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W e develop a three-step methodology to restructure a product line by quantifying the restructuring’s likely effects on
revenues and costs: (i) Constructing migration lists to capture customer preferences and willingness to substitute;

(ii) Explicitly capturing the (positive and negative) cost of complexity across different functional areas, using statistical
analysis of cost data; and (iii) Integrating these tools within a mathematical optimization program to produce a final pro-
duct line, incorporating the possibility of differentiating products by lead-time (into different lanes). Our methodology is
highly flexible—each step can be tailored to a company’s particular setting, data availability and strategic needs, so long
as it produces the necessary output for the next step. We report on the successful application of our methodology to the
Backhoe Loader product line at Caterpillar: In collaboration with Caterpillar, we were able to significantly simplify this
line, reducing the number of configurations from 37,920 to 135, in three lanes, while increasing sales by almost 7%.

Key words: product portfolio optimization; cost of complexity; manufacturing; machinery
History: Received: February 2015; Accepted: August 2017 by Sean Willems, after 2 revisions.

1. Introduction

One of the crucial decisions a company must make
concerns its product portfolio. Some companies, espe-
cially in highly competitive industries, compete by
offering variety – a very broad, often highly customiz-
able, portfolio. Such a product line can typically
garner high customer satisfaction and help drive
market share, but can also complicate the company’s
supply chain and service operations: Broad portfolios
enable customers to disperse their demand, requiring
retailers to hold large amounts of inventory to repre-
sent the many possible choices, as well as to satisfy
those customers who are unwilling to wait for an out-
of-inventory variant. In addition, forecasting for this
potentially fragmented portfolio is typically difficult.

And, if the company is in a manufacturing environ-
ment, developing, managing, assembling and servic-
ing such a broad portfolio may incur other costs – for
example, due to increased documentation, more
frequent change-overs, and reduced learning effects.
So, while the marketing and sales benefits of a large

portfolio are obvious, there is also incentive for com-
panies to strategically reduce, or optimize their product
portfolio. But before embarking on such a product
line rationalization, three critical questions must be
answered:

1. “How will customers react to a product line
reduction?” Answering this question requires
developing an understanding of how customers
value different elements of the product line.
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2. “How much could be saved by focusing the
product line?” Answering this question
requires developing an understanding of the
general form of the cost of complexity for the
organization

3. “Given the answers to the first two questions,
how should we configure our product line?”
Specifically, which products should we offer, and
at what prices?

The primary contribution of this study is to demon-
strate the power of the three-step analytical frame-
work we have developed for product line
simplification:

Step 1: answers question 1 by building a detailed
analytical model of customer preferences and substi-
tution, capturing customer behavior in migration lists
(see section 3).
Step 2: answers question 2 by creating a detailed
mathematical representation of the company’s cost
of complexity (CoC), which can include both vari-
ety-based costs driven by number of options offered
and attribute-based costs driven by specific complex
options (see section 4).
Step 3: answers the final question by combining the
migration lists and the cost of complexity function
into an optimization model, evaluating different
product lines against different potential demand
patterns, market scenarios and company objectives
(see section 5).

The generality and flexibility of our framework
stem from the fact that the mathematical and statisti-
cal techniques used in steps 1, 2, and 3 can be tailored
to the situation and company at hand, as long as they
produce the output required by each subsequent step.
Our framework can also be used as an effective what-
if tool for managers, allowing them to successfully
evaluate different solutions under varying problem
conditions.
We demonstrate our framework through a product

line reorganization project we initiated with Caterpil-
lar (CAT) for pricing and marketing their BHL series
of small backhoe loaders, one of the most popular
products within their Building Construction Products
(BCP) division. The outcome of the project was imple-
mented as a new Lane strategy at BCP, offering machi-
nes within three different lanes: Lane 1, the Express
Lane, featuring four built-to-stock configuration
choices at an expected lead time of a few days; Lane 2,
the Standard Lane, featuring 120 predefined configu-
rations, built-to-order at an expected lead time of a
few weeks; and Lane 3, the A-La-Carte Lane, built to
order machines with an expected lead time of a few
months. Since the completion of our project CAT has
continued expanding and refining their BHL lane

strategy—for example, they have now reduced the
Lane 1 configurations to only two. In addition, CAT
has applied variations of our cost of complexity analy-
sis to other divisions within the firm, helping to guide
portfolio rationalization within the company.
To the best of our knowledge, no previous work

has ever combined an Empirically developed CoC
function as detailed and comprehensive as ours, with
customer preferences regarding product substitution,
within an optimization algorithm that was implemented
with real-life data, at an industrial scale. Moreover,
our work ultimately produced recommendations that
were actually implemented and verified to generate
significant improvements.
The rest of the study proceeds as follows. In section

2, we place our work within the product line opti-
mization and practical application literature. Sections
3–5 present our customer behavior, cost of complex-
ity, and optimization models in a generic fashion that
is neither company- nor product-specific. In Section 6,
we describe CAT’s problem in more detail, and
demonstrate how the steps in the three preceding sec-
tions were tailored to suit CAT’s specific require-
ments. We present the implementation details and
results for CAT in sections 7 and 8, discuss sensitivity
analysis and general insights in section 9, and con-
clude in section 10.

2. Literature Review

Some marketing research describes how narrowing a
product line may detract from brand image or market
share, e.g., Chong et al. (1998), while other works
posit that reducing the breadth of lines and focusing
on customer “favorites” may actually increase sales,
see for example Broniarczyk et al. (1998). Our model
is consistent with both of these streams: If a customer
finds a product that meets her needs (i.e., a “favorite”)
she will make a purchase; if such a product and its
acceptable alternatives are no longer part of the pro-
duct line, she will not.
There is a long history of empirically studying the

impact of product line complexity on costs. Foster
and Gupta (1990) assess the impacts of volume-, effi-
ciency-, and complexity-based cost drivers within an
electronics manufacturing company. They find that
manufacturing overhead is associated with volume,
but not complexity or variety. Banker et al. (1995),
using data from 32 plants, find an association of over-
head costs with both volume and transactions, which
they take as a measure of complexity. Anderson
(1995) identifies seven different types of product mix
heterogeneity in three textile factories, and finds that
two are associated with higher overhead costs. Fisher
and Ittner (1999) analyze data from a GM assembly
plant, finding that option variety contributes to higher
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labor and overhead costs. We complement these
works by explicitly formulating and calibrating a
detailed model to estimate the total direct and indirect
costs (and benefits) of complexity for the BHL line at
CAT, based on expert surveys and empirical analysis.
Product line optimization has a rich literature: Kok

et al. (2009) and Tang (2010) provide recent surveys.
Several recent papers consider the strategic selection
of a product line via equilibrium analysis: Alptekino-
glu and Corbett (2008), Chen et al. (2008, 2010), and
Tang and Yin (2010); they focus on deriving general
insights via analysis of abstract models. Our study
uses math programming to optimize a detailed model
of a company, their customers and products based on
data and expert opinion. In addition, we implement
our solution in practice.
Bitran and Ferrer (2007) determine the optimal

price and composition of a single bundle of items
and a single segment of customers in a competitive
market. They provide extensions to multiple seg-
ments or multiple bundles based on mathematical
programming, but this latter problem becomes very
complex, and is left as future research. Wang et al.
(2009) use branch-and-price to select a line to maxi-
mize the share of market, testing their algorithm on
problems with a small number of items but many
levels of product attributes on simulated and com-
mercial data. Chen and Hausman (2000) demonstrate
how choice-based conjoint analysis can be applied to
the product portfolio problem; Schoen (2010) extends
this work to allow more general costs and heteroge-
neous customers. None of these algorithms have
been shown to be suitable for problems anywhere
near the size and complexity of CAT’s (thousands of
customers and millions of potential configurations).
This has led to the investigation of heuristic
methods: For example, Fruchter et al. (2006) and
Belloni et al. (2008). Neither of these are actual
implementations.
Kok and Fisher (2007) develop and apply a method-

ology to estimate demand and substitution patterns
for a Dutch supermarket chain, based on empirical
demand data. They develop an iterative heuristic that
determines the facings allocated to different cate-
gories, and the inventory of individual elements
within the categories. Fisher and Vaidyanathan (2011)
explore how to select retail store assortments; their
work enhances a localized choice model with
randomization, location at extant configurations, and
preference sets for substitution (similar to our migra-
tion lists). All customers who prefer a particular
product have the same preference set. In contrast to
our approach that seeks to maximize profits using our
empirical cost of complexity function, they maximize
revenue with greedy heuristics and demonstrate their
approach, using two examples—snack cakes and

tires—their recommendations for tires leads to a 5.8%
revenue increase.
Ward et al. (2010) develops two analytical tools to

apply to Hewlett-Packard’s product line problem.
Like CAT, HP has product lines that could, in theory,
span millions of different configurations. The first tool
develops a comprehensive cost of complexity function,
comprised of variable and fixed costs, to be used when
evaluating the introduction of new products. This func-
tion has some similarities to ours, but focuses more on
inventory costs, lacking anything related to our attri-
bute-based costing. Furthermore, cannibalization,
which is how they refer to any substitution effects on
inventory, are in their words “subjectively estimated”
at a high level. Their second tool uses a heuristic to con-
struct a line from a selection of extant products. This
tool does not use their cost of complexity function, nor
does it consider substitution—rather it constructs a Par-
eto frontier of those top k products that would cover
the desired percentage of historical order demand (or
order revenue). So while they seek the appropriate line
to satisfy possibly multi-product orders assuming cus-
tomers will not substitute, we find the correct line of
products to satisfy orders for individual products in
which customers may substitute. Rash and Kempf
(2012) find the set of products Intel should produce to
maximize profit over a time horizon while obeying
budget and availability constraints. They perform hier-
archical decomposition, utilizing genetic algorithms
along with MIPs. Their demand is deterministic, so
substitution is not included in the model.
The three-step framework we use was first intro-

duced in Yunes et al. (2007), which describes a product
line simplification effort implemented at John Deere &
Co. Our current work extends their work in several
dimensions. Specifically, we: (i) Explicitly calculate
and validate estimates of the parts utilities; they were
exogenous in Yunes et al. (2007); (ii) Create a sophisti-
cated, endogenous, cost of complexity function; the
function used in Yunes et al. (2007) was exogenous;
(iii) Owing to the form of our endogenous function, we
use a different optimization procedure, the “differen-
tial approach”; (iv) To achieve CAT’s aggressive pro-
duct line goals, we make decisions at the option level,
rather than the machine level, as in Yunes et al. (2007);
and (v) we incorporate pricing decisions and migration
across models, absent in Yunes et al. (2007).
Compared to the literature, our work is unique in

that cost of complexity, utility estimation and substi-
tution behavior is modeled, estimated, and incorpo-
rated into a modular solution framework for the
product portfolio problem, applicable across different
industries and problem settings. In addition, we
demonstrate how our solution can be used in practice;
describing a dramatic redesign of a product portfolio
at CAT.
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3. Modeling Customer Behavior

The key to evaluating the potential pitfalls of reducing
a product line is a good understanding of customers’
purchasing flexibility: While customers will require
that the configuration they are buying satisfy some
minimum requirements, not every feature needs to be
in perfect alignment with their expectations. In addi-
tion, customers typically display some degree of price
flexibility.
The centerpiece of our approach to capture

customer flexibility is the migration list, an ordered list
of configurations within the customer’s price, utility,
and availability tolerance (see Yunes et al. 2007 for
details). The first configuration on the list is the
customer’s first choice; if available the customer will
buy it. If that configuration is unavailable and there
exists a second one on the list the customer will buy
that, if available, and so on. If none of the configura-
tions on a customer’s list are available, that customer
buys nothing (i.e., goes to a competitor). As men-
tioned in section 2, this is an enhanced localized
choice model, in the spirit of Fisher and Vaidyanathan
(2011).
One advantage of this methodology is that it is

independent of the way migration lists are created;
the only requirement is that there be one list, Li, per
customer i, consisting of a collection of configurations
sorted in decreasing order of preference, where prefer-
ence is defined by some ranking function. This ranking
function could map configurations to utilities (as cal-
culated by conjoint analysis (Hauser and Rao 2004)),
or to purchase probabilities (as in a multinomial logit
model (Guadagni and Little 1983)), or to any other
quantitative measure of choice.
The configurations on customer i ’s migration list Li

could also be determined by sales history. If customer
i purchased machine Mi, Li should contain configura-
tions “similar enough” to Mi to satisfy i. There are
several ways to define a similarity function. It could be
as sophisticated as a formal metric in the space of con-
figurations, or as simple as a conjunction of condi-
tions. For example: their utilities and prices do not
differ too much, and the number of features on which
they differ is not too great, and they share compatible
options for a few crucial features, etc. To illustrate the
last condition, assume customer i needs a machine
with large towing capacity (engine power is a crucial
feature for i). All acceptable substitutes for Mi need to
have an engine at least as powerful as Mi’s engine.
Once those machines “similar enough” to Mi are
determined, they would be ranked and placed in Li.
In some settings, Li may need to be truncated once its
length reaches a certain threshold value to capture
possible limits on customer willingness to substitute.
Finally, if creating different ranking and/or similarity

functions for each customer is too burdensome, cus-
tomers can be clustered into market segments.
In summary, the following steps are repeated for

each customer i in the optimization (assume, for the
sake of illustration, we use the method based on sales
history):

1. Let s be the customer segment to which i
belongs (possibly unique for each customer);

2. Let gis and his be, respectively, the similarity
and ranking functions tailored for i and/or s;

3. Apply gis to Mi to obtain a list Li of configura-
tions that are acceptable substitutes for Mi;

4. Sort the elements of Li in non-increasing order
according their his value;

5. Truncate Li to a maximum acceptable length
and save it for the optimization step.

4. Capturing Cost of Complexity

Our next task is to estimate how a line reduction
might affect costs. Product variety affects many func-
tional areas in heterogeneous ways, and in some
areas, the impact on costs is not straightforward: Sales
costs may increase as variety increases because a large
line may overwhelm customers and sales personnel;
on the other hand, sales costs may decrease in variety
if it is easier to satisfy a demanding customer. As a
result, complexity has to be understood in each func-
tional area and individually modeled in different
departments. We refer to all costs impacted by the
variety of product offerings, that is, number of
features and options, as the cost of complexity.
We describe important elements of cost of complex-

ity, propose a cost of complexity function that
captures these elements, and derive a differential cost
of complexity function in sections 4.1, 4.2, and 4.3
respectively. The result of this process is used by our
optimization model in section 5.

