. Additionally, the consecutiveness
of two dummy trips is permitted (for the sum of their de-
pots equals 0) and the appearance of the first dummy trip
after the last real trip in a duty is not precluded by this
constraint, because the sum of the depots in this case can
only assume the values 1 or 2. With a one-depot instance,
these constraints are not necessary and they are omitted,
together with the ArrDepot and DepDepot vectors. Some
other constraints are expressed using the Idle; variables of
Equation (6). The binary variables BD;, in (6), are such
that BD; =1 if and only if X;41 contains a real trip.

The constraint on total working time, for each generated

duty, is given by:

UBdutyLen—1 UBdutyLen—1

TWT = Z Dur; + Z

i=1 i=1

TWT < mazimum working time (8)

BI, x Idle; (7)

where BI; is a binary variable such that BI; =1 if and only
if Idle; < Idle_Limit.
The constraint on total rest time is:

UBdutyLen—1

> Idlei + max{0, Workday — TWT} > Min_Rest.

- (0)

To respect the constraint on split-shift duties, we impose
that at most one of the Idle; variables can assume a value
greater than Idle_Limsit. This is done with an atmost con-
straint in the following manner: atmost(1l,L,0). If list L
contains all the BI; variables of Equation (7), this means
that at most one of them can assume the value zero.
Changing dummy trips in a feasible duty gives another duty
that is equivalent to the original one. New constraints were
imposed over the X cells in order to force dummy trips to
have only one possible placement in X, given that the real
trips had already been positioned. This is achieved with the
following constraints, for all ¢ € {1,..., UBdutyLen — 1},
where N is the number of real trips:

X; <N = (Xi+1 >N=X;;1=N+ 1) (10)
Xi>N = Xipmi=X;+1. (11)

There is one final constraint, which is responsible for assur-
ing that generated duties have an associated negative re-
duced cost. Using the formula to calculate the reduced cost
of a column (feasible duty) given in Section 3, this constraint
reads:

UBdutyLen

o>l (12)

For each i, C; is determined by element (X;,V, C;), where V'
is a list whose elements are the values of the dual variables
associated with each trip. The dual variables associated
with dummy trips are assigned the value zero.

Various labeling strategies have been tried. The strategy
of choosing the next variable to label as the one with the
smallest domain (first-fail principle) proved to be the most
effective one, after a number of experimental trials. Hav-
ing chosen a variable, it is necessary to select a value from
its domain following a specific order, when backtracking oc-
curs. We tested different labeling orders, like increasing,
decreasing, and also middle-out and its reverse. Experimen-
tation showed that labeling by increasing order produced
the best results. It would be possible to improve the overall
performance of this search strategy by experimenting with
more sophisticated techniques. Dynamic backtracking [5]
and nogood assertions [7] could be used in this model so as
to promote an earlier pruning of unpromising branches of
the search tree.

A crucial advantage of this hybrid approach over a number
of previous attempts is that it considers all feasible duties.
Therefore, it is not necessary to use specific rules to se-
lect, at the beginning, a subset of “good” feasible duties.
This kind of preprocessing could prevent the optimal so-
lution from being encountered. Instead, with the column

Table 2: OS 2222 data set (1 depot)

[#Trips | #FD [Opt [DBR| #CA [#LP | #Nodes | PrT [LPT | TT |
10 63 7 7 53 2 1 0.08 0.02 0.12
20 306 11 11 159 4 1 0.30 0.04 0.42
30 1,032 14 14 504 11 1 1.48 0.11 2.07
40 5,191 14 14 1,000 26 13 8.03 0.98 9.37
50 18,721 14 14 1,773 52 31 40.97 3.54 45.28
60 42,965 14 14 4,356 107 41 00:04:24 14.45 | 00:04:40
70 104,771 14 14 2,615 58 7 00:01:36 4.96 | 00:01:42
80 212,442 16 16 4,081 92 13 00:01:53 18.84 | 00:02:13
90 335,265 18 18 6,455 141 11 00:02:47 31.88 | 00:03:22
100 496,970 20 20 8,104 177 13 00:06:38 51.16 | 00:07:34
110 706,519 22 22 11,864 262 21 00:16:53 | 00:02:28 | 00:19:31
125 1,067,406 25 25 11,264 250 17 00:19:09 | 00:01:41 | 00:21:00

Table 3: OS 3803 data set (2 depots)

