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Abstract In this paper we introduce a new method for generating heuristic solutions
to binary optimization problems. We develop a technique based on binary decision
diagrams. We use these structures to provide an under-approximation to the set of
feasible solutions. We show that the proposed algorithm delivers comparable solutions
to a state-of-the-art general-purpose optimization solver on randomly generated set
covering and set packing problems.

Keywords Binary decision diagrams · Heuristics · Set covering · Set packing

1 Introduction

Binary optimization problems (BOPs) are ubiquitous across many problem domains.
Over the last fifty years there have been significant advances in algorithms dedicated
to solving problems in this class. In particular, general-purpose algorithms for binary
optimization are commonly branch-and-bound methods that rely on two fundamental
components: a relaxation of the problem, such as a linear programming relaxation of
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212 D. Bergman et al.

an integer programming model, and heuristics. Heuristics are used to provide feasi-
ble solutions during the search for an optimal one, which in practice is often more
important than providing a proof of optimality.

Much of the research effort dedicated to developing heuristics for binary opti-
mization has primarily focused on specific combinatorial optimization problems; this
includes, e.g., the set covering problem (SCP) (Caprara et al. 1998) and the maximum
clique problem (Grosso et al. 2008; Pullan et al. 2011). In contrast, general-purpose
heuristics have received much less attention in the literature. The vast majority of the
general techniques are embodied in integer programming (IP) technology, such as the
feasibility pump (Fischetti et al. 2005) and the pivot, cut, and dive heuristic (Eckstein
and Nediak 2007). A survey of heuristics for integer programming is presented by
Glover and Laguna (1997a,b) and Berthold (2006). Local search methods for general
binary problems can also be found in Aarts and Lenstra (1997) and Bertsimas et al.
(2013).

We introduce a new general-purpose method for obtaining a set of feasible solutions
for BOPs. Our method is based on an under-approximation of the feasible solution set
using binary decision diagrams (BDDs). BDDs are compact graphical representations
of Boolean functions (Akers 1978; Lee 1959; Bryant 1986), originally introduced for
applications in circuit design and formal verification (Hu 1995; Lee 1959). They have
been recently used for a variety of purposes in combinatorial optimization, including
post-optimality analysis (Hadzic and Hooker 2006, 2007), cut generation in inte-
ger programming (Becker et al. 2005), and 0–1 vertex and facet enumeration (Behle
and Eisenbrand 2007). The techniques presented here can also be readily applied to
arbitrary discrete problems using multi-valued decision diagrams (MDDs), a general-
ization of BDDs for discrete-valued functions.

Our method is a counterpart of the concept of relaxed MDDs, recently introduced
by Andersen et al. (2007) as an over-approximation of the feasible set of a discrete
constrained problem. The authors used relaxed MDDs for the purpose of replacing
the typical domain store relaxation used in constraint programming by a richer data
structure. They found that relaxed MDDs drastically reduce the size of the search tree
and allow much faster solution of problems with multiple all–different constraints,
which are equivalent to graph coloring problems. Analogous methods were applied to
other types of constraints in Hadzic et al. (2008) and Hoda et al. (2010).

Using similar techniques, Bergman et al. (2011) proposed the use of relaxed BDDs
to derive relaxation bounds for binary optimization problem. The authors developed
a general top–down construction method for relaxed BDDs and reported good results
for structured set covering instances. Relaxed BDDs were also applied in the context
of the maximum independent set problem, where the ordering of the variables in the
BDD were shown to have a significant bearing on the effectiveness of the relaxation
it provides (Bergman et al. 2012).

We use BDDs to provide heuristic solutions, rather than relaxation bounds. Our
main contributions include:

1. Introducing a new heuristic for BOPs;
2. Discussing the necessary ingredients for applying the heuristic to specific classes

of problems;
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3. Providing an initial computational evaluation of the heuristic on the well-studied set
covering and set packing problems. We show that, on a set of randomly generated
instances, the solutions produced by our algorithm are comparable to those obtained
with state-of-the-art integer programming optimization software (CPLEX).

The remainder of the paper is organized as follows. We begin by defining BDDs in
Sect. 2. Section 3 describes how to generate and use BDDs to exactly represent the set
of feasible solutions to a problem. Section 4 details how the algorithm in Sect. 3 can
be modified to provide an under-approximation of the feasible set and to deliver a set
of solutions to a problem. We discuss the application of the algorithm to two problem
classes in Sect. 5. Section 6 presents computational experiments.