4.1. Important Elements of Cost of Complexity
4.1.1. Option Effects. We distinguish between

two main effects: Certain processes are impacted by
the number of options offered for a feature, while other
processes are impacted by the presence of specific
options or combinations of options (within one fea-
ture or across features). For example, material plan-
ners need to calculate stocking requirements for each
SKU offered. If one SKU is eliminated, the cost of
complexity will go down proportionally, regardless
of which SKU is eliminated. We refer to this effect as
Variety Based Complexity, or VBC.
In contrast, other features may include simple and

complex options; engineering cost for releasing a
complex option may be much higher than that for
releasing a simple option. Hence, the reduction in the
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cost of complexity will depend on the particular
option eliminated. We refer to this effect as Attribute-
level-based Complexity or ABC. ABC is not limited to
single options; there may be cases in which a combi-
nation of options drives the cost of complexity.

4.1.2. Temporal Effects. Building the cost of com-
plexity function also requires understanding the
lagged impact of complexity on costs. For example,
assembly cost today is impacted by the product com-
plexity being built today, while warranty costs are
affected by the complexity that was offered a certain
time ago (positive time lag), and engineering and
marketing costs may be impacted by the complexity
that will be offered in the future (negative time lag).
Some of these time lags may already be incorporated
into the cost data, e.g., accounting may allocate costs
for material write-offs to the month when an option
was discontinued. In contrast, expenses paid to sub-
contractors involved in development of a new set of
options are likely to be recorded in the month when
the work is being done, not in the months when the
options will be added to the price list. Hence, it is
important to talk to accounting about potential lags in
data.

4.1.3. Volume Effects. Finally, the cost of com-
plexity is impacted by different volume metrics. Not
surprisingly, most processes are affected by sales vol-
ume: Costs increase as more items are produced and

sold. However, costs are also driven by other vol-
umes. For example, product support is impacted by
the number of unique configurations built, because
quality may decrease when employees have to work
on many different configurations. Other processes,
such as engineering, are impacted by the complexity
offered, as engineers have to prepare releases for all
options and each associated feasible configuration,
while sales volume is unlikely to have an impact on
the engineering cost.

4.2. Cost of Complexity Function
We estimate two separate components of the cost of
complexity function: VBCd(!) is the cost of complexity
caused by variety and is specific to each functional
area or department d, and ABCo(!) is the cost of com-
plexity caused by offering a specific option o. We
summarize this and additional notation used in this
section in Table 1 – we use small letters for super-
scripts and subscripts, bold letters for sets, and capital
letters for numbers coming from collected data.

4.2.1. Estimation of VBC. We use the Cobb–Dou-
glas log-linear function to estimate the variety-based
effect on the cost of complexity for each department d.
The Cobb–Douglas function is frequently used for
estimating non-linear relationships (see Greene 2000);
it can capture different returns to scale and has sev-
eral attractive analytical properties. Two properties
are of particular convenience for us: First, the log

Table 1 Table of Notation

d2 D Superscript used to represent attributes pertaining to department d, where D is the set of all departments considered in the study
f 2 F Subscript used to represent attributes pertaining to feature f, where F is the set of all features in the product line
Fd ⊂ F The set of all features identified as relevant for department d
o 2 O Superscript used to represent attributes pertaining to option o, where O is the set of all options in the product line
Of ⊂ O The set of all options in feature f
Nf Number of options in feature f: jOf j
Nd Set of cardinalities of all features relevant for department d: Nd ¼ fNf : f 2 F dg
VBCd(!) The cost of complexity caused by variety at department d
ABCo(!) The cost of complexity caused by offering a specific option o
DVBCd The differential cost of complexity caused by variety at department d
DABCo The differential cost of complexity caused by offering a specific option o
DCoC The total differential cost of complexity
V Total sales volume
O Number of configurations sold that contain option o
V Set of configurations sold for all options: V ¼ fV o : o 2 Og
U Total number of unique configurations sold
ld Time lag parameter at department d
/d The size of the cost pool at department drelative to other departments
ad The effect of the sales volume on the cost of complexity at department d
ξd The effect of the number of unique configurations sold on the cost of complexity at department d
cdf The effect of the cardinality of feature f on the cost of complexity at department d

ddo , do ¼
P
d2D

ddo One time cost incurred if option o is offered at department dand total across departments respectively

ao Binary variable that indicates whether option o is offered or not

xd
o , xo ¼

P
d2D

xd
o Cost incurred each time option o is produced at department dand total across departments respectively
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transformation of the Cobb–Douglas function is linear
and hence can be estimated using linear regression.
Second, a partial derivative of the Cobb–Douglas
function has a simple form that is useful in the deriva-
tion of the differential cost of complexity function
(section 4.3).
Using lower-case Greek letters to represent

estimated parameters, the Cobb–Douglas cost of
complexity function at time t is given by:

VBCd
t ¼ ndVad

tþldU
/d

tþld

Y

f2Fd

ðNf ;tþldÞ
cd
f : ð1Þ

The
Q

f2FdðNf ;tþldÞ
cd
f term captures the complexity of-

fered, by accounting for the number of options for each
feature on the price list, and the U/d

tþld term accounts
for the complexity built.
We log-transform this function to use linear regres-

sion analysis to estimate needed parameters:

Log½VBCd
t ' ¼ Log½nd' þ adLog½Vtþld ' þ /dLog½Utþld '

þ
X

f2Fd

cdf Log½Nf ;tþld ' þ !t: ð2Þ

Within our optimization model, we evaluate the
effect of a one-time change to the product portfolio on
the long-term cost. Hence we do not need the time
dimension for further analysis and will suppress
time subscript t, using a functional representation
VBCd(Nd, V, U) instead.1

4.2.2. Estimation of ABC. Introducing a complex
option may have different effects: (1) There may be a
fixed cost associated with offering the option (e.g.,
part design cost); and (2) There may be variable costs
incurred each time the option is produced (e.g., addi-
tional testing each time the part is installed). We
model the total cost of offering and producing option
o, ABCo, as the sum of the one-time cost across all
departments if option o is offered (complexity offered)
and the incremental cost across all departments
incurred each time a configuration with option o is
built (complexity built):

ABCoðao;OÞ ¼ ao
X

d2D
ddo þO

X

d2D
xd

o :

4.3. Differential Cost of Complexity Function
To facilitate optimization, instead of computing the
total cost of each offering, we build a cost of complex-
ity function that starts with the current line and com-
putes the estimated change in cost as the numbers of
features and options change. For the variety-based
component, we take the partial derivatives of
VBCd(Nd, V, U) with respect to all variables, and then

combine them into an aggregate differential cost of
complexity function.
For example, the change in VBC with the number

of options for feature f is:

dVBCdðNd;V;UÞ
dNf

¼
cdf
Nf

ndVadU/d Y

i2Fd

N
cd
i
i

¼
cdf
Nf

VBCdðNd;V;UÞ;

substituting the definition of VBCd(Nd, V, U) given
by Equation (1).
This differential cost of complexity function

includes the predicted value of VBCd(Nd, V, U). This
is problematic for two reasons: (i) The predicted
VBCd(Nd, V, U) contains an error term and hence
may not give an accurate size of the cost pool; and
(ii) Values of V, Nf, and U change during the
specified time period. Therefore, we approximate
VBCd(Nd, V, U) with the historical average cost at

department d (Dd) attributable to complexity, taken
over an appropriate period:

dVBCdðNd;V;UÞ
dNf

(
cdf
Nf

Dd: ð3Þ

Using Equation (3), the total change in cost of com-
plexity due to a change in the number of options
offered for feature f is then estimated as:

Dd
cdf
Nf

DNf ;

where DNf represents the change in the number of
options in feature f after optimization; similarly we
will precede V, U, O, N, Nd, and V with D to represent
change. These differential quantities depend on the
market response to the options offered in the product
portfolio, and will be computed within the optimiza-
tion model by leveraging our customer migration
model. We will formally define these functions in
section 5 when we introduce the optimization model.
In an analogous fashion, we differentiate the cost of

complexity function with respect to volume and num-
ber of unique configurations. Aggregating these dif-
ferences yields the total variety-based differential cost
of complexityDVBCd:

DVBCd ¼
X

f2Fd

Dd
cdf
Nf

DNf þDd
ad

V
DV þDd

/d

U
DU: ð4Þ

To capture the differential ABC effect, we must
account for the change in the number of options
offered and sold. If we eliminate an option o from the
price list the cost of complexity will decrease by
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do ¼
P

d2D ddo and if sales with option o deviate from
O, the cost will likewise change:

DABC ¼
X

o2O
doðao ) 1Þ þ

X

o2O
xoDO;

where a¼ fao : o 2 Og:
ð5Þ

Finally, the total differential cost of complexity is:

DCoC ¼
X

d2D
DVBCd þDABC: ð6Þ

Equation (6), with estimated parameters, becomes a
part of the objective function in the optimization
model of section 5. Because the cost of complexity
function is non-linear, this approach is accurate only
for small changes. In practice, the accuracy of this
approximation may be tested by calculating the actual
change in the total cost of complexity for the original
product line VBCd(Nd, V, U) and for the optimized
product line VBCd(Nd + DNd, V + DV, U + DU), and
then comparing this to the result of the approximation
DVBCd.

5. The Optimization Model

With the migration lists from section 3 and Equation
(6) from section 4, we are now ready to describe our
optimization model. We use a mixed-integer linear
program to select the set of options and configura-
tions offered, and their prices, to maximize total profit
from sales minus the change in cost of complexity
(the objective function value increases when this
change is negative).
In addition to the data defined in section 4, our opti-

mization model uses the following data:

• I — The set of all customers;

• Li — The ordered set of configurations in the
migration list of customer i 2 I. Each member
of Li is represented by a pair (j, k), where k
identifies the lane choice and j identifies the
specific options chosen for all remaining
features. Therefore, the same j can appear in
several pairs with different values of k, but only
one (j, k) pair will appear in the final portfolio.

• J — The set of all configurations appearing on
migration lists (J ¼

S
i2I Li);

• Ojk — The set of all options in configuration
(j, k) 2 J;

• Ri — Reservation price of customer i 2 I; this
could be configuration-dependent if desired
(i.e., Rijk instead of Ri);

• M — Maximum reservation price over all cus-
tomers (M ¼ maxi2I Ri);

• Cjk, Bjk, Pjk — Cost, base price, and current sale
price of configuration (j, k) 2 J, respectively.

Base price is the starting price of an incom-
plete configuration before any of its options
are included. The value of Pjk equals of Bjk

plus the prices of all options contained in con-
figuration (j, k). We use this additive price
structure to illustrate option pricing optimiza-
tion, but it is not a requirement of our model,
that is, other price structures are also possible.

The decision variables (ao was defined in Table 1,
but we repeat it here for completeness):

• ao = 1 if option o 2 O is available, 0 otherwise.

