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Abstract. We consider several strategies for computing optimal solu-
tions to large scale crew scheduling problems. Provably optimal solutions
for very large real instances of such problems were computed using a
hybrid approach that integrates mathematical and constraint program-
ming techniques. The declarative nature of the latter proved instrumen-
tal when modeling complex problem restrictions and, particularly, in
efficiently searching the very large space of feasible solutions. The code
was tested on real problem instances, containing an excess of 1.8 × 109

entries, which were solved to optimality in an acceptable running time
when executing on a typical desktop PC.

1 Introduction

Urban transit crew scheduling problems have been receiving a great deal of at-
tention for the past decades. In this article, we report on a hybrid strategy that
is capable of efficiently obtaining provably optimal solutions for some large in-
stances of specific crew scheduling problems. The hybrid approach we developed
meshes some classical Integer Programming (IP) techniques and some Constraint
Programming (CP) techniques. This is done in such a way as to extract the
power of these two approaches where they contribute their best towards solving
the large scheduling problem instances considered. The resulting code compiles
under the Linux operating system, kernel 2.0. Running on a 350 MHz desktop
PC with 320 MB of main memory, it computed optimal solutions for problem
instances with an excess of 1.8× 109 entries, in a reasonable amount of time.

The problem instances we used stem from the operational environment of
a typical Brazilian transit company that serves a major urban area. In this
scenario, employee wages may well rise to 50 percent or more of the company’s
total expenditures. Hence, in these situations, even small percentage savings can
be quite significant.
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We now offer some general comments on the specific methods and techniques
that were used. We started on a pure IP track applying a classical branch-
and-bound technique to solve a set partitioning problem formulation. Since this
method requires that all feasible duties are previously inserted into the problem
formulation, all memory resources were rapidly consumed when we reached half
a million feasible duties. To circumvent this difficulty, we implemented a column
generation technique. As suggested in [5], the subproblem of generating feasible
duties with negative reduced cost was transformed into a constrained shortest
path problem over a directed acyclic graph and then solved using Dynamic Pro-
gramming techniques. However, due to the size and idiosyncrasies of our problem
instances, this technique did not make progress towards solving large instances.

In parallel, we also implemented a heuristic algorithm that produced very
good results on large set covering problems [2]. With this implementation, prob-
lems with up to two million feasible duties could be solved to optimality. But this
particular heuristic also requires that all feasible duties be present in memory
during execution. Although some progress with respect to time efficiency was
achieved, memory usage was still a formidable obstacle.

The difficulties we faced when using the previous approaches almost disap-
peared when we turned to a language that supports constraint specification over
finite domain variables. We were able to implement our models in little time,
producing code that was both concise and clear. When executed, it came as no
surprise that the model showed two distinct behaviors, mainly due to the huge
size of the search space involved. It was very fast when asked to compute new
feasible duties, but lagged behind the IP methods when asked to obtain a prov-
ably optimal schedule. The search spaces of our problem instances are enormous
and there are no strong local constraints available to help the resolution process.
Also a good heuristic to improve the search strategy does not come easily [4].

To harness the capabilities of both the IP and CP techniques, we resorted
to a hybrid approach to solve the larger, more realistic, problem instances. The
main idea is to use the linear relaxation of a smaller core problem in order to
efficiently compute good lower bounds on the optimal solution value. Using the
values of dual variables in the solution of the linear relaxation, we can enter
the generation phase that computes new feasible duties. This phase is modeled
as a constraint satisfaction problem that searches for new feasible duties with
a negative reduced cost. This problem is submitted to the constraint solver,
which returns new feasible duties to be inserted in the IP problem formulation,
and the initial phase can be taken again, restarting the cycle. The absence of
new feasible duties with a negative reduced cost proves the optimality of the
current formulation. This approach secures the strengths of both the pure IP
and the pure CP formulations: only a small subset of all the feasible duties is
efficiently dealt with at a time, and new feasible duties are quickly computed only
when they will make a difference. The resulting code was tested on some large
instances, based on real data. As of this writing, we can solve, in a reasonable
time and with proven optimality, instances with an excess of 150 trips and 12
million feasible duties.
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This article is organized as follows. Section 2 describes the crew scheduling
problem. In Sect. 3, we discuss the IP approach and report on the implementation
of two alternative techniques: standard column generation and heuristics. In
Sect. 4, we investigate the pure CP approach. In Sect. 5, we present the hybrid
approach. Implementation details and computational results on real data are
reported in sections 3, 4 and 5. Finally, in Sect. 6, we conclude and discuss
further issues.