[#Trips | #FD [Opt [DBR | #CA | #LP | #Nodes | PrT [LPT | TT |
20 978 6 6 278 7 1 2.11 0.08 2.24
30 2,890 10 10 852 19 1 9.04 0.20 9.38
40 6,705 13 13 2,190 48 1 28.60 1.03 30.14
50 17,334 14 14 4,220 94 3 00:01:22 3.95 | 00:01:27
60 45,236 15 15 8,027 175 1 00:03:48 14.81 | 00:04:06
70 107,337 15 15 11,622 258 1 00:07:42 40.59 | 00:08:37
80 256,910 15 15 8,553 225 1 00:10:07 47.12 | 00:10:58
90 591,536 15 15 9,827 269 1 00:14:34 | 00:02:04 | 00:16:43
100 1,180,856 15 15 13,330 375 1 00:39:03 | 00:04:37 | 00:43:49
110 2,015,334 15 15 13,717 387 1 01:19:55 | 00:03:12 | 01:23:19
120 3,225,072 16 16 18,095 543 13 04:02:18 | 00:09:09 | 04:11:50
130 5,021,936 17 17 28,345 874 23 06:59:53 | 00:30:16 | 07:30:56
140 8,082,482 18 18 27,492 886 25 13:29:51 | 00:28:56 | 13:59:40
150 | 12,697,009 | 19 | 19 | 37.764 | 1,203 25 21:04:28 | 00:49:13 | 21:55:25

generation method, our algorithm implicitly looks at the set
of all feasible duties.

4.2 Computational Results

In this section, execution times inferior to one minute are
reported as ss.cc, where ss denotes seconds and cc denotes
hundredths of seconds. When execution times exceed 60
seconds, we use the alternative notation hh:mm:ss, where
hh, mm and ss represent, respectively, hours, minutes and
seconds.

When compared to the pure approaches, the hybrid ap-
proach was able to construct an optimal solution to substan-
tially large instances of the problem, in a reasonable time.
Computational results for OS 2222 and OS 3803 appear on
Tables 2 and 3, respectively. Column headings have the
following meanings: #Trips is the number of trips; #FD
stands for the number of feasible duties; Opt is the value
of the optimal integer solution; DBR is the dual bound at
the root node of the branch-and-bound enumeration tree;
#CA is the number of columns added throughout each ex-
ecution; #LP is the number of linear programming relax-
ations solved; and #Nodes is the number of tree nodes vis-
ited. The execution times are divided in three columns: PrT
is the time spent generating columns; LPT is the time spent
solving linear programming relaxations and TT is the total
execution time. Note that, in every instance tested, the dual
bound at the root node was equal to the value of the optimal
integer solution. Hence, the LP relaxation of the problem
already provided the best possible lower bound on the op-
timal solution value. Also note that the number of nodes

visited by the algorithm was kept small. The same behav-
ior can be observed with respect to the number of added
columns.

It is interesting to note, in the last three columns of each
table, that the time taken to solve all linear relaxations of
the problem was a small fraction of the total running time
for both data sets.

From Table 2, we see that the hybrid approach was capable
of constructing a provably optimal solution for the complete
smaller data set using 21 minutes of running time on a 350
MHz desktop PC. That problem involves in excess of one
million feasible duties.

The structural difference between both data sets can be ap-
preciated by observing the entries on the line associated with
100 trips, in Table 3. The number of feasible duties on this
line corresponds, approximately, to the same number of fea-
sible duties that are present in the totality of 125 trips of
the first data set, OS 2222. Yet, the algorithm used roughly
twice as much time to construct the optimal solution when
running over a test case that contained the first 100 trips of
the larger data set, as it did when taking the 125 trips of the
smaller data set. The existence of two depots in OS 3803,
rather than a single one in OS 2222, seems to be at the origin
of the increased problem complexity of this instance.

Finally, when we fixed a maximum running time of 24 hours,
the algorithm was capable of constructing a solution, and
prove its optimality, for as many as 150 trips taken from the
larger data set. This corresponds to an excess of 12 million
feasible duties. It is noteworthy that less than 60 MB of
main memory were needed for this run to reach completion.

A problem instance with as many as 150x (12.5x10°) entries
would require over 1.8 GB of main memory, if needed to be
loaded into main memory. By efficiently dealing with only a
small subset of the feasible duties, our algorithm managed to
surpass the resource consumption bottlenecks faced by the
pure approaches and could solve instances that were very
large. This observation supports our view that a declarative
constraint formulation of column generation, embedded in-
side a branch-and-bound framework, was the right technique
to solve these very large crew scheduling problems.