• qjk = 1 if configuration (j, k) 2 J is bought by at
least one customer, 0 otherwise;

• xijk = 1 if customer i buys configuration (j, k), 0
otherwise (i 2 I, ðj; kÞ 2 Li);

• po — Price of option o 2 O (po ≥ do, where do is
defined in Table 1). These variables enable
changing the prices of individual options; one
could eliminate these variables entirely, or
replace them with variables pjk to price config-
urations. Using pjk instead of po would result
in simple changes to some of the constraints
we present below;

• rijk — Profit if customer i purchases configura-
tion (j,k) (i 2 I, ðj; kÞ 2 Li).

We now provide precise definitions to the following
terms that appear in Equation (4) and Equation (5):

DNf ¼
X

o2Of

ao ) Nf ; DU ¼
X

ðj;kÞ2J
qjk ) U;

DV ¼
X

i2I

X

ðj;kÞ2Li

xijk ) V; DO ¼
X

i2I

X

ðj;kÞ2Lijo2Ojk

xijk ) O:

Our optimization model is then:

max
X

i2I

X

ðj;kÞ2Li

rijk ) DCoC; ð7Þ

qjk * ao 8 ðj; kÞ 2 J; o 2 Ojk ; ð8Þ

xijk * qjk 8 i 2 I; ðj; kÞ 2 Li; ð9Þ
X

kjðj;kÞ2J
qjk * 1 8 j j ðj; kÞ 2 J for some k; ð10Þ

X

ðj0;k0Þ after ðj;kÞ in Li

xij0k0 þ qjk * 1 8 i 2 I; ðj; kÞ 2 Li;

ð11Þ

rijk *Bjk þ
X

o2Ojk

po ) Cjk 8 i 2 I; ðj; kÞ 2 Li; ð12Þ

Bjk þ
X

o2Ojk

po *Pjkð1þ max incÞ 8 ðj; kÞ 2 J; ð13Þ
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rijk *ðminfRi;Pjkð1þ max incÞg ) CjkÞxijk
8 i 2 I; ðj; kÞ 2 Li;

ð14Þ

Bjk þ
X

o2Ojk

po *Ri þ ðPjkð1þ max incÞ ) RiÞð1 ) xijkÞ

8 i 2 I; ðj; kÞ 2 Li:

ð15Þ

The objective function Equation (7) maximizes the
total profit from sales minus the differential cost of
complexity given by Equation (6). The purpose of
each constraint is as follows (where MAX_INC is the
maximum allowed percentage price increase for any
configuration): Equation (8): If option o is not avail-
able (ao = 0), no configuration that contains o can be
bought (qjk = 0); Equation (9): If customer i buys con-
figuration (j, k) (xijk = 1), then (j, k) must have been
bought (qjk = 1); Equation (10): Configurations can be
assigned to at most one lane; Equation (11): If (j, k) is
bought by someone (qjk = 1), it must be available,
therefore customer i cannot buy less desirable config-
urations (j0, k0) that appear after (j, k) in Li (all
xij0k0 ¼ 0); Equation (12): Profit cannot exceed price
(Bjk þ

P
o2Ojk

po) minus cost; Equation (13): Configu-
ration prices cannot increase by more than MAX_INC;
Equation (14): No purchase (xijk = 0) means no profit
(rijk = 0) and, if a purchase happens (xijk = 1), the term
in parenthesis is a ceiling on the value of rijk; Equation
(15): If customer i buys configuration (j, k) (xijk = 1),
(j, k)’s price must not exceed Ri.
We can turn off the price optimization aspect of this

model by removing variables po and constraints Equa-
tions (13)–(15), and changing the right-hand side of
Equation (12) to (Pjk ) Cjk)xijk. Lane assignment deci-
sions can be removed by deleting constraint Equation
(10) and all occurrences of index k.

6. CAT-Specific Modeling Details

In this section, we first provide some background on
CAT’s BHL product families, in 6.1. We then detail
the assumptions and decisions made to create the
CAT-specific instantiation of the generic framework
we describe in sections 3, 4, and 5, (in Sections 6.2, 6.3
and 6.4, respectively). CAT experts participated in the
entire process, making sure they understood and,
when necessary, validated, the inputs and outputs of
each intermediate step.

6.1. BHL Product Families
Our product line simplification effort at CAT
involved four models in the backhoe loader (BHL)
family: 416E, 420E, 430E, and 450E. The 416E is their
basic model, while the 420E, 430E and 450E provide
progressively superior horsepower and capabilities.
We refer to a complete machine as a configuration.

Each configuration is composed of features; for each
feature, a configuration specifies one of the options
within that feature. For example, the feature stick has
the options standard and electronic. In the marketing
literature, what we call a feature is also known as an
attribute, and what we call on option is also known as
an attribute level. Table 2 summarizes the features and
number of corresponding options present in each
BHL model in our project. A dash “-” indicates that a
feature is not present in a model or was not included
in our analysis.
To create a complete configuration, a customer

selects one option for each of its features, ensuring that
these options are compatible. The number of such con-
figurations is immensely large: For model 416E in its
most basic version, there are 37,920 feasible configura-
tions. Including choices for attachments yields
2,275,200 distinct feasible configurations. The vast
majority of these configurations have never been,
and most likely will never be, built. The mere fact
that they could be purchased, however, creates over-
head costs for CAT. Moreover, every unique option
offered incurs a cost for CAT, due to the engineering
and support costs it requires. We discuss this in
detail in section 4.
So how many configurations are actually built? Fig-

ure 1 depicts the minimum number of different con-
figurations (left panel) and options (right panel)
required to capture given percentages of revenue and
sales, respectively, for eight month’s worth of sales
data for model 420E. Of the 569 built configurations,
400 were needed to capture about 95% of revenues
and sales volume. Similarly, 36 out of the 42 available
options were needed to capture at least 95% of rev-
enues and sales volume. Therefore, to achieve the
sought reductions in product offerings, it was impera-
tive to steer purchases toward a considerably smaller
subset of products and options.

Table 2 Number of Options in Each Feature of CAT’s BHL Models

Features

BHL models

416E 420E 430E 450E

Sticks 2 2 2 2
Backhoe hydraulics 3 3 3 6
Backhoe controls 2 – – –
Loader buckets 5 13 13 4
Loader hydraulics 2 2 2 2
Cab/canopy 5 5 4 2
Powertrain 4 3 2 –
Engine cooling 2 2 2 –
Counterweights 4 4 4 –
Backhoe aux lines 3 3 3 3
Engine coolant heater 1 1 1 1
Product link 1 1 1 1
Ride control 1 1 1 –
Front loader mechanics – 2 2 –

Shunko, Yunes, Fenu, Scheller-Wolf, Tardif, and Tayur: Product Portfolio Restructuring
Production and Operations Management 27(1), pp. 100–120, © 2017 Production and Operations Management Society 107



As we will see in section 8, CAT ultimately con-
verged on a lane system in which configuration lead
times depend on the lane to which they belong.
Although not part of our original algorithm, our mod-
eling framework can incorporate such a structure
assuming the lanes and lead times are given. Specifi-
cally, lanes, with corresponding lead times, can be
treated as options of an additional configuration fea-
ture, which we will call Availability. In addition, just
as customers can be modeled as having tolerances for
price and utility, there can be a maximum availability
threshold per customer as well.

6.2. Modeling the Behavior of CAT’s Customers
The pseudo-code below shows how migration lists
were constructed for CAT; we use customer pur-
chases in 2006 as the basis for generating our migra-
tion lists.
For each customer i 2 Iwho bought a configuration

over the past Hmonths repeat:

1. Let Mi be the configuration (i.e., machine)
bought by i.

2. Apply segmentation rules to Mi (section 6.2.1)
to place i in a customer segment Si.

3. Based on the price and utility of Mi, and on
characteristics of segment Si, construct a ran-
domized list of configurations, Li, as acceptable
alternatives to Mi (section 6.2.2).

4. Sort Li in non-increasing order of configura-
tion utility, pruning it if it exceeds the
maximum allowed length (section 6.2.3).

6.2.1. Customer Segmentation. Customer seg-
mentation is important in CAT’s business because it
affects customer flexibility. For example, customers
who live in extreme weather conditions are unlikely
to buy a configuration that does not include a cab

with climate control, and customers who need to
carry very heavy loads are not willing to sacrifice
horsepower. We used focus groups composed of
CAT experts and actual customers to identify the
main customer segments and their characteristics:
performance extreme (PE), performance extreme versatil-
ity (PEV), performance mild (PM), performance mild
versatility (PMV), commodity extreme (CE), and com-
modity mild (CM). The performance category repre-
sents customers who are less price sensitive and
need powerful machines. The extreme and mild cate-
gories refer to weather conditions, and the versatility
category represents customers who need their machi-
nes to perform a variety of tasks. Based on historical
sales data, the fraction of customers in each of the
above six segments are approximately 20%, 20%,
25%, 10%, 5%, and 20%.
A set of segmentation rules was created to classify

each purchase: Given a configuration, its customer
segment is determined by the presence and/or
absence of certain options, represented as part num-
bers. For example, there are eight ways for a 416E
loader to be placed in segment PE. One is: Two out
of the options 2,146,913, 2,099,929, and 2,139,293
must be present (89HP powertrain and e-stick), and
one out of the options 2,044,161, 2,044,162, and
2,284,602 must be present (cabs), and the option
2,120,206 cannot be present (6-function hydraulics),
and neither option 2,497,912, nor option 2,624,213
can be present (one-way and combined auxiliary
lines).
In addition to the segment-specific option utilities

discussed in section 6.2.2, segment-specific reserva-
tion prices and reservation utilities also affect migra-
tion list generation (section 6.2.3).

6.2.2. Estimating Utilities. For each of the cus-
tomer segments identified in section 6.2.1, we

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600

P
er

ce
nt

ag
e 

of
 c

ov
er

ag
e

Number of configurations

Revenue
Sales

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40  45

Pe
rc

en
ta

ge
 o

f c
ov

er
ag

e

Number of options

Revenue
Sales

Figure 1 Minimum Number of Distinct Configurations (Left) and Options (Right) Required to Capture Given Percentages of Revenue and Sales
Volume for BHL Model 420E
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calculate option utilities as follows. First, to estimate
the importance of a model’s features, we asked a
group of CAT employees with sales and manufactur-
ing expertise to use the Analytic Hierarchy Process
(AHP) (Saaty 1980). AHP asks experts to estimate the
relative importance between every pair of features on a
scale from 1 (equally important) to 9 (much more
important). The pairwise scores are then transformed
into absolute scores of relative importance for each
individual feature. The same group of experts is then
asked to rank the options within each feature on a
scale from 0 to 100. These option scores are scaled so
that the option receiving a score of 100 is assigned a
value equal to its feature’s relative importance. These
scaled scores represent the final option utilities. The
utility of a complete configuration is estimated as the
sum of the utilities of its options.
To validate the utility values calculated for each of

the options—for every BHL model in all customer
segments—we conducted a survey asking actual cus-
tomers to choose among alternate configurations.
Using t-tests, CAT determined that differences
between the utilities derived from the survey results
and those estimated by experts were not statistically
significant.

6.2.3. Building Migration Lists. Although cus-
tomers of a given segment tend to behave similarly,
they are certainly not identical. To account for varia-
tions within each segment, we modify the migration
list procedure in several ways. First, for each segment
we randomly perturb the relative importance (and,
consequently, the option utilities) of randomly
selected features. The number of features to perturb is
an input parameter (for CAT, this was around three).
Given a perturbation factor h (approximately ten), the
change to a feature’s relative importance is randomly
drawn from a uniform distribution over the interval
[) h%, + h%]. CAT also did not want customers to
have lists containing configurations too dissimilar
from the one purchased. Therefore, a number called
the disparity factor (around five) limits how many
options an alternative configuration can have that dif-
fer from Mi. Finally, the model generates the cus-
tomer’s reservation price and reservation utility;
again, these values are randomly picked from a pre-
determined interval around the price and utility of
Mi.

2

We collect the above procedures into a Constraint
Programming (CP) model (Marriott and Stuckey
1998) that finds feasible configurations for Li. This CP
model needs to know what constitutes a feasible
configuration, that is, which options are compatible.
We use configuration rules to describe these interde-
pendences. For example, for model 420E, one rule is:
If a configuration has option 9R58666 and either

option 2139272 or 2139273, then it cannot have option
9R5321. After all feasible configurations are found,
those that exceed the generated reservation price or
fall short of the reservation utility are pruned from
the customer’s migration list.
Next, configurations are sorted in non-increasing

order of total utility and Li is truncated, if desired,
while respecting two conditions. First, if Li is trun-
cated, Mi must always be retained. Second, we
assume customers place Mi first, regardless of Mi’s
utility, with a certain probability (the b factor;
for CAT it was between 0.3 and 0.7). This is an
attempt to capture the fact that some customers are
attracted to their Mi for reasons we cannot capture
with utilities.
Migration across different models is also possible.