In the sequel, execution times inferior to one minute are reported as ss.cc,
where ss denotes seconds and cc denotes hundredths of seconds. For execution
times that exceed 60 seconds, we use the alternative notation hh:mm:ss, where
hh, mm and ss represent hours, minutes and seconds, respectively.

2 The Crew Scheduling Problem

In a typical crew scheduling problem, a set of trips has to be assigned to some
available crews. The goal is to assign a subset of the trips to each crew in such
a way that no trip is left unassigned. As usual, not every possible assignment
is allowed since a number of constraints must be observed. Additionally, a cost
function has to be minimized.

2.1 Terminology

Among the following terms, some are of general use, while others reflect specifics
of the transportation service for the urban area where the input data came from.
A depot is a location where crews may change buses and rest. The act of driving a
bus from one depot to another depot, passing by no intermediate depot, is named
a trip. Associated with a trip we have its start time, its duration, its departure
depot, and its arrival depot. The duration of a trip is statistically calculated from
field collected data, and depends on many factors, such as the day of the week
and the start time of the trip along the day. A duty is a sequence of trips that
are assigned to the same crew. The idle time is the time interval between two
consecutive trips in a duty. Whenever this idle time exceeds Idle Limit minutes,
it is called a long rest. A duty that contains a long rest is called a two-shift duty.
The rest time of a duty is the sum of its idle times, not counting long rests.
The parameter Min Rest gives the minimum amount of rest time, in minutes,
that each crew is entitled to. The sum of the durations of the trips in a duty
is called its working time. The sum of the working time and the rest time gives
the total working time of a duty. The parameter Workday is specified by union
regulations and limits the daily total working time.

2.2 Input Data

The input data comes in the form of a two dimensional table where each row
represents one trip. For each trip, the table lists: start time, measured in minutes
after midnight, duration, measured in minutes, initial depot and final depot.
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We have used data that reflect the operational environment of two bus lines,
Line 2222 and Line 3803, that serve the metropolitan area around the city of
Belo Horizonte, in central Brazil. Line 2222 has 125 trips and one depot and
Line 3803 has 246 trips and two depots. The input data tables for these lines
are called OS 2222 and OS 3803, respectively. By considering initial segments
taken from these two tables, we derived several other smaller problem instances.
For example, taking the first 30 trips of OS 2222 gave us a new 30-trip problem
instance. A measure of the number of active trips along a typical day, for both
Line 2222 and Line 3803, is shown in Fig. 1. This figure was constructed as
follows. For each (x, y) entry, we consider a time window T = [x, x + Workday].
The ordinate y indicates how many trips there are with start time s and duration
d such that s ∈ T or s + d ∈ T , i.e., how many trips are active in T .
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Fig. 1. Distribution of trips along the day

2.3 Constraints

For a duty to be feasible, it has to satisfy constraints imposed by labor contracts
and union regulations, among others. For each duty we must observe

total working time ≤ Workday
rest time ≥ Min Rest .

In each duty and for each pair (i, j) of consecutive trips, i < j, we must have

(start time )i + (duration )i ≤ (start time )j

(final depot )i = (initial depot )j .

Also, at most one long rest interval is allowed, in each duty.
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Restrictions from the operational environment impose Idle Limit = 120,
Workday = 440, and Min Rest = 30, measured in minutes. A feasible duty is a
duty that satisfies all problem constraints. A schedule is a set of feasible duties
and an acceptable schedule is any schedule that partitions the set of all trips.
Since the problem specification treats all duties as indistinguishable, every duty
is assigned a unit cost. The cost of a schedule is the sum of the costs of all its
duties. Hence, minimizing the cost of a schedule is the same as minimizing the
number of crews involved in the solution or, equivalently, the number of duties it
contains. A minimal schedule is any acceptable schedule whose cost is minimal.