5. CONCLUSIONSAND FUTURE WORK

We have integrated pure Constraint Programming and pure
Integer Programming techniques in a hybrid column gen-
eration algorithm that is able to solve very large instances
of some real world crew scheduling problems to optimal-
ity. These problems appear intractable for both approaches
when taken in isolation. Our methodology combines the
strengths of both methods, getting over their main weak-
nesses.

Complex operational constraints could easily be expressed
using declarative statements in a constraint programming
language. The resulting model proved to be very efficient
when looking for feasible duties with a negative reduced cost.
A linear programming relaxation of the original problem for-
mulation produced good lower bounds. Combining these
two behaviors, it was possible to develop a very successful
branch-and-price scheme. Using this hybrid method, a desk-
top PC was able to find optimal solutions for large one-depot
instances in a reasonable time. The two-depot case, how-
ever, having a different structure and a larger search space,
presented more difficulties. When we restricted the problem
to the first 150 trips of the day, which already correspond
to 12 million feasible duties, the hybrid algorithm produced
an optimal solution. Nevertheless, even increasing the com-
putation time limit to 24 hours, the hybrid algorithm was
not able to compute an optimal schedule to the complete
set of trips, which contained an excess of 122 million feasi-
ble duties. Further investigation is needed in order to devise
more effective strategies to deal with such large two-depot
instances.

6. REFERENCES

[1] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P.
Savelsbergh, and P. H. Vance. Branch-and-price: Col-
umn generation for solving huge integer programs. Tech-
nical Report COC-9403, Georgia Institute of Technology,
Atlanta, USA, 1993.
http://tli.isye.gatech.edu/research/papers/papers.htm.

[2] K. Darby-Dowman and J. Little. Properties of some
combinatorial optimization problems and their effect on
the performance of integer programming and constraint
logic programming. INFORMS Journal on Computing,
10(3):276-286, 1998.

[3] M. Desrochers and F. Soumis. A column generation ap-
proach to the urban transit crew scheduling problem.
Transportation Science, 23(1):1-13, 1989.

[4] C. Gervet. Large Combinatorial Optimization Problems:
a Methodology for Hybrid Models and Solutions. In
Journées Francophones de Programmation en Logique et

par Contraintes, 1998.
http://www.icparc.ic.ac.uk/papers_byauthor.html.

[6] M. L. Ginsberg. Dynamic backtracking. Journal of Ar-
tificial Intelligence Research, (1):25-46, 1993.

[6] N. Guerinik and M. V. Caneghem. Solving crew schedul-
ing problems by constraint programming. In Lecture
Notes in Computer Science, pages 481-498, 1995. Pro-
ceedings of the First International Conference on the
Principles and Practice of Constraint Programming,
CP’95.

[7] J. Lever, M. Wallace, and B. Richards. Constraint logic
programming for scheduling and planning. British Tele-
com Technical Journal, (13):73-81, 1995.
http://www.icparc.ic.ac.uk/papers_byauthor.html.

[8] T. H. Yunes, A. V. Moura, and C. C. de Souza. Solving
large scale crew scheduling problems with constraint pro-
gramming and integer programming. Technical Report
IC-99-19, Institute of Computing, University of Camp-
inas, Brazil, 1999.
http://goa.pos.dcc.unicamp.br/otimo/published.html.

APPENDIX
A. ABOUT THE AUTHORS

Tallys H. Yunes got a Computer Engineering degree at
the University of Campinas (UNICAMP), Brazil, in
1997. He is currently a M.Sc. student at the Institute
of Computing of UNICAMP, Brazil. His main research
interests include Combinatorial Optimization, Integer
Programming and Constraint Programming.

Arnaldo V. Moura got his Ph.D. degree in Computer Sci-
ence at the University of California at Berkeley, USA,
in 1980. He is currently a full professor at the Institute
of Computing of UNICAMP, Brazil. His main research
interests include Automata Theory, Formal Languages,
Computability, Verification of Hybrid Systems, Formal
Methods in Software Engineering and Combinatorial
Optimization.

Cid C. de Souza got his Ph.D. degree in Computer Sci-
ence at the Catholic University of Louvain (CORE),
Belgium, in 1993. He is currently a full professor at the
Institute of Computing of UNICAMP, Brazil. His main
research interests include Combinatorial Optimization,
Linear and Integer Programming and Design and Anal-
ysis of Algorithms.