In this case, we apply a set of migration rules that
map a purchased configuration M1 of model m1 (e.g.,
416E) to its most likely counterpart M2, of a different
model m2 (e.g., 420E). Once M2 is known, we generate
alternatives as if it were the customer’s original pur-
chase, and include them (together with alternatives to
M1) onto Li. Because m2 configurations may have
higher utilities, when Li is sorted it may contain
almost no highly ranked m1 configurations. Thus, to
capture the fact that customer i originally preferred
an m1 configuration, we inflate the utilities of all m1

configurations on Li by a preference factor (between
10% and 20%). As a result, Li ends up with configu-
rations of both models, but it does not allow utilities
to overemphasize the attractiveness of m2 configura-
tions. According to CAT, the plausible model
migrations are from 416E to 420E and from 430E to
420E.
As was done for option utilities, we also conducted

an extensive validation study with CAT experts to
evaluate the quality of our migration lists. Through-
out this process, the experts provided valuable feed-
back that helped us fine tune our input parameters.
After a few iterations, CAT experts agreed that our
migration lists could be safely used by our optimiza-
tion algorithm.

6.3. Estimating the Cost of Complexity at CAT
6.3.1. Understanding the Impact of Complexity

at CAT. In conjunction with CAT experts, we identi-
fied nine functional areas impacted the most by com-
plexity. Within each area, we (i) identified up to three
major processes most impacted by product complex-
ity; (ii) found cost-measures that capture the impact
of complexity for each major process; and (iii) identi-
fied particular product features and/or options that
have the largest impact on the cost of complexity.
Table 3 lists the functional areas, processes impacted,
and measures used (when alternate cost measures are
used due to data unavailability they are denoted by a
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dagger †). Below, we elaborate on several cost mea-
sures in Table 3.
Cost of supplier delivery performance refers to a pro-

gram targeted towards improving availability, in
which CAT contacts suppliers with low delivery

performance to improve their processes. We use the
cost allocated to this program as a proxy for the cost
of supplier operations. In the customer acquisition
department, CAT calculates sales variance cost by
tracking all the discounts that go into making a sale:
invoice, extended service, cost of free attachments,
etc. We use this measure to approximate the cost of
customer acquisition. We rely on CAT’s accounting sys-
tem for cost estimates of engineering changes (pri-
marily consisting of payroll to engineers working on
changes) and engineering of new releases (primarily
consisting of the payroll of developers and engineers
who work on new parts, and costs of testing and
design equipment).

6.3.2. Option Effects for CAT. The next step was
to understand which features have VBC and/or ABC
effects on identified processes. The results of VBC/
ABC classification are summarized in Table 4.

6.3.3. Temporal Effects for CAT. We then esti-
mated the time lags for different cost pools, some time
lags are naturally incorporated into the cost data
based on the accounting rules, but some needed
adjustments. Table 5 summarizes our analysis of time
lag parameters. We use this information in section
6.3.5 to estimate the parameters of the cost of com-
plexity function.

6.3.4. Volume Effects for CAT. Similar to the
time lags, we collected initial estimates of the primary
volume drivers for different cost pools from the
experts in each department, summarized the results,
and held a group discussion to come to consensus.
Table 6 provides a summary of the results.

6.3.5. Estimation of the VBC Effect. With a good
understanding of the costs, time lags, and volume dri-
vers, we collected data to estimate parameters ξd, ad,
/d, and cdf for all d and f. We collected data from Jan-
uary 2001 to December 2005, for all cost measures
summarized in the third column of Table 3. We then
collected data from the price lists from 2000 to 2006 to
capture all changes in option offerings, which were

Table 3 Main Business Processes Impacted by Complexity and the
Corresponding Cost Measures

Department Processes impacted Measure of complexity

Purchasing Capital tooling Capital tooling cost
Supplier operations Supplier delivery

performance*
Customer

acquisition
Ordering
Forecasting Cost of customer

acquisition*
Quoting and training

Marketing Price list creation
Training Budget expenditure*
Publications

Engineering Drawing changes Cost of engineering changes
Cost of product and
component

Original design and
development

Cost of new releases

Order fulfillment Attachment forecasting
Sequencer work Headcount cost*
Grief resolution

Product support Dealer solution
network - calls

Cost of service calls

Publications - manuals Cost of publications
Warranty costs Cost of repairs

(first 10 hours)
Cost of repairs (during
11–100 hours)

Cost of repairs (above
101 hours)

Material planning Inventory management Inventory handling cost
(prime product)

Inventory handling cost
(components)

Schedule volatility Headcount cost
Expedition Freight cost

Operations Initial process setup Person-hour cost,
production planning

Assembly process Person-hour cost, assembly
Quality Initial setup Cost of initial setup

Hot test Hot-test cost (person-hours)
Cab test Cab-test cost (person-hours)

Note. * Alternative cost measures used due to lack of data availability.

Table 4 VBC/ABC Classification of Features

Department/feature Backhoe hydraulics Loader buckets Auxiliary lines Quick coupler Hoe buckets Control groups Cab/canopy Sticks

Purchasing VBC VBC VBC VBC VBC
Customer acquisition VBC VBC VBC
Marketing VBC VBC VBC
Engineering ABC VBC VBC VBC ABC
Order fulfillment VBC VBC VBC VBC VBC VBC VBC VBC
Product support VBC VBC VBC
Material planning VBC VBC VBC VBC
Operations ABC ABC ABC
Quality ABC
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used as independent variables. (We had to collect a
larger range of data due to the time lags identified in
section 6.3.3.) Similarly, we collected monthly sales
(Vt) and the number of unique configurations sold
per month (Ut) from 2000 to 2006.
The nature of the data suggested that there may be

serial correlation, hence, we examined partial auto-
correlation function plots and checked for autocorre-
lation, using the generalized Durbin–Watson statistics
using the AUTOREG procedure in SAS. For those cost
pools having autocorrelation (all three “Cost of
repairs” measures), we used the autocorrelation order
identified by SAS (all three were a lag of one) and
used the Yule-Walker approach to fit the data (Greene
2000).

Next, we obtained statistical models for all depart-
ments by fitting collected data to Equation (2). We
evaluated our models using both graphical and
numerical tests using standard statistical techniques
(e.g., examined the plots of residuals for normality,
heteroscedasticity, and influential outliers). Although
our cost data exhibited seasonality, the seasonality in
cost (our dependent variable) is driven mainly by the
seasonality in the volume (an independent variable)
and, hence, it is likely to be automatically taken into
account by our model. We checked this by analyzing
residuals: In each model, we group the residuals for
each month; F-tests show that there are no statistically
significant differences between the means of the
groups. We also checked for significance, and only
accepted those factors with reasonable coefficients of
determination and low RMSE. Hence, not all of the
originally identified departments were included in
the final cost of complexity function. Table 7 summa-
rizes all models/departments included in the opti-
mization model. The estimates that are statistically
significant at the 0.05 significance level are marked
with an asterisk.3

We comment on the coefficient of determination
(R2) of the models in Table 7. Some of the
departmental costs are heavily impacted by factors
outside CAT’s walls: For example, cost of customer
acquisition is impacted by competitors’ actions, and
cost of supplier delivery performance is impacted by
suppliers’ operations. Hence, we expect the
coefficients of determination to be lower for such
departments. In running the optimization model,
nevertheless, in order to help ensure that our results
are robust, we evaluate ranges of parameters as
described in section 7.
Some other findings in Table 7 are noteworthy.

Increasing the number of options for hydraulics and
cabs decreases the cost of customer acquisition, that
is, cCAH \ 0 and cCAC \ 0: A large proportion of this cost
consists of sales variance or discounts given to cus-
tomers in order to attract business. Cabs and hydrau-
lics are very important considerations for customers;

Table 5 Summary of the Time Lags (in Months)

Department Time lag Department Time lag

Purchasing 0 Product support:
Customer acquisition 3 Service calls 6
Marketing 0 Repairs in the first 10 hours 4
Engineering: Repairs in 10–100 hours 9
Changes ) 6 Repairs after 100 hours 9
Releases ) 8 Material planning:
Product and
component costing

) 7 Prime product inventory 2

Order fulfillment 0 Scrap of surplus materials 0
Operations 0 Inventory scrap 0
Quality 0

Table 6 Main Volume Drivers

Department/volume driver
Sales
volume

Complexity
offered

Complexity
built

Purchasing U U
Customer acquisition U U
Marketing U U
Engineering U
Order fulfillment U U
Product support U U
Material planning U U U
Operations U U
Quality U U

Table 7 Fit Results

Fn. Cost pool (d) R2 RMSE ξd ad /d cdHC cdC cdCW cdH
CA Customer acquisition 0.37 0.18 962,771,120.4* 0.19 ) 1.13* ) 1.68*
MP Inventory (components) 0.29 0.16 1,087,617.41* ) 0.03 1.04*
MP Inventory (prime product) 0.38 0.4 297.68 0.91* 0.91
ENG Engineering changes 0.41 0.52 0.00342591 4.81712* ) 0.54
ENG Engineering product and component 0.55 0.9 6.39E-04* 4.107* 3.14*
PS Repair costs in the first 10 hours 0.29 0.37 26,238.94* ) 0.21 0.59*
PS Repair costs during 11–100 hours 0.32 0.24 3055.00* ) 0.32 1.28*
PS Repair costs above 101 hours 0.55 0.47 934.63* ) 1.41* 2.78*
P Supplier delivery performance 0.33 0.58 36.65 1.5*

Notes. *Statistically significant parameters at 0.05 significance level. Subscripts HC, C, CW and H stand for hydraulic combinations, cabs, counterweights,
and hydraulics.
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having a large selection of options for these features
makes it easier to make a sale, decreasing the sales
variance. This finding is in line with the intuition of
sales and marketing representatives from CAT. Nev-
ertheless, this was the first time that CAT was able to
quantify this effect.
Another observation is that sales volume has a

negative impact on product support costs (i.e.,
repair costs): When volume goes up, CAT employees
assemble more machines with the same options,
and learning effects reduce the number of mistakes.
This intuition again seemed plausible to CAT, but
had never been quantified. On the other hand,
sales volume has a positive impact on the cost of
inventory of prime product. As CAT subsidizes
dealers for carrying final product inventory for
time sensitive customers, and the lead time
demand increases when volume increases, subsi-
dies increase. Guided by our study, CAT subse-
quently has performed similar cost of complexity
analyses in other product divisions and obtained
comparable results.
Finally, we validated our model by using the first

two years of data to fit the model, then, compared the
predicted values for the next three years to actual
data. A large majority (7 out of 9) of the actual cost
pool values were within the 95% confidence interval
around their predictions.

6.3.6. Estimation of the ABC Effect. From focus
groups, we identified that ABC effects were observed
primarily in three departments: assembly, production
planning, and engineering. The nature of work in
these departments suggested a linear relationship
between ABC cost and complexity: If it takes 5 extra
minutes to install a particular option on a machine,
this cost will apply to each machine that contains the
option. This coincided with expert opinion, which
posited minimal learning effects. This supported the
form of our proposed ABCo function having a fixed
and variable cost component.
The cost parameters do and xo were estimated using

expert opinions, time studies, and accounting infor-
mation from all functional areas that identified this
option as important (see Table 8).

6.4. CAT’s Optimization Model
CAT used the optimization model in section 5 with-
out its lane-assignment features. In addition to the
constraints described therein, CAT’s optimization
model includes two constraints that deal with profit
margins. Let MIN_MARG and MIN_AVGMARG be, respec-
tively, the minimum required profit margin on each
configuration sold, and the minimum required aver-
age margin over all configurations sold. The margin
constraint per configuration is written as

Cjð1þ min margÞ*Bj þ
X

o2Oj

po; 8 j 2 J: ð16Þ

CAT provided a specific formula that they use to
enforce the minimum average margin over all config-
urations sold. Besides the configuration cost Cj

defined in section 5, CAT uses another cost figure,
denoted C0

j * Cj, which they refer to as variable cost.
The sole purpose of C0

j is to enforce this average mar-
gin constraint:4

min avgmarg
X

i2I

X

j2Li

ðrij þ CjqjÞ

*
X

i2I

X

j2Li

ðrij þ ðCj ) C0
jÞqjÞ: ð17Þ

The resulting optimization models have around
850,000 variables and 1.8 million constraints, they are
solved, using ILOG CPLEX Optimizer with default
parameters. Typical solution times range from 6 to
8 hours, including preprocessing.

7. Results from Our Analysis

CAT’s goal was to make a drastic reduction in the
number of configurations offered without significantly
reducing customer satisfaction or market share. How
to achieve such a goal, or whether it was even possible,
was unclear at the outset of the project. Since this
reduction would present customers with fewer config-
urations, CAT assumed each remaining configuration
could be priced a little lower; the reduced cost of com-
plexity would allow this while maintaining profit.
Throughout our analysis, to ensure that our recom-

mendations were robust, we ran the optimization
model across a range of parameters and migration list
lengths.