3 Mathematical Programming Approaches

Let m be the number of trips and n be the total number of feasible duties. The
pure IP formulation of the problem is:

min
n∑

j=1

xj (1)

subject to
n∑

j=1

aijxj = 1, i = 1, 2, . . . , m (2)

xj ∈ {0, 1}, j = 1, 2, . . . , n . (3)

The xj ’s are 0–1 decision variables that indicate which duties belong to the
solution. The coefficient aij equals 1 if duty j contains trip i, otherwise, aij is
0. This is a classical set partitioning problem where the rows represent all trips
and the columns represent all feasible duties.

We developed a constraint program to count all feasible duties both in
OS 2222 and in OS 3803. Table 1 summarizes the results for increasing ini-
tial sections (column “#Trips”) of the input data. The time (column “Time”)
needed to count the number of feasible duties (column “#FD”) is also presented.
For OS 2222, we get in excess of one million feasible duties, and for all trips in
OS 3803 we get more than 122 million feasible duties.

3.1 Pure IP Approach

In the pure IP approach, we used the constraint program to generate an output
file containing all feasible duties. A program was developed in C to make this file
conform to the CPLEX1 input format. The resulting file was fed into a CPLEX
3.0 LP solver. The node selection strategy used was best-first and branching was
done upon the most fractional variable. Every other setting of the branch-and-
bound algorithm used the standard default CPLEX configuration.

The main problem with the IP approach is clear: the number of feasible du-
ties is enormous. Computational results for OS 2222 appear in Table 2, columns
1 CPLEX is a registered trademark of ILOG, Inc.
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Table 1. Number of feasible duties for OS 2222 and OS 3803

OS 2222 (1 depot) OS 3803 (2 depots)

# Trips # FD Time # Trips # FD Time

10 63 0.07 20 978 1.40
20 306 0.33 40 6,705 5.98
30 1,032 0.99 60 45,236 33.19
40 5,191 5.38 80 256,910 00:03:19
50 18,721 21.84 100 1,180,856 00:18:34
60 42,965 00:01:09 120 3,225,072 00:57:53
70 104,771 00:03:10 140 8,082,482 02:59:17
80 212,442 00:05:40 160 18,632,680 08:12:28
90 335,265 00:07:48 180 33,966,710 14:39:21
100 496,970 00:10:49 200 54,365,975 17:55:26
110 706,519 00:14:54 220 83,753,429 42:14:35
125 1,067,406 01:00:27 246 122,775,538 95:49:54

under “Pure IP”. Columns “Opt” and “Sol” indicate, respectively, the optimal
and computed values for the corresponding run. It soon became apparent that
the pure IP approach using the CPLEX solver would not be capable of obtaining
the optimal solution for the smaller OS 2222 problem instance. Besides, memory
usage was also increasing at an alarming pace, and execution time was lagging
behind when compared to other approaches that were being developed in paral-
lel. As an alternative, we decided to implement a column generation approach.

3.2 Column Generation with Dynamic Programming

Column generation is a technique that is widely used to handle linear programs
which have a very large number of columns in the coefficient matrix. The method
works by repeatedly executing two phases. In a first phase, instead of solving a
linear relaxation of the whole problem, in which all columns are required to be
loaded in memory, we quickly solve a smaller problem, called the master problem,
that deals only with a subset of the original columns. That smaller problem
solved, we start phase two, looking for columns with a negative reduced cost.
If there are no such columns, we have proved that the solution at hand indeed
minimizes the objective function. Otherwise, we augment the master problem
by bringing in a number of columns with negative reduced cost, and start over
on phase one. The problem of computing columns with negative reduced costs
is called the slave subproblem. When the original variables have integer values,
this algorithm must be embedded in a branch-and-bound strategy. The resulting
algorithm is also known as branch-and-price.