2 Binary decision diagrams

BOPs are specified by a set of binary variables X = {x1, . . . , xn}, an objective function
f : {0, 1}n → R to be minimized, and a set of m constraints C = {C1, . . . , Cm}, which
define relations among the problem variables. A solution to a BOP P is an assignment
of values zero or one to each of the variables in X . A solution is feasible if it satisfies all
the constraints in C . The set of feasible solutions of P is denoted by Sol(P). A solution
x∗ is optimal for P if it is feasible and satisfies f (x∗) ≤ f (x̃) for all x̃ ∈ Sol(P).

A binary decision diagram (BDD) B = (U, A) for a BOP P is a layered directed
acyclic multi-graph that encodes a set of solutions of P . The nodes U are parti-
tioned into n + 1 layers, L1, L2, . . . , Ln+1, where we let �(u) be the layer index
of node u. Layers L1 and Ln+1 consist of single nodes; the root r and the terminal
t , respectively. The width of layer j is given by ω j = |L j |, and the width of B is
ω(B) = max j∈{1,2,...,n} ω j . The size of B, denoted by |B|, is the number of nodes in
B.

Each arc a ∈ A is directed from a node in some layer j to a node in the adjacent
layer j + 1, and has an associated arc-domain da ∈ {0, 1}. The arc a is called a 1-arc
when da = 1 and a 0-arc when da = 0. For any two arcs a, a′ directed out of a node
u, da �= da′ , so that the maximum out-degree of a node in a BDD is two, with each arc
having a unique arc-domain. Given a node u, we let a0(u) be the 0-arc directed out of
u (if it exists) and b0(u) be the node in L�(u)+1 at its opposite end, and similarly for
a1(u) and b1(u).

A BDD B represents a set of solutions to P in the following way. An arc a directed
out of a node u represents the assignment x�(u) = da . Hence, for two nodes u, u′ with
�(u) < �(u′), a directed path p from u to u′ along arcs a�(u), a�(u)+1, . . . , a�(u′)−1
corresponds to the assignment x j = da j , j = �(u), �(u) + 1, . . . , �(u′) − 1. In
particular, an r–t path p = (a1, . . . , an) corresponds to a solution x p, where x p

j =
da j for j = 1, . . . , n. The set of solutions represented by a BDD B is denoted by
Sol (B) = {x p | p is an r–t path}. An exact BDD B for P is any BDD for which
Sol(B) = Sol(P).

For two nodes u, u′ ∈ U with �(u) < �(u′), let Bu,u′ be the BDD induced by the
nodes that belong to some directed path between u and u′. In particular, Br,t = B.
A BDD is called reduced if Sol(Bu,u′) is unique for any two nodes u, u′ of B. The
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Fig. 1 Reduced BDD for the
BOP in Example 1

reduced BDD B is unique when the variable ordering is fixed, and therefore the most
compact representation in terms of size for that ordering (Wegener 2000).

Finally, for a large class of objective functions, e.g. additively separable functions,
optimizing over the solutions represented by a BDD B can be reduced to finding a
shortest path in B. For example, given a real cost vector c and a linear objective function
cT x , we can associate an arc-cost c(u, v) = c�(u)du,v with each arc a = (u, v) in the
BDD. This way, a shortest r–t path corresponds to a minimum cost solution in Sol(B).
If B is exact, then this shortest path corresponds to an optimal solution for P .

Example 1 Consider the following BOP P .

minimize − 2x1 − 3x2 − 5x3 − x4 − 3x5

subject to 2x1 + 2x2 + 3x3 + 3x4 + 2x5 ≤ 5

x j ∈ {0, 1}, j = 1, . . . , 5

Figure 1 shows an exact reduced BDD for P . The 0-arcs are represented by dashed
lines, while the 1-arcs are represented by solid lines. There are 13 paths in the BDD,
which correspond to the 13 feasible solutions of this BOP. Assigning arc costs of
zero to all of the 0-arcs and the cost coefficient of x j to the 1-arcs on layer j , j =
1, . . . , 5, the two shortest paths in the BDD correspond to the solutions (0, 1, 1, 0, 0)

and (0, 0, 1, 0, 1), both optimal solutions for P .

3 Exact BDDs

An exact reduced BDD B = (U, A) for a BOP P can be interpreted as a compact
search tree for P , where infeasible leaf nodes are removed, isomorphic subtrees are
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superimposed, and the feasible leaf nodes are merged into t . In principle, B can be
obtained by first constructing the branching tree for P and reducing it accordingly,
which is impractical for our purposes.