7.1. Stage 1: Focusing on Configuration and
Option Reduction
As an initial benchmark for our optimization, we first
sought to identify the set of configurations that maxi-
mized profit at the current option prices, assuming
limited customer migration (no more than a dozen
configurations on a migration list, and no migration

Table 8 ABC Costs

Option do xo

Any option $1000.00

In addition

IT $6000.00 $23.61
Cab $14,656.25 $53.80
E-Stick $125.00 $1.30
One way line $3593.75 $5.64
Ride control $1281.25 $5.86
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across models). While profits did increase, we obtained
very little reduction in the number of configurations,
except when a reduction was explicitly enforced by the
constraint

P
j2J qj * ð1 ) min conf redÞjJj. Moreover,

forcing a large reduction resulted in a significant
decrease of sales revenue.
Given these results, we hypothesized that further

reducing the cost of complexity would require signifi-
cant cuts in options. Hence, a new constraint was
added to the model to force option reduction:P

o2O ao * ð1 ) min opt redÞjOj. We re-ran the opti-
mization model forcing a reduction in the number of
configurations and the number of options. Reducing
options did succeed in reducing configurations, in
some solutions by as much as 94%, and increased
profit by generating a large cost of complexity reduc-
tion. But it also resulted in a drop in sales volume of
up to 67%. This disturbed CAT team members since
the company has always prided itself on its market
share. Fulfilling customer demand therefore became
an important new metric of the analysis.

7.2. Stage 2: Opening Up Choices
Thus, in the next phase of our analysis, we wanted to
explore what results would be possible if customers
were presumed to be significantly more flexible, pos-
sibly as a result of price incentives. We modeled this
flexibility in two ways: We increased the migration
list length (to 100 configurations) and we enabled
model-to-model migration.
This approach started to generate encouraging

results. A solution emerged with an increase in profit
of 8.8%, less than a 2% reduction in sales volume, and
a reduction in configurations equal to 65%. But further
analysis showed that the number of options had not
decreased significantly. The increase in profit came
from a decrease in the number of configurations, and
increases in price paid by customers who migrated to
slightly more expensive machines. Performing sensi-
tivity analysis confirmed this conclusion: Expecting a
large reduction in options was not realistic. However,
a large reduction in configurations was possible.
This resulted in a problem for CAT: Without a

reduction of options, how would this new (and lim-
ited) set of configurations be presented to the cus-
tomers? Restaurants can get by with a 3–4 page menu
that lists all their entrees. But no customer would flip
through a menu of 70–90 pages listing all the possible
BHL configurations. A new scheme had to be devised.

7.3. Stage 3: Standardization and Options
Packages
We decided to try two new strategies to concentrate
customer demand on a manageable number of config-
urations. The first strategy was standardization:
Could options such as High Ambient Cooler and

Engine Heater be made standard across all configura-
tions? Optimization models with these options forced
into every configuration yielded cost reductions that
justified a reduction in price large enough to make the
standardized configurations attractive to customers,
while maintaining sales volumes and profit. Other
rarely used options were eliminated, using a similar
approach. For example, the Cab/Canopy options
were cut from five to two.
The second strategy was creating packages of

options commonly found together. For example,
guided by customer segment preferences, a single
pair of loader hydraulics and powertrain options
most likely to meet each segment’s needs were pro-
posed. Manual inspection and cluster analysis of the
best solutions found so far led to the discovery of
other options often found together.
The optimization was then run assuming standard-

ization and option packaging, with constraints on the
maximum price increase. This yielded the final pro-
duct hierarchy for the 420E series, shown in Figure 2:
It consists of 9 base-machine-assembly (BMA) pack-
ages, 5 finished-to-order (FTO) packages, and 3
hydraulics options, for a total of 135 possible configu-
rations, some of them anticipated to be much more
popular than others.
Pricing optimization showed that with these 135

configurations, revenue from sales could increase by
almost 7%, and profit could increase by 15%, with
99.6% demand fulfillment. The standardization and
bundling of options greatly reduced the universe of
feasible configurations, which led to inventory and
quality savings: 76% of the projected cost of complex-
ity savings came from reductions in finished goods
inventory and warranty costs (in particular, the cost
of addressing failures in the first 100 hours of machine
operation). Since the goal of the project was to main-
tain similar profit levels (rather than seeking
increases), the team determined appropriate option
price reductions to drive dealer behavior toward these
configurations while maintaining profit. The pro-
posed pricing policy resulted in an anticipated reduc-
tion in profit from sales of 4%, which was easily made
up by the reduction in cost of complexity to yield a
total profit increase of 4.8%. We had finally found the
very small subset of configurations that we believed
was broad enough to satisfy CAT’s customers and
dealers, but also focused enough to drive operational
and supply chain efficiencies. This final recommenda-
tion was presented to CAT, and was approved.

8. Implementation Details

8.1. Initial Implementation
CAT put an updated price list for the 430E product
line (modified via dealer input to now feature 124
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configurations) into effect in some regions in April
2010; but, in order to minimize the risk of lost sales,
customers could still order a-la-carte machines
according to the old price list. Concurrent with this
new price list, CAT introduced a 3-lane strategy for
order fulfillment:

• Lane 1 (the fastest lane): Orders on the four
designated “most popular” fully configured
machines would be satisfied within a few
days;

• Lane 2: Orders on the remaining 120 choices,
broken into the Loader, Comfort and Convenience,
and Excavation packages, would be satisfied
within a few weeks;

• Lane 3: Any a-la-carte machine would be satis-
fied within a few months, as previously.

Upon implementation, CAT experienced positive
dealer feedback and large reductions in the number
of unique configurations sold. This contrasted with
previous attempts to reduce the size of the product
line, based on a Pareto analysis of the top few dealers.
These had likely been ineffective, in CAT’s opinion,
because they did not effectively model the interaction
of cost, customer preferences, and substitution, as we
had.
It is worth noting that, to the best of our knowl-

edge, neither standardization nor option packaging
were being considered prior to the start of our
project. These concepts, and the lane strategy they
support, were only developed after our analysis indi-
cated that CAT needed to find a way to limit the
number of configurations while not eliminating too
many options. Our analysis then gave CAT direction
in implementing these new strategies, by indicating
which sets of configurations were likely to be most
successful.

This evolution of the solution strategy also affected
how the results of our algorithm were applied. Specif-
ically, we initially modeled a problem setting in
which there would be a reduced set of products
offered to customers differentiated by price, but not
by lead time. The solution CAT implemented (in prin-
ciple) still includes all possible configurations within
Lane 3, and differentiates these from the first two
lanes by lead time. Thus, our forecasts of the savings
in cost of complexity, which would be accurate if only
the first two lanes were offered, are only an approxi-
mation given the continued possibility of a-la-carte
ordering. Caterpillar felt that the flexibility of retain-
ing Lane 3 outweighed any reductions in cost of com-
plexity savings. Likewise, although lead time
differences could be incorporated into our framework
as shown in sections 3 and 5, Caterpillar felt comfort-
able enough with the main conclusions of the analysis
to forgo additional analysis.

8.2. Moving Forward
In 2011, CAT released a single price list featuring
options packages for use in all regions. They were
able to capture over a quarter of their sales volume
just in Lane 1; in contrast, the four top-selling configu-
rations CAT offered before this project captured
11.3% of both sales and total revenue for the 420E
model (Figure 1). In addition, CAT enjoyed a reduc-
tion in warranty costs, attributable to many factors,
including this project. CAT has continued to focus
their BHL offerings, for example reducing the 420E
(now the 420F) Lane 1 offerings to three base machi-
nes by mid 2014. The other BHL lines have seen simi-
lar reductions.
The lane approach has become an integral part of

CAT’s business strategy (Thomson Reuters 2014).
While the methodologies used to determine lane

Figure 2 Final Product Hierarchy and Packages for the BHL 420E Series
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offerings in other divisions were somewhat simpler
than the analysis done here, our work provided sup-
port for the corporate-wide lane strategy. In particu-
lar, our cost of complexity analysis approach has been
applied to other divisions, such as Wheel Loaders,
with the goal of capturing all the benefits and under-
standing all the consequences of proposed line
changes. The detailed analysis and structured opti-
mization approach reported in this study allowed
CAT to counteract skepticism toward the lane
approach embarked upon by BCP prior to the diffu-
sion of this strategy throughout the company.

9. Sensitivity Analysis and Insights

In order to generate additional insights from our
model, we conducted an extensive sensitivity analysis
of our framework by running a large number of
experiments in which we vary the main input param-
eters over a range of values and record key output
measures. Because of space limitations, we do not
include all of the experiments here; they are available
in a separate Appendix S1 to this article. This section
summarizes the main findings generated by this
analysis.

9.1. Modeling Customer Behavior
9.1.1. Customer Flexibility: The More the

Better. As customers become more flexible and will-
ing to accept a wider range of configurations, the
expected effects include a decrease in the number of
configurations needed to satisfy them, a reduced
number of required options, decreased complexity
costs, and higher profits. These trends are supported
by our experiments; specifically, when any of the

following parameters increases in value: maximum
migration list length, reservation price, disparity fac-
tor, and percentage of novel configurations in the
portfolio. Varying the number of features whose utili-
ties are perturbed and/or the amount of perturbation
around the point estimate (perturbation factor) seems
to add some noise, but does not ultimately change the
observed outcomes significantly.

9.1.2. Role and Effect of Migration Lists. While
performance improves with longer migration lists, we
note that the effects of greater list length is more pro-
nounced for smaller lists—once lists are of moderate
size (about forty) metrics are largely insensitive to fur-
ther increases in length (see Figure 3, additional fig-
ures and discussion are provided in Appendix S1,
section 1). Furthermore, more choices lead to pur-
chases being more spread through migration lists,
decreasing the number of top-ranked purchases, as
these are knocked out of the portfolio in favor of more
universally appealing configurations.
To better explain the role of migration lists, Figure 4

shows how many times, out of 3825 customers, a cus-
tomer’s original choice ended up at a given position
on that customer’s (100 configuration long) migration
list (note the log scale on the vertical axis). The right-
most, tallest bar indicates that for 2601 customers
(68% of the time) a customer’s original choice would
not have appeared anywhere in the first 100 positions
of the customer’s list. For CAT this means that, for
over two thirds of their customers, there are many
products that provide them with higher utility than
the first product they had in mind. Figure 4 empha-
sizes that, within the context of product portfolio
reduction, the main purpose of migration lists is not
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to predict what a given customer would buy. Rather,
the migration list’s job is to determine which products
would provide high utility to each customer, thus
forming a pool of configurations from which to select
the ultimate product portfolio.
To explore this point further, consider the follow-

ing thought experiment: Assume a company had a
perfect forecasting algorithm that could always guess
exactly what any customer’s first choice of product
would be. Despite being useful for several things
(such as targeted advertising, as well as production
and inventory planning), if the universe of cus-
tomers’ first choices were very heterogeneous, this
algorithm would not allow the company to reduce
the size of its product portfolio because it would not
provide any information about customers’ flexibility
and willingness to substitute. Instead, a migration
list, as defined in our framework, tries to predict,
given a customer’s first choice of product, what other
products would likely be acceptable to that cus-
tomer. In doing so, if a large number of customers
happen to like the same not-so-large collection of

products, there is a chance that significant savings
can be achieved by focusing the portfolio on that
smaller collection, even if some of those products are
not the first choice of many, or even any, of the origi-
nal customers.

9.1.3. Varying the b Factor. As b goes up, the
probability of buying the first configuration on the
migration list goes down. This is likely because many
of the originally purchased configurations are pruned
from the portfolio in an effort to concentrate cus-
tomers. As for profit, it is largely insensitive to b, even
though the composition of the portfolio may change.

9.1.4. Reservation Price Vs. Reservation Utility. As
expected, when customers are willing to pay more,
everything improves for the company. Customers
whose b factor does not force their originally pur-
chased configuration to appear first on the list are
more likely to buy their top choice, as it will likely be
a high-utility, high-price machine. The remaining cus-
tomers are more likely to purchase configurations
further down their migration lists, as their top, lower
utility/lower priced choices get pruned. In contrast,
having customers willing to accept lower utility
machines is not as impactful as their becoming less
price sensitive. That is because accepting machines
with lower utility does not remove the higher utility
machines from consideration (which the company
would typically prefer to sell anyway), and the latter
get placed ahead of the lower utility machines on the
migration lists.