Generating Columns. In general, the slave subproblem can also be formu-
lated as another IP problem. In our case, constraints like the one on two-shift
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Table 2. Computational results for OS 2222 (1 depot)

Pure IP CG+DP Heuristic
# Trips #FD Opt Sol Time Sol Time Sol Time

10 63 7 7 0.02 7 0.01 7 0.05
20 306 11 11 0.03 11 0.07 11 0.30
30 1,032 14 14 0.06 14 0.52 14 10.37
40 5,191 14 14 3.04 14 9.10 14 13.02
50 18,721 14 14 14.29 14 00:01:29 14 00:30:00
60 42,965 14 14 00:01:37 14 00:07:54 14 00:30:22
70 104,771 14 14 00:04:12 14 00:44:19 14 00:03:28
80 212,442 16 16 00:33:52 16 03:53:58 16 00:16:24
90 335,265 18 18 00:50:28 18 08:18:53 18 00:22:42
100 496,970 20 20 02:06:32 20 15:08:55 20 00:50:01
110 706,519 22 - - - - 22 01:06:17
125 1,067,406 25 - - - - 25 01:55:12

duties substantially complicate the formulation of a pure IP model. As another
approach, Desrochers and Soumis [5] suggest reducing the slave subproblem to
a constrained shortest path problem, formulated over a related directed acyclic
graph. When this process terminates, it is easy to extract not only the shortest
feasible path, but also a number of additional feasible paths, all with negative
reduced costs. We used these ideas, complemented by other observations from
Beasley and Christofides [1] and our own experience.

Implementation and Results. To implement the branch-and-price strategy,
the use of the ABACUS2 branch-and-price framework (version 2.2) saved a lot of
programming time. One of the important issues was the choice of the branching
rule. When applying a branch-and-bound algorithm to set partitioning problems,
a simple branching rule is to choose a binary variable and set it to 1 on one branch
and set it to 0 on the other branch, although there are situations where this might
not be the best choice [13]. This simple branching rule produced a very small
number of nodes in the implicit enumeration tree (41 in the worst case). Hence,
we judged that any possible marginal gains did not justify the extra programming
effort required to implement a more elaborated branching rule (c.f. [12]). In
Table 2, columns under “CG+DP”, show the computational results for OS 2222.
This approach did not reach a satisfactory time performance, mainly because the
constrained shortest path subproblem is relatively loose. As a pseudo-polynomial
algorithm, the state space at each node has the potential of growing exponentially
with the input size. The number of feasible paths the algorithm has to maintain
became so large that the time spent looking for columns with negative reduced
cost is responsible for more than 97% of the total execution time, on the average,
over all instances.
2 http://www.informatik.uni-koeln.de/ls juenger/projects/abacus.html.
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Table 3. Heuristic over OS 3803 (2 depots)

# Trips # FD Opt Sol Time

20 978 6 6 0.35
40 6,705 13 13 3.60
60 45,236 15 15 52.01
80 256,910 15 15 00:08:11
100 1,180,856 15 15 00:13:51
110 2,015,334 15 15 00:23:24

3.3 A Heuristic Approach

Heuristics offer another approach to solve scheduling problems and there are
many possible variations. Initially, we set aside those heuristics that were unable
to reach an optimal solution. As a promising alternative, we decided to imple-
ment the set covering heuristic developed by Caprara et al. [2]. This heuristic
won the FASTER competition jointly organized by the Italian Railway Company
and AIRO, solving, in reasonable time, large set covering problems arising from
crew scheduling. Using our own experience and additional ideas from the chap-
ter on Lagrangian Relaxation in [11], an implementation was written in C and
went through a long period of testing and benchmarking. Tests executed on set
covering instances coming from the OR-Library showed that our implementa-
tion is competitive with the original implementation in terms of solution quality.
When this algorithm terminates, it also produces a lower bound for the optimal
covering solution, which could be used as a bound for the partition problem, as
well. We verified, however, that on the larger instances, the solution produced
by the heuristic turned out to be a partition already.

Computational results for OS 2222 appear in Table 2, columns under “Heuris-
tic”. Comparing all three implementations, it is clear that the heuristic gave the
best results. However, applying this heuristic to the larger OS 3803 data set was
problematic. Since storage space has to be allocated to accommodate all feasible
columns, memory usage becomes prohibitive. It was possible to solve instances
with up to 2 million feasible duties, as indicated in Table 3. Beyond that limit,
320 MB of main memory were not enough for the program to terminate.