We present here an efficient top–down algorithm for constructing an exact BDD B
for P . It relies on problem-dependent information for merging BDD nodes and thus
reducing its size. If this information satisfies certain conditions, the resulting BDD is
reduced. The algorithm is a top–down procedure since it proceeds by compiling the
layers of B one-by-one, where layer L j+1 is constructed only after layers L1, . . . , L j

are completed.
We first introduce some additional definitions. Let x ′ = (x ′1, . . . , x ′j ), j < n, be a

partial solution that assigns a value to variables x1, . . . , x j . We define

F(x ′) =
{

x ′′ ∈ {0, 1}n− j | x = (x ′, x ′′) is feasible for P
}

as the set of feasible completions of x ′. We say that two distinct partial solutions x1, x2

on variables x1, . . . , x j are equivalent if F(x1) = F(x2).
The algorithm requires a method for establishing when two partial solutions are

necessarily equivalent. If this is possible, then the last nodes u, u′ of the BDD paths
corresponding to these partial solutions can be merged into a single node, since Bu,t

and Bu′,t are the same. To this end, with each partial solution x ′ of dimension k we
associate a state function s : {0, 1}k → S, where S is a problem-dependent state
space. The state of x ′ corresponds to the information necessary to determine if x ′ is
equivalent to any other partial solution on the same set of variables.

Formally, let x1, x2 be partial solutions on the same set of variables. We say that
the function s(x) is sound if s(x1) = s(x2) implies that F(x1) = F(x2), and we say
that s is complete if the converse is also true. The algorithm requires only a sound
state function, but if s is complete, the resulting BDD will be reduced.

For simplicity of exposition, we further assume that it is possible to identify when a
partial solution x ′ cannot be completed to a feasible solution, i.e. F(x ′) = ∅. It can be
shown that this assumption is not restrictive, but rather makes for an easier exposition
of the algorithm. We write s(x ′) = 0̂ to indicate that x ′ cannot be completed into
a feasible solution. If x is a solution to P , we write s(x) = ∅ if x is feasible and
s(x) = 0̂ otherwise.

We now extend the definition of state functions to nodes of the BDD B. Suppose
that s is a complete state function and B is an exact (but not necessarily reduced)
BDD. For any node u, the fact that B is exact implies that any two partial solutions
x1, x2 ∈ Sol(Br,u) have the same feasible completions, i.e. F(x1) = F(x2). Since s
is complete, we must have s(x1) = s(x2). We henceforth define the state of a node
u as s(u) = s(x) for any x ∈ Sol(Br,u), which is therefore uniquely defined for a
complete function s.

We also introduce a function update : S × {0, 1} → S. Given a partial solution
x ′ on variables x1, . . . , x j , j < n, and a domain value d ∈ {0, 1}, the function
update(s(x ′), d) maps the state of x ′ to the state of the partial solution obtained
when x ′ is appended with d, s((x ′, d)). This function is similarly extended to nodes:
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Algorithm 1 Exact BDD Compilation
1: Create node r with s(r) = s0
2: L1 = {r}
3: for j = 1 to n do
4: L j+1 = ∅
5: for all u ∈ L j do
6: for all d ∈ {0, 1} do
7: snew := update(s(u), d)

8: if snew �= 0̂ then
9: if ∃u′ ∈ L j+1 with s(u′) = snew then
10: bd (u) = u′
11: else
12: Create node unew with s(unew) = snew
13: bd (u) = unew
14: L j+1 ← L j+1 ∪ unew

update(s(u), d) represents the state of all partial solutions in Sol(Br,u) extended
with value d for a node u.

The top–down compilation procedure is presented in Algorithm 1. We start by
setting L1 = {r} and s(r) = s0, where s0 is an initial state appropriately defined for
the problem. Now, having constructed layers L1, . . . , L j , we create layer L j+1 in the
following way. For each node u ∈ L j and for d ∈ {0, 1}, letsnew = update(s(u), d).
If snew = 0̂ we do not create arc ad(u). Otherwise, if there exists some u′ ∈ L j+1
with s(u′) = snew, we set bd(u) = u′; if such a node does not exist, we create node
unew with s(unew) = snew and set bd(u) = unew.

Example 2 Consider the following simple binary optimization problem:

maximize 5x1 + 4x2 + 3x3

subjectto x1 + x2 + x3 ≤ 1

x j ∈ {0, 1}, j = 1, 2, 3

We define s(x) to equal the number of variables set to one in x . In this way, whenever
s(x1) = s(x2) for two partial solutions we have F(x1) = F(x2). For example,
s ((1, 0)) = 1 and s ((0, 1)) = 1, with the only feasible completion being (0).

In addition, we let

update(s(u), d) =
⎧⎨
⎩

0̂, d = 1 and s(u) = 1
1, d = 1 and s(u) = 0
s(u), d = 0

With this update function, if in a partial solution there is already one variable set to
one, the update