9.1.5. Role and Effect of the Number of
Lanes. The concept of lanes introduced in section 8.1
adds another dimension to a configuration’s attrac-
tiveness: Availability, that is, how quickly a customer
can obtain it. Availability can be treated as a feature
whose options are fastest, second fastest, etc. As a fea-
ture, availability would then have a relative impor-
tance and its options would have utilities. And, given
these utilities, the company may choose to either
charge a premium/markup for configurations in fas-
ter lanes or keep the prices the same. We ran a set of
experiments to understand what happens to cus-
tomers’ migration lists and to several output mea-
sures related to the optimal product portfolio when
different numbers of lanes are present (e.g., the com-
pany decided to offer 3 lanes instead of 2). For the
optimization algorithm, what matters are the configu-
rations on each migration list, as well as the order in
which they appear. Hence, we simulate the presence
of the availability feature by exploring the composi-
tion of migration lists under different lane scenarios.
One benefit of this approach is that it does not require
us to choose exact values for different costs and
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profits related to different lanes, as would be required
to run a full-blown optimization.
For our experiments, we first need to characterize

customers based on two dimensions: willingness-to-
pay (low, medium, high) and the utility they assign to
the availability feature (low, medium, high). Note that
these are two different things: A customer may prefer
to have high availability, but be unwilling to pay extra
for it. As an example of how we categorize customers,
consider a case with three lanes where Lane A is the
fastest and Lane C is the slowest. A customer who has
low willingness-to-pay (wtp) and low utility for avail-
ability (avail), will only have the slowest lane on his
migration list (C), and a customer who has low wtp
and medium avail, may have a migration list com-
prised of configurations in lanes C and then B (CB).
For our experiments, we consider 10 different values
for the Utility of Availability (specifically, from 1 to
10), such that: a customer with low avail is mapped to
value of 1, medium to 5, and high to 10. The values in
between capture the gradual transition in the propor-
tion of customers switching to the type of migration
list: namely, for customers with low wtp, when the
utility of availability equals 1, all customers have only
one migration list (C), but as the values increase from
1 to 5, the proportion of customers switching to list
CB increases. The exact proportion of customers cor-
responding to each utility value depends on the
selected percentage of customers having different
wtp.5 In addition, we consider cases with and without
a price markup on faster lanes as some companies
may have no markup and use the lanes solely to
incentivize customers to purchase certain subsets of
products, while others may put a markup on the con-
figurations offered in faster lanes.

In this section, we report the results on the effect
of utility of availability for an experiment without
price markup, where the customers are split equally
between the wtp values.6 We provide additional
results from multiple experiments in Appendix S1 in
section 2. In Figure 5a, we demonstrate what per-
centage of profit is attributable to each lane as the
utility of availability changes. Notice that as the util-
ity of availability increases, Lane 3 (the slowest lane)
gets utilized less and eventually disappears. This
observations persists across scenarios with different
markups and different distribution of customers
across wtp values. In Figure 5b, we compare the
profit of five replications of the portfolio with 2 lanes
vs. the portfolio with 3 lanes and show that when
the utility of availability is low, the 2-lane portfolio
provides a higher profit than a 3-lane portfolio, but
the opposite is true when the utility of availability is
greater.
This arises because the overall portfolio size of the

two lane portfolio stays comparatively more stable
than the three lane portfolio for smaller utilities –
there is just less room for movement. But once
availability becomes more valuable, there is greater
dispersion among the customer base, and thus the
three lane portfolio has an easier time accommodating
this: While both portfolios grow, the two lane portfo-
lio grows more abruptly, lowering the profits.7 Note
that these experiments were run for the case of zero
markup – as expected, when markup is permitted
profit increases with the utility of availability, as cus-
tomers are steered toward more expensive, more
available, machines. Note finally, that these effects
remain present, but are mitigated, if greater disper-
sion of customers is assumed.
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9.2. Constraints on Sales Volume and Unique
Configurations
For CAT, our experiments indicated that the best
course of action would be to lose as much sales vol-
ume as permitted (see Figure 6). (Recall that early
profit maximizing solutions decreased sales volume
by as much as 67% and were thus rejected.) This was
driven primarily by lower volumes creating savings
in inventory cost and quality control: quality level is
impacted highly by the total volume (not so much by
options) as you have more time to spend on machines
when the volume is low. Inventory cost is also
reduced based on volume because lower volume
implies less inventory held at dealers and, hence,
CAT has to subsidize less. In CAT’s specific case,
these two cost pools have a large enough impact to
explain the change in profit. This is why the strategic
constraint on market share is so important—CAT
wants to hold the line on market share, which restricts
the portfolio reductions they will tolerate. In contrast,
the number of unique configurations can be easily
reduced by up to 80% in CAT’s case, without negative
effects on other performance measures, indicating it is
not nearly as important as the minimum market share
requirement.

9.3. Insights Related to Cost of Complexity
Section 6.3.5 provided evidence for two insights that,
although intuitive, had never been empirically veri-
fied by CAT. First, for some features, increasing the
number of options decreases the costs of customer
acquisition. Second, sales volume has a negative
impact on product support costs (i.e., repair costs)
and, at the same time, a positive impact on the cost of
prime product inventory. In addition, we emphasize
three complexity-related takeaways from our
analysis: (i) There are two types of impact of product
portfolio complexity on cost, which need to be

modeled separately: complexity driven by the
number of options offered (VBC) and complexity
driven by specific options (ABC); (ii) There are time
lags and leads on the impact of complexity that may
or may not be reflected in cost data is depending on
the accounting methods used; (iii) Costs can be
impacted in either direction (increase or decrease) by
complexity.

9.4. Data Collection
As we collected data to implement and run our mod-
els, we found some data particularly useful, while
there were other instances when we wished we had
certain types of data that were not available, forcing
us to go with the next-best thing. Hence, as an added
insight, we believe that tracking the following data,
whenever possible and practical, would enhance a
company’s ability to improve their product portfolio:
(i) Whether or not the product purchased by a cus-
tomer was the one she originally had in mind to buy
and, if not, record both the original choice and the
final purchase; (ii) Record what options/features the
product support costs are associated with. Having
this data could have revealed that some options had
an ABC effect on the cost pool.

10. Conclusion

We present a three-step procedure to restructure a
product line, demonstrating its successful application
on the Backhoe Loader line at CAT. Our methodology
hinges on (i) the construction of migration lists to cap-
ture customer preferences and willingness to substi-
tute; (ii) explicitly capturing the (positive and
negative) cost of complexity of a specific product line
across different functional areas; and (iii) integrating
these tools within a mathematical programming
framework to produce a final product line. One of the
greatest strengths of our methodology is its flexibility
—each step can be tailored to a company’s particular
setting, data availability and strategic needs, so long
as it produces the necessary output for the next step.
CAT’s lane strategy has continued to evolve, for

example, Thomson Reuters (2014) discusses a new
variation in which lanes may contain only partially
completed machines, which can be finished to cus-
tomer order as needed. Ideas such as these offer
opportunities to extend our work to new problem
domains—analytically characterizing the perfor-
mance of such a delayed differentiation strategy is an
exciting and challenging problem.
Outside of CAT, our work can be extended in sev-

eral directions. First, explicit experimental validation
of our empirical models—in particular our migration
list approach—would be of value. While this
approach has been successfully applied in the
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construction equipment industry, further study could
help establish how it could be applied in other sectors,
and what changes might be necessary. For example,
we set the list lengths based on consultation with
CAT executives. A better understanding of how long
such lists really are, and how willing customers are to
substitute (and whether there is any sort of explicit
cost to this) would be of interest.
Second, as our methodology is applied to other set-

tings, new constraints might need to be incorporated
into our mathematical program. One of the benefits of
our procedure is that our optimization model is flexi-
ble enough to accommodate such constraints. Never-
theless, how it performs in other settings needs to be
established.
Finally, the central thrust of this study has consid-

ered the trade-off between cost of complexity and
product line breadth. CAT has found what they
believe to be the correct trade-off, which entailed a
dramatic reduction in their product line. Different
companies, in different industries, will have to
answer this question for themselves. It is our hope
that the methods we present in our study can likewise
help them find the answers they seek.

Notes

1Alternatively, one can refine this approach by keeping
the time lags in the model and computing the net present
value of future cash flows.
2Note that randomness in our choice model is restricted to
the generation of option utilities and reservation values,
which influence the construction of customer migration
lists. Once created, these (fixed) lists serve as input to a de-
terministic optimization algorithm. Thus, we refer to our
model as being “randomized”, as opposed to a random
choice model, which typically has a different meaning.
3Some data is masked to preserve confidentiality. The
signs and magnitudes have been preserved.
4CAT did not explain the rationale behind Equation (17);
they just asked us to enforce this requirement.
5We describe this process in great detail in Appendix S1
in section 2.
6Please note that even without markups, we enforce the 9
types of lists, taking wtp into account. We do this assum-
ing that the company would first solve this no-markup
version of the problem to find a solution with a higher
complexity cost reduction; and once the optimal portfolio
and lane assignments are decided, they can increase prices
because they already know people are willing to pay a lit-
tle premium.
7Please refer to section 2 of Appendix S1 for the plots
illustrating this and following observations.

References
Alptekinoglu, A., C. Corbett. 2008. Mass customization vs. mass

production: Variety and price competition. Manuf. Serv. Oper.
Manag. 10(2): 204–217.

Anderson, S. 1995. Measuring the impact of product mix hetero-
geneity on manufacturing overhead cost. Accoun. Rev. 70(3):
363–387.

Banker, R., G. Potter, R. Schroederr. 1995. An empirical analysis
of manufacturing overhead cost drivers. J. Accoun. Econ. 19:
115–137.

Belloni, A., R. Freund, M. Selove, D. Simester. 2008. Optimizing
product line designs: Efficient methods and comparisons.
Management Sci. 54(9): 1544–1552.

Bitran, G., J.-C. Ferrer. 2007. On pricing and composition of bun-
dles. Prod. Oper. Manag. 16(1): 93–108.

Broniarczyk, S., W. Hoyer, L. McAlister. 1998. Consumers’ percep-
tions of the assortment offered in a grocery category: The
impact of item reduction. J. Market. Res. 35: 166–176.

Chen, K., W. Hausman. 2000. Technical note: Mathematical prop-
erties of the optimal product line selection problem using
choice-based conjoint analysis. Management Sci. 46(2): 327–332.

Chen, Y., A. Vakharia, A. Alptekinoglu. 2008. Product portfolio
strategies: The case of multifunction products. Prod. Oper.
Manag. 17(6): 587–598.

Chen, Y., J. Carillo, A. Vakharia, P. Sin. 2010. Fusion product
planning: A market offering perspective. Decis. Sci. 41(2):
325–353.

Chong, J., T. Ho, C. S. Tang. 1998. Product structure, brand width,
and brand share. T. Ho, C. S. Tang, eds. Product Variety Man-
agement: Research Advances. Kluwer Academic Publishers,
New York, 39–64.

Fisher, M., C. Ittner 1999. The impact of product variety on auto-
mobile assembly operations: Empirical evidence and simula-
tion analysis. Management Sci. 45(6): 771–786.

Fisher, M., R. Vaidyanathan. 2011. An algorithm and demand esti-
mation procedure for retail as- sortment optimization. Work-
ing paper, University of Pennsylvania.

Foster, G., M. Gupta. 1990. Manufacturing overhead cost driver
analysis. J. Accoun. Econ. 12: 309–337.

Fruchter, G., A. Fligler, R. Winer. 2006. Optimal product line
design: Genetic algorithm approach to mitigate cannibaliza-
tion. J. Optimiz. Theory Appl. 131(2): 227–244.

Greene, W. H. 2000. Econometric Analysis, 4th edn. Prentice Hall,
New Jersey.

Guadagni, P. M., J. D. C. Little. 1983. A logit model of brand
choice calibrated on scanner data. Market. Sci. 2(3): 203–238.

Hauser, J. R., V. Rao. 2004. Conjoint analysis, related modeling,
and applications. J. Wind, P. Green, eds. Advances in Market
Research and Modeling: Progress and Prospects. Kluwer Aca-
demic Publishers, Boston, MA, 141–168.

Kok, G., M. Fisher. 2007. Demand estimation and assortment opti-
mization under substitution: Methodology and applications.
Oper. Res. 55(6): 1001–1021.

Kok, G., M. Fisher, R. Vaidyanathan. 2009. Assortment planning:
Review of literature and industry practice. N. Agrawal, S.
Smith, eds. Retail Supply Chain Management. Kluwer Academic
Publishers, Amsterdam, The Netherlands, 1–55.

Marriott, K., P. Stuckey. 1998. Programming with Constraints: An
Introduction. MIT Press, Cambridge, MA.

Rash, E., K. Kempf. 2012. Product line design and scheduling at
Intel. Interfaces 42(5), 425–436.

Saaty, T. L. 1980. The Analytic Hierarchy Process. McGraw-Hill
Book Co., New York.

Schoen, C. 2010. On the optimal product line selection problem
with price discrimination. Management Sci. 56(5): 896–902.