4 Constraint Programming Approach

Modeling with finite domain constraints is rapidly gaining acceptance as a prom-
ising programming environment to solve large combinatorial problems. This led
us to also model the crew scheduling problem using pure constraint programming
(CP) techniques. All models described in this section were formulated using the
ECLiPSe 3 syntax, version 4.0. Due to its large size, the ECLiPSe formulation
for each run was obtained using a program generator that we developed in C.
3 http://www.icparc.ic.ac.uk/eclipse.
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A simple pure CP formulation was developed first. It used a list of items, each
item being itself a list describing an actual duty. A number of recursive predi-
cates guarantee that each item satisfies all labor and regulation constraints (see
Sect. 2.3), and also enforce restrictions of time and depot compatibility between
consecutive trips. These feasibility predicates iterate over all list items. The
database contains one fact for each line of input data, as explained in Sect. 2.2.
The resulting model is very simple to program in a declarative environment. The
formulation, however, did not reach satisfactory results when submitted to the
ECLiPSe solver, as shown in Table 4, columns under “First Model”. A number
of different labeling techniques, different clause orderings and several variants on
constraint representation were explored, to no avail. When proving optimality,
the situation was even worse. It was not possible to prove optimality for instances
with only 10 trips in less than an hour of execution time. The main reason for
this poor performance may reside on the recursiveness of the list representation,
and on the absence of reasonable lower and upper bounds on the value of the
optimal solution which could aid the solver discard unpromising labelings.

4.1 Improved Model

The new model is based on a two dimensional matrix X of integers. The number
of columns (rows) in X , UBdutyLen (UBnumDut ), is an upper bound on the size
of any feasible duty (the total number of duties). Each Xij element represents
a single trip and is a finite domain variable with domain [1..NT ], where NT =
UBdutyLen×UBnumDut. Real trips are numbered from 1 to N , where N ≤ NT .
Trips numbered N + 1 to NT are dummy trips. To simplify the writing of some
constraints, the last trip in each line of X is always a dummy trip. A proper choice
of the start time, duration and depots of the dummy trips avoids time and depots
incompatibilities among them and, besides, prevents the occurrence of dummy
trips between real trips. Moreover, the choice of start times for all dummy trips
guarantees that they occupy consecutive cells at the end of every line in X .
Using this representation, the set partitioning condition can be easily met with
an alldifferent constraint applied to a list that contains Xij elements.

Five other matrices were used: Start, End, Dur, DepDepot and ArrDepot.
Cell (i, j) of these matrices represents, respectively, the start time, the end time,
the duration, and the departure and arrival depots of trip Xij . Next, we state
constraints in the form element(Xij, S, Startij), where S is a list containing
the start times of the first NT trips. The semantics of this constraint assures
that Startij is the k-th element of list S where k is the value in Xij . This
maintains the desired relationship between matrices X and Start. Whenever
Xij is updated, Startij is also modified, and vice-versa. Similar constraints are
stated between X and each one of the four other matrices. Now, we can write:

Endij ≤ Starti(j+1) (4)
ArrDepotij + DepDepoti(j+1) 6= 3 (5)

Idleij = BDij ×
(
Starti(j+1) − Endij

)
(6)
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Table 4. Pure CP models, OS 2222 data set

First Model Improved Model
Feasible Feasible Optimal

#Trips #FD Opt Sol Time Sol Time Sol Time

10 63 7 7 0.35 7 0.19 7 0.63
20 306 11 11 12.21 11 0.47 11 9.22
30 1,032 14 15 00:02:32 15 0.87 14 00:29:17
40 5,191 14 15 00:14:27 15 0.88 - > 40:00:00
50 18,721 14 15 00:53:59 15 0.97 - -
60 42,965 14 - - 15 2.92 - -
70 104,771 14 - - 16 3.77 - -
80 212,442 16 - - 19 8.66 - -
90 335,265 18 - - 24 17.97 - -
100 496,970 20 - - 27 29.94 - -
110 706,519 22 - - 27 39.80 - -
125 1,067,406 25 - - 32 00:01:21 - -

for all i ∈ {1, . . . ,UBnumDut} and all j ∈ {1, . . . ,UBdutyLen−1}. Equation (4)
guarantees that trips overlapping in time are not in the same duty. Since the
maximum number of depots is two, an incompatibility of two consecutive trips
is prevented by (5). In (6), the binary variables BDij are such that BDij = 1 if
and only if Xi(j+1) contains a real trip. Hence, the constraint on total working
time, for each duty i, is given by

UBdutyLen−1∑

j=1

(Durij + BIij × Idleij) ≤ Workday , (7)

where BIij is a binary variable such that BIij = 1 if and only if Idleij ≤
Idle Limit. The constraint on total rest time is

Workday +
UBdutyLen−1∑

j=1

(Idleij −Durij −BIij × Idleij) ≥ Min Rest (8)

for each duty i. For two-shift duties, we impose further that at most one of the
Idleij variables can assume a value greater than Idle Limit.

4.2 Refinements and Results

The execution time of this model was further improved by:

Elimination of Symmetries – Solutions that are permutations of lines of X are
equivalent. To bar such equivalences, the first column of the X matrix was
kept sorted. Since exchanging the position of dummy trips gives equivalent
solutions, new constraints were used to prevent dummy trips from being
swapped when backtracking.
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Domain Reduction – For instance, the first real trip can only appear in X1,1.
Use of Another Viewpoint – Different viewpoints [3] were also used. New Yk

variables were introduced representing “the cell that stores trip k”, as op-
posed to the Xij variables that mean “the trip that is put in cell ij”. The Yk

variables were connected to the Xij variables through channeling constraints.
The result is a redundant model with improved propagation properties.

Different Labeling Strategies – Various labeling strategies have been tried, in-
cluding the one developed by Jourdan [9]. The strategy of choosing the next
variable to label as the one with the smallest domain (first-fail) was the
most effective one. After choosing a variable, it is necessary to select a value
from its domain following a specific order, when backtracking occurs. We
tested different labeling orders, like increasing, decreasing, and also middle-
out and its reverse. Experimentation showed that labeling by increasing or-
der achieved the best results. On the other hand, when using viewpoints, the
heuristic developed by Jourdan rendered the model roughly 15 % faster.

The improved purely declarative model produced feasible schedules in a very
good time, as indicated in Table 4, under columns “Improved Model”. Obtaining
provably optimal solutions, however, was still out of reach for this model. Oth-
ers have also reported difficulties when trying to solve crew scheduling problems
with a pure CP approach [4, 8]. Finding the optimal schedule reduces to choos-
ing, from an extremely large set of elements, a minimal subset that satisfies all
the problem constraints. The huge search spaces involved can only be dealt with
satisfactorily when pruning is enforced by strong local constraints. Besides, a
simple search strategy, lacking good problem specific heuristics, is very unlikely
to succeed. When solving scheduling problems of this nature and size to optimal-
ity, none of the these requirements can be met easily, rendering it intrinsically
difficult for pure CP techniques to produce satisfactory results in these cases.

5 A Hybrid Approach

Recent research [6] has shown that, in some cases, neither the pure IP nor the
pure CP approaches are capable of solving certain kinds of combinatorial prob-
lems satisfactorily. But a hybrid strategy might outperform them.

When contemplating a hybrid strategy, it is necessary to decide which part of
the problem will be handled by a constraint solver, and which part will be dealt
with in a classical way. Given the huge number of columns at hand, a column
generation approach seemed to be almost mandatory. As reported in Sect. 3.2, we
already knew that the dynamic programming column generator used in the pure
IP approach did not perform well. On the other hand, a declarative language is
particularly suited to express not only the constraints imposed by the original
problem, but also the additional constraints that must be satisfied when looking
for feasible duties with a negative reduced cost. Given that, it was a natural
decision to implement a column generation approach where new columns were
generated on demand by a constraint program. Additionally, the discussion in
Sect. 4.2 indicated that the CP strategy implemented was very efficient when
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Fig. 2. Simplified scheme of the hybrid column generation method

identifying feasible duties. It lagged behind only when computing a provably
optimal solution to the original scheduling problem, due to the minimization
constraint. Since it is not necessary to find a column with the most negative
reduced cost, the behavior of the CP solver was deemed adequate. It remained
to program the CP solver to find a set of new feasible duties with the extra
requirement that their reduced cost should be negative.