Tang, C. 2010. A review of marketing-operations interface models:
From co-existence to coordination and collaboration. Int. J.
Prod. Econ. 125(1): 22–40.

Shunko, Yunes, Fenu, Scheller-Wolf, Tardif, and Tayur: Product Portfolio Restructuring
Production and Operations Management 27(1), pp. 100–120, © 2017 Production and Operations Management Society 119



Tang, C., R. Yin. 2010. The implications of costs, capacity, and
competition on product line selection. Eur. J. Oper. Res. 200(2):
439–450.

Thomson Reuters. Caterpillar Inc. 2014. Analyst Meeting at Con-
Expo edited transcript, 2014.

Wang, X., J. Camm, D. Curry. 2009. A branch-and-price approach
to the share-of-choice product line design problem managing
product variety. Management Sci. 55(10): 1718–1728.

Ward, J., B. Zhang, S. Jain, C. Fry, T. Olavson, H. Mishal, J.
Amaral, D. Beyer, A. Brecht, B. Cargille, R. Chadinha, K.
Chou, G. DeNyse, Q. Feng, C. Padovani, S. Raj, K.
Sunderbruch, R. Tarjan, K. Venkatraman, J. Woods, J. Zhou.

2010. HP transforms product portfolio management with
operations research. Interfaces 40(1): 17–32.

Yunes, T. H., D. Napolitano, A. Scheller-Wolf, S. Tayur. 2007.
Building efficient product portfolios at John Deere and Com-
pany. Oper. Res. 55(4): 615–629.

Supporting Information
Additional supporting information may be found online
in the supporting information tab for this article:

Appendix S1: Detailed Sensitivity Analysis.

Shunko, Yunes, Fenu, Scheller-Wolf, Tardif, and Tayur: Product Portfolio Restructuring
120 Production and Operations Management 27(1), pp. 100–120, © 2017 Production and Operations Management Society



Online Supplement for the Manuscript Entitled

Product Portfolio Restructuring:
Methodology and Application at Caterpillar

Authors: M. Shunko, T. Yunes, G. Fenu, A. Scheller-Wolf, V. Tardif, and S. Tayur

1 Sensitivity Analysis with One Lane

In this section we investigate how sensitive a number of key outputs produced by our framework are
with respect to its main input parameters, for a single lane. In doing so, we bring to light several
managerial insights that can be useful to companies considering reducing their product portfolio.
We consider sensitivity across multiple lanes in Section 2.

1.1 Experimental Settings

Table 1 shows the default values of the main parameters in our experiments. In each of our
sensitivity analysis tests, parameters whose values are not being altered for the test are set to their
default values. Optimization models were run with a time limit of two hours, except for the tests
in Section 1.4, which ran for up to 24 hours each, which was necessary to obtain meaningful output
with the longer migration lists in that section. When a positive optimality gap is shown, we report
the results of the best solution found within the given time limit.

Parameter Default Value

� factor: Probability original purchase is first on migration list 50%
Maximum migration list length 5
Customers’ reservation price: max. acceptable price increase 2%
Customers’ reservation utility: max. acceptable utility decrease 10%
Disparity factor: max. # features di↵ering from original purchase 5
# features to have importance score perturbed 3
Perturbation factor for features’ importance score (±) 10%
Maximum decrease in sales volume 3%
Minimum decrease in # unique configurations sold 0%
Maximum percentage of novel configurations in portfolio 100%
Maximum price increase per configuration (when price optimization is on) 0.5%
Minimum margin per configuration 2%
Minimum weighted average margin over all configurations 15%

Table 1: Default values of the main list-generation and optimization parameters.

1.2 Placement of Original Purchase on Migration Lists

Figure 1 shows how many times, out of 3825 customers, a customer’s original choice ended up at
a given position on that customer’s (100 configuration long) migration list (note the log scale on
the vertical axis). The rightmost, tallest bar indicates that for 2601 customers – 68% of the time
– a customer’s original choice would not have appeared in the first 100 positions of the customer’s
migration list. For Caterpillar this means that, for over two thirds of their customers, there are
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many products that provide them with higher anticipated utility than the first product they had
in mind.
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Figure 1: Number of migration lists, out of 3825, containing original purchase.

Figure 1 emphasizes that within the context of product portfolio reduction, the main purpose of
migration lists is not to predict what a given customer would buy. Rather, the migration list’s job
is to find out which products would provide high utility to each customer, thus forming a pool of
configurations from which to select the ultimate product portfolio. To see why, assume a company
had a perfect forecasting algorithm that could always guess exactly what any customer’s first
choice of product would be. Despite being useful for several things (such as targeted advertising,
as well as production and inventory planning), if the universe of customers’ first choices were
very heterogeneous, this algorithm would not allow the company to reduce the size of its product
portfolio because it would not provide any information about customers’ flexibility and willingness
to substitute.

Instead, a migration list, as defined in our framework, tries to predict, given a customer’s first
choice of product, what other products would likely be acceptable to that customer. In doing so, if
a large number of customers happen to like the same not-so-large collection of products, there is a
chance that significant savings can be achieved by focusing the portfolio on that smaller collection,
even if some of those products had not been the first choice of many, or even any, of the original
customers.
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1.3 Varying the Beta Factor

We also investigated how the percentage of customers buying their 1st (2nd, 3rd, 4th, or 5th) choice
changes with the probability that the purchased configuration is forced to be first (Beta Factor).
We observed that as the Beta Factor goes up, the probability of buying the first configuration
goes down, likely because many of the originally purchased configurations are pruned from the
portfolio in an e↵ort to concentrate customers. We also observed that the profit improvement is
largely insensitive to the Beta Factor: Again, probably because most of the originally purchased
configurations get pruned, it does not really matter much where they reside on the lists.

1.4 Varying Migration List Length

We next varied the length of the migration list from 1 to 100 to see the impact of such change on
various performance measures. We observe from 2(a) that more choices lead to purchases being
more spread through migration lists, decreasing the number of top-ranked purchases. Looking also
at the portfolio size (no figure), we observe that longer lists are an indication of greater customer
flexibility which, as expected, leads to optimal portfolios with fewer configurations. From 2(b),
we observe that longer lists correlate, as expected, with improvements in profit, increased portfolio
reduction, decrease in options needed, increased number of new configurations, etc. These all follow
from the fact that longer lists correspond to more flexible customers. We note though that the
increase in profit with list length is more pronounced for smaller lists — once lists are of moderate
size (about forty) profit is largely flat with further increases in length.

0.0

0.1

0.2

0.3

0.4

0.5

25 50 75 100
List Length

%
 B

uy
in

g

Rank of Purchase
1st choice
2nd choice
3rd choice
4th choice
5th choice

Effect of List Length on Rank of Purchase

(a) List Length vs Purchase Rank

0.00

0.25

0.50

0.75

1.00

25 50 75 100
List Length

Pe
rc

en
ta

ge
s

Performance Measures
Profit Improvement
Portfolio Reduction
Option Reduction
New Configs. in Portfolio
Optimality Gap

Effect of List Length on Performance Measures

(b) List Length vs Other Outputs

Figure 2: E↵ect of Migration List Length
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1.5 Varying Customers’ Reservation Price

Next, we look at the performance measures as the customers’ reservation price changes. We observe
from Figure 3(a) that as customers become more flexible, they are more likely to be steered away
from their top choice (which with probability � = .5 is the purchased configuration) to a more
expensive one. Customers whose � did not force their purchased configuration to appear first
on the list are more likely to buy their top choice, as it will likely be a high-utility, high-price
machine. Clearly, when customers are willing to pay more, everything improves for the company
as is confirmed by the plot in Figure 3(b).
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Figure 3: E↵ect of Customers’ Reservation Price

1.6 Varying Customers’ Reservation Utility

We also investigated the impact of the customer’s reservation utility on our main performance
measures and found that they are mainly insensitive to the changes. This insensitivity can be
explained as follows: the fact that customers accept machines with lower utility does not remove
the higher utility machines from consideration, and the latter get placed ahead of the lower utility
machines on the migration lists as usual.

1.7 Varying the Disparity Factor

We now study the impact of disparity factor. We observe in Figure 4(a) that the first-choice
purchase line is down dramatically, for reasons similar to those discussed in 1.5: For those customers
for whom their purchased configuration is forced to be their first choice, greater flexibility gives
us greater ability to steer them to other configurations, concentrating the portfolio. In Figure
4(b) we observe that as customers become more flexible in terms of disparity, lists become more
concentrated on key configurations, driving up these measures. Relatively little disparity seems to
go a long way.
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Figure 4: E↵ect of the Disparity Factor

1.8 Varying the Maximum Sales Volume Decrease

In this section, we look at the impact of the maximum sales volume decrease on the rank of
purchase and the performance measures. While there seems to be no substantial impact on the
rank of purchase (Figure 5(a)), there is a strong e↵ect of the maximum allowed volume decrease
(lost sales) on the profit increase (Figure 5(b)). The constraint on sales volume decrease was
binding for all optimal solutions, indicating that the best course of action was to lose as much
sales volume as possible, benefiting from reduced complexity costs stemming from inventory cost
reduction and quality control savings: Quality level is highly impacted by the total volume (not so
much by options) as there is more time to spend on machines when the volume is low. Inventory
cost is also reduced based on volume, because lower volume implies less inventory held at dealers
and hence, CAT has to subsidize less. In CAT’s specific case, these two cost pools have a large
enough impact to explain the change in profit.
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Figure 5: E↵ect of the Maximum Sales Volume Decrease
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1.9 Varying the Minimum Decrease in Unique Configurations

Another potential constraint could be on the minimum number of configurations removed from the
portfolio, which we study next.
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Figure 6: E↵ect of Minimum Decrease in Unique Configurations

In this case all curves are relatively flat, indicating that the number of unique configurations
can be easily reduced by at least 80% in CAT’s case, without side e↵ects on other performance
measures. Together with the previous graph this emphasizes that minimum market share is a much
more important constraint than decrease in configurations.
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1.10 Varying the Maximum Price Increase per Configuration, the Minimum
Margin per Configuration, and the Minimum Average Weighted Margin
over All Configurations

We next attempted to study the impact of the maximum price increase per configuration, the min-
imum margin per configuration, and the minimum average weighted margin over all configurations.
However, the optimization problem becomes very hard to solve because the solution space expands
dramatically as price becomes a more important lever, and in fact did not reach optimality. We
therefore cannot draw conclusions from a collection of suboptimal solutions because they may not
necessarily be comparable.

2 Sensitivity Analysis with Two and Three Lanes

The concept of lanes introduces one more dimension to a configuration’s attractiveness: availability,
that is, how quickly a customer can obtain it. As explained in the main body of the paper,
availability can be treated as a feature whose options are the di↵erent lanes: fastest, second fastest,
etc. As a feature, availability would have a relative importance and its options would have utilities.
Finally, the company may choose to either charge a premium/markup for configurations in faster
lanes or keep the prices the same. In the absence of these specific details, we developed a set of
experiments to better understand what happens to customers’ migration lists and to several output
measures related to the optimal product portfolio when di↵erent lanes are present. Ultimately,
what matters to the optimization step are the configurations on each migration list, as well as the
order in which they appear. Therefore, we can simulate the presence of the availability feature
by enumerating the di↵erent types of lists it would likely produce, without the need to artificially
invent values for optimization-related parameters we currently do not have.

Note that our approach is valid regardless of whether faster lanes have markups. If the markup
amount is known to the company, it can be used to determine whether or not a given configuration
is dropped from a customer’s migration list by looking at the customer’s reservation price while
keeping in mind that, in the presence of lanes, it might be possible that customers’ reservation
prices increase to accommodate the markups if their utility of availability is high.

2.1 Customer and List Types as a Function of Availability

We think of customers in two dimensions: their willingness to pay for a faster lane (low, medium,
or high), and the amount of utility they place in the availability feature (low, medium, or high).
This leads to the two 3-by-3 matrices of customer types as shown in Tables 2(a) and 2(b), one for
the two-lane case and the other for the three-lane case.

We explain how the three-lane case and Table 2(b) work; the two-lane case and Table 2(a)
are analogous. For simplicity, we denote the di↵erent configurations by numbers and the di↵erent
lanes by letters, with “A” being the fastest lane, “B” the next fastest, etc. Hence, 1A and 1B
represent configuration 1 o↵ered/bought in the first and second lanes, respectively. Recall from
the optimization model that only one of these is possible because one of the decisions being made
is choosing a single lane in which to o↵er each configuration. We refer to a customer type by a
pair (w, u), where w is their willingness to pay, and u is how much utility they place on availability
(both ranging from low, to medium, to high). Consider a customer with three configurations on
his original migration list, sorted in decreasing order according to their respective utilities, while
ignoring availability. Let this list be 1, 2, 3. If this were a (low, low) customer (top left cell of
Table 2(b)), his list would only include lane C, that is, 1C, 2C, 3C, because he neither cares about
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Low B B B

Med
50% B
50% BA

50% B
25% BA
25% AB

50% B
50% AB

High BA 50% BA
50% AB

A

(a) Two-lane case.
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Low C CB B

Med CB BC 50% B
50% AB

High CBA 50% BA
50% ABC

25% AB
75% A

(b) Three-lane case.