5.1 Implementation Issues

The basis of this new algorithm is the same as the one developed for the column
generation approach, described in Sect. 3.2. The dynamic programming routine
is substituted for an ECLiPSe process that solves the slave subproblem and uses
sockets to communicate the solution back to the ABACUS process. When the
ABACUS process has solved the current master problem to optimality, it sends
the values of the dual variables to the CP process. If there remain some columns
with negative reduced costs, some of them are captured by the CP solver and
are sent back to the ABACUS process, and the cycle starts over. If there are no
such columns, the LP solver has found an optimal solution. Having found the
optimal solution for this node of the enumeration tree, its dual bound has also
been determined. The normal branch-and-bound algorithm can then proceed
until it is time to solve another LP. This interaction is depicted in Fig. 2.

The code for the CP column generator is almost identical to the code for the
improved CP model, presented in Sect. 4.1. There are three major differences.
Firstly, the matrix X now has only one row, since we are interested in finding
one feasible duty and not a complete solution. Secondly, there is an additional
constraint stating that the sum of the values of the dual variables associated with
the trips in the duty being constructed should represent a negative reduced cost.
Finally, the minimization predicate was exchanged for a predicate that keeps on
looking for new feasible duties until the desired number of feasible duties with
negative reduced costs have been computed, or until there are no more feasible
assignments. By experimenting with the data sets at hand, we determined that
the number of columns with negative reduced cost to request at each iteration of
the CP solver was best set to 53. The redundant modeling, as well as the heuristic
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Table 5. Hybrid algorithm, OS 2222 data set (1 depot)

#Trips # FD Opt DBR # CA # LP # Nodes PrT LPT TT

10 63 7 7 53 2 1 0.08 0.02 0.12
20 306 11 11 159 4 1 0.30 0.04 0.42
30 1,032 14 14 504 11 1 1.48 0.11 2.07
40 5,191 14 14 1,000 26 13 8.03 0.98 9.37
50 18,721 14 14 1,773 52 31 40.97 3.54 45.28
60 42,965 14 14 4,356 107 41 00:04:24 14.45 00:04:40
70 104,771 14 14 2,615 58 7 00:01:36 4.96 00:01:42
80 212,442 16 16 4,081 92 13 00:01:53 18.84 00:02:13
90 335,265 18 18 6,455 141 11 00:02:47 31.88 00:03:22
100 496,970 20 20 8,104 177 13 00:06:38 51.16 00:07:34
110 706,519 22 22 11,864 262 21 00:16:53 00:02:28 00:19:31
125 1,067,406 25 25 11,264 250 17 00:19:09 00:01:41 00:21:00

suggested by Jourdan, both used to improve the performance of the original CP
formulation, now represented unnecessary overhead, and were removed.

5.2 Computational Results

The hybrid approach was able to construct an optimal solution to substantially
larger instances of the problem, in a reasonable time. Computational results for
OS 2222 and OS 3803 appear on Tables 5 and 6, respectively. Column headings
#Trips, #FD, Opt, DBR, #CA, #LP and #Nodes stand for, respectively,
number of trips, number of feasible duties, optimal solution value, dual bound
at the root node, number of columns added, number of linear programming
relaxations solved, and number nodes visited. The execution times are divided in
three columns: PrT, LPT and TT, meaning, respectively, time spent generating
columns, time spent solving linear programming relaxations, and total execution
time. In every instance, the dual bound at the root node was equal to the value
of the optimal integer solution. Hence, the LP relaxation of the problem already
provided the best possible lower bound on the optimal solution value. Also note
that the number of nodes visited by the algorithm was kept small. The same
behavior can be observed with respect to the number of columns added.

The sizable gain in performance is shown in the last three columns of each
table. Note that the time to solve all linear relaxations of the problem was a
small fraction of the total running time, for both data sets.

It is also clear, from Table 5, that the hybrid approach was capable of con-
structing a provably optimal solution for the smaller data set using 21 minutes
of running time on a 350 MHz desktop PC. That problem involved in excess of
one million feasible columns and was solved considerably faster when compared
with the best performer (see Sect. 3.3) among all the previous approaches.

The structural difference between both data sets can be observed by looking
at the 100 trip row, in Table 6. The number of feasible duties on this line is,
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Table 6. Hybrid algorithm, OS 3803 data set (2 depots)

#Trips # FD Opt DBR #CA #LP # Nodes PrT LPT TT

20 978 6 6 278 7 1 2.11 0.08 2.24
30 2,890 10 10 852 19 1 9.04 0.20 9.38
40 6,705 13 13 2,190 48 1 28.60 1.03 30.14
50 17,334 14 14 4,220 94 3 00:01:22 3.95 00:01:27
60 45,236 15 15 8,027 175 1 00:03:48 14.81 00:04:06
70 107,337 15 15 11,622 258 1 00:07:42 40.59 00:08:37
80 256,910 15 15 8,553 225 1 00:10:07 47.12 00:10:58
90 591,536 15 15 9,827 269 1 00:14:34 00:02:04 00:16:43
100 1,180,856 15 15 13,330 375 1 00:39:03 00:04:37 00:43:49
110 2,015,334 15 15 13,717 387 1 01:19:55 00:03:12 01:23:19
120 3,225,072 16 16 18,095 543 13 04:02:18 00:09:09 04:11:50
130 5,021,936 17 17 28,345 874 23 06:59:53 00:30:16 07:30:56
140 8,082,482 18 18 27,492 886 25 13:29:51 00:28:56 13:59:40
150 12,697,909 19 19 37,764 1,203 25 21:04:28 00:49:13 21:55:25

approximately, the same number of one million feasible duties that are present
in the totality of 125 trips of the first data set, OS 2222. Yet, the algorithm used
roughly twice as much time to construct the optimal solution for the first 100
trips of the larger data set, as it did when taking the 125 trips of the smaller
data set. Also, the algorithm lagged behind the heuristic for OS 3803, although
the latter was unable to go beyond 110 trips, due to excessive memory usage.

Finally, when we fixed a maximum running time of 24 hours, the algorithm
was capable of constructing a solution, and prove its optimality, for as many as
150 trips taken from the larger data set. This corresponds to an excess of 12
million feasible duties. It is noteworthy that less than 60 MB of main memory
were needed for this run. A problem instance with as many as 150× (12.5×106)
entries would require over 1.8 GB when loaded into main memory. By efficiently
dealing with a small subset of the feasible duties, our algorithm managed to
surpass the memory bottleneck and solve instances that were very large. This
observation supports our view that a CP formulation of column generation was
the right approach to solve very large crew scheduling problems.

6 Conclusions and Future Work

Real world crew scheduling problems often give rise to large set covering or set
partitioning formulations. We have shown a way to integrate pure Integer Pro-
gramming and declarative Constraint Satisfaction Programming techniques in a
hybrid column generation algorithm that solves, to optimality, huge instances of
some real world crew scheduling problems. These problems appeared intractable
for both approaches when taken in isolation. Our methodology combines the
strengths of both sides, while getting over their main weaknesses.
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Another crucial advantage of our hybrid approach over a number of previous
attempts is that it considers all feasible duties. Therefore, the need does not arise
to use specific rules to select, at the start, a subset of “good” feasible duties.
This kind of preprocessing could prevent the optimal solution from being found.
Instead, our algorithm implicitly looks at the set of all feasible duties, when acti-
vating the column generation method. When declarative constraint satisfaction
formulations are applied to generate new feasible duties on demand, they have
shown to be a very efficient strategy, in contrast to Dynamic Programming.

We believe that our CP formulation can be further improved. In particular,
the search strategy deserves more attention. Earlier identification of unpromis-
ing branches in the search tree can reduce the number of backtracks and lead
to substantial savings in computational time. Techniques such as dynamic back-
tracking [7] and the use of nogoods [10] can be applied to traverse the search tree
more efficiently, thereby avoiding useless work.
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