Table 2: Migration list types according to willingness to pay and utility of availability.

availability nor is willing to pay for it. If this were a (high, low) customer, his list would include
all lanes (because he can a↵ord them), but the slower lanes would come first (because availability
is not important enough to make it worth spending more for the faster lanes). Therefore, his list
would be: 1C, 2C, 3C, 1B, 2B, 3B, 1A, 2A, 3A. Similar reasoning can be applied to the remaining
seven types of customers in each cell of Table 2(b). More than one type of list appears in a few
of the cells because we wish to model some uncertainty or heterogeneity; the table indicates what
percentage of those customers would have each of the lists shown. For example, if the sample
customer above were (high, med) there is a 50% chance his migration list would be 1B, 2B, 3B,
1A, 2A, 3A, and a 50% chance it would be 1A, 2A, 3A, 1B, 2B, 3B, 1C, 2C, 3C.

2.2 Simulating a Sweep from Low to High Utility of Availability

Once again, we focus the explanation on the three-lane case (the two-lane case is analogous). To
investigate the e↵ect of availability, we explore what happens to migration lists as we execute a
series of runs that give progressively more value to availability; we call this a sweep. By finding the
optimal product portfolio characteristics and lane allocations for each of these runs and plotting
the results, we try to understand how much e↵ect the utility of availability has on the di↵erent
outputs produced by our model.

Think of Table 2(b) as a three-step sweep that goes from low utility of availability, when only the
customer types shown in its left column exist, to a medium-utility situation when only the customer
types in its middle column exist, to a high-utility situation when only the customers types in its
right column exist. We transform that into a ten-step sweep by adding seven more columns to
that table: three columns between “Low” and “Med”, and four between “Med” and “High”. The
resulting steps 1 through 5 and 6 through 10 are depicted, respectively, in Tables 3(a) and 3(b).
Each column in those tables shows the proportion of customers of each type that exist in each step
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Utility of Availability
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Low `% C
.75`% C
.25`% CB

.5`% C

.5`% CB
.25`% C
.75`% CB

`%CB

Med m% CB
.75m% CB
.25m% BC

.5m% CB

.5m% BC
.25m% CB
.75m% BC

m%BC

High h% CBA
.75h% CBA
.125h% BA
.125h% ABC

.5h% CBA

.25h% BA

.25h% ABC

.25h% CBA

.375h% BA

.375h% ABC

.5h% BA

.5h% ABC

(a) Steps 1 through 5 in the sweep.

Utility of Availability
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Low
.8`% CB
.2`% B

.6`% CB

.4`% B
.4`% CB
.6`% B

.2`% CB

.8`% B
`%B

Med

.8m% BC

.1m% B

.1m% AB

.6m% BC

.2m% B

.2m% AB

.4m% BC

.3m% B

.3m% AB

.2m% BC

.4m% B

.4m% AB

.5m% B

.5m% AB

High

.4h% BA

.4h% ABC

.05h% AB

.15h% A

.3h% BA

.3h% ABC

.1h% AB

.3h% A

.2h% BA

.2h% ABC

.15h% AB

.45h% A

.1h% BA

.1h% ABC

.2h% AB

.6h% A

.25h% AB

.75h% A

(b) Steps 6 through 10 in the sweep.

Table 3: Ten-step sweep from low to high utility of availability.

of the sweep. In addition, to add a bit more variety to the sweep, in each step `% of the customers
have low willingness to pay, m% have medium willingness, and h% have high willingness. In our
experiments, we perform the ten-step sweeps under three scenarios having ` = m = h: the 100%
scenario (`+m+h = 100), the 75% scenario (`+m+h = 75), and the 50% scenario (`+m+h = 50).
In scenarios where `+m+ h < 100, the remaining customers are assigned uniformly at random to
types of lists not yet represented in the step in question. For example, if we are in step 7 of the
75% scenario, column 7 of Table 3(b) covers list types A, B, AB, BC, BA, CB, and ABC. Hence,
the remaining 25% of the customers get equally distributed between lists of type C and CBA.

While the specific percentages and orderings within and between cells of our tables, and the
mechanism for sweeping across them are admittedly subjective, we maintain that our overall pro-
cedure captures the general characteristics of a customer population that grows increasingly more
concerned about availability.

2.3 Experiments with and without Price Markups

We conduct experiments with and without price markups on faster lanes. There are plausible
reasons for a company to choose either strategy, including but not limited to:

No Markups: Lanes are solely used as a tool to incentivize customers to buy a certain subset of
the products, so price lists remain the same.

Markups: It is more costly to make configurations available on faster lanes, so a markup is nec-
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essary.

With two lanes, we consider four cases: either no markups, or markups of 2%, 5%, or 10% for lane
A only (lane B is never marked up). With three lanes, we consider three cases: either no markups,
markups of 2% and 5% for lanes B and A, respectively, or markups of 5% and 10% for lanes B and
A, respectively (lane C is never marked up).

From an optimization point of view, the optimal portfolio seeks to maximize the overall profit,
which is the di↵erence between revenue and costs. When faster lanes are marked up, one would
expect higher profits to be achieved by having more of the sales come from more expensive lanes,
at the expense of a slightly higher complexity cost (i.e. a larger portfolio). When faster lanes are
not marked up, one would expect the optimal portfolio to focus more on complexity cost reduction
in order to increase profits. Both of these behaviors have been confirmed by our experiments.

In the ensuing subsections, we present a collection of plots presenting the results of our sensi-
tivity experiments related to the number of lanes included in the portfolio for di↵erent customer-
proportion and markup scenarios and summarize the main results here:

In Section 2.4, we demonstrate that in the 100% scenario, an increase in availability value allows
us to steer the customers away from their first choice. As availability grows larger, customers become
more dispersed and the portfolio o↵ered has more options. As we dilute the customer base and
move towards the 50% scenario, these e↵ects become less pronounced.

In Section 2.5, we show that as the availability value increases, customers are buying more from
Lane 1 (the fastest lane) and hence, the size of Lane 1 increases, while the size of lane 2 stays
relatively constant.

We observe similar results in Sections 2.6 and 2.7 in the case with 3-lanes, the plots in Section
2.7 demonstrate that at high enough values for availability, Lane 3 gets practically pushed out,
suggesting that the company can switch to the 2-lane portfolio.

In Sections 2.8 and 2.9, we compare the 2-lane portfolio to 3-lane portfolio based on the profit
and cost of complexity reduction. In general, we observe that 2-lane portfolio brings higher value
than the 3-lanes, due to greater reductions in complexity.

In Sections 2.10 through 2.22, we repeat the same experiments for the case with price markups
and observe similar insights; not surprisingly though, now profit tends to increase with utility of
availability and portfolios grow larger at higher utility, to chase these profits. Relatedly, the plots
in Section 2.22 demonstrate that when the markup is high enough, the 3-lane portfolio always
dominates 2-lane portfolios regardless of the availability value.
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2.4 Performance Measures with Two Lanes and No Markup: Comparison across
Scenarios
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(c) Availability vs Purchase Rank, 75% Scenario
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(d) Availability vs Other Outputs, 75% Scenario
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(e) Availability vs Purchase Rank, 50% Scenario
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2.5 Relative Lane Performances with Two Lanes and No Markup: Comparison
across Scenarios
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2.6 Performance Measures with Three Lanes and No Markup: Comparison
across Scenarios
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2.7 Relative Lane Performances with Three Lanes and No Markup: Compari-
son across Scenarios
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2.8 Comparing Two and Three Lanes across Di↵erent Scenarios on Profit and
Complexity Reduction without Markups
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2.9 Replications of the 100% Scenario for Two and Three Lanes to Compare
Profit and Complexity Reduction without Markups
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2.10 Performance Measures with Two Lanes and 2% Markup: Comparison
across Scenarios
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2.11 Relative Lane Performances with Two Lanes and 2% Markup: Comparison
across Scenarios
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2.12 Performance Measures with Two Lanes and 5% Markup: Comparison
across Scenarios

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

%
 B

uy
in

g

Rank of Purchase
1st choice
2nd choice
3rd choice
4th choice
5th choice

Effect of Utility of Availability on Rank of Purchase (2 Lanes)

(a) Availability vs Purchase Rank, 100% Scenario

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

Pe
rc

en
ta

ge
s Performance Measures

Profit Improvement
Portfolio Reduction
Option Reduction
New Configs. in Portfolio

Effect of Utility of Availability on Performance Measures (2 Lanes)

(b) Availability vs Other Outputs, 100% Scenario

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

%
 B

uy
in

g

Rank of Purchase
1st choice
2nd choice
3rd choice
4th choice
5th choice

Effect of Utility of Availability on Rank of Purchase (2 Lanes)

(c) Availability vs Purchase Rank, 75% Scenario

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

Pe
rc

en
ta

ge
s Performance Measures

Profit Improvement
Portfolio Reduction
Option Reduction
New Configs. in Portfolio

Effect of Utility of Availability on Performance Measures (2 Lanes)

(d) Availability vs Other Outputs, 75% Scenario

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

%
 B

uy
in

g

Rank of Purchase
1st choice
2nd choice
3rd choice
4th choice
5th choice

Effect of Utility of Availability on Rank of Purchase (2 Lanes)

(e) Availability vs Purchase Rank, 50% Scenario

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

Pe
rc

en
ta

ge
s Performance Measures

Profit Improvement
Portfolio Reduction
Option Reduction
New Configs. in Portfolio

Effect of Utility of Availability on Performance Measures (2 Lanes)

(f) Availability vs Other Outputs, 50% Scenario

19



2.13 Relative Lane Performances with Two Lanes and 5% Markup: Comparison
across Scenarios
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2.14 Performance Measures with Two Lanes and 10% Markup: Comparison
across Scenarios
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2.15 Relative Lane Performances with Two Lanes and 10% Markup: Compar-
ison across Scenarios
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2.16 Performance Measures with Three Lanes and (2%, 5%) Markup: Com-
parison across Scenarios

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

%
 B

uy
in

g

Rank of Purchase
1st choice
2nd choice
3rd choice
4th choice
5th choice

Effect of Utility of Availability on Rank of Purchase (3 Lanes)

(a) Availability vs Purchase Rank, 100% Scenario

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

Pe
rc

en
ta

ge
s Performance Measures

Profit Improvement
Portfolio Reduction
Option Reduction
New Configs. in Portfolio

Effect of Utility of Availability on Performance Measures (3 Lanes)

(b) Availability vs Other Outputs, 100% Scenario

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

%
 B

uy
in

g

Rank of Purchase
1st choice
2nd choice
3rd choice
4th choice
5th choice

Effect of Utility of Availability on Rank of Purchase (3 Lanes)

(c) Availability vs Purchase Rank, 75% Scenario

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

Pe
rc

en
ta

ge
s Performance Measures

Profit Improvement
Portfolio Reduction
Option Reduction
New Configs. in Portfolio

Effect of Utility of Availability on Performance Measures (3 Lanes)

(d) Availability vs Other Outputs, 75% Scenario

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

%
 B

uy
in

g

Rank of Purchase
1st choice
2nd choice
3rd choice
4th choice
5th choice

Effect of Utility of Availability on Rank of Purchase (3 Lanes)

(e) Availability vs Purchase Rank, 50% Scenario

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Utility of Availability from Very Low to Very High

Pe
rc

en
ta

ge
s Performance Measures

Profit Improvement
Portfolio Reduction
Option Reduction
New Configs. in Portfolio

Effect of Utility of Availability on Performance Measures (3 Lanes)

(f) Availability vs Other Outputs, 50% Scenario

23



2.17 Relative Lane Performances with Three Lanes and (2%, 5%) Markup:
Comparison across Scenarios
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2.18 Performance Measures with Three Lanes and (5%, 10%) Markup: Com-
parison across Scenarios
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2.19 Relative Lane Performances with Three Lanes and (5%, 10%) Markup:
Comparison across Scenarios
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2.20 Comparing Two and Three Lanes across Di↵erent Scenarios on Profit and
Complexity Reduction with Markups: 5% for Two Lanes, and (2%, 5%)
for Three Lanes
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2.21 Comparing Two and Three Lanes across Di↵erent Scenarios on Profit and
Complexity Reduction with Markups: 10% for Two Lanes, and (5%, 10%)
for Three Lanes
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2.22 Replications of the 100% Scenario for Two and Three Lanes to Compare
Profit and Complexity Reduction with Markups: 10% for Two Lanes, and
(5%, 10%) for Three Lanes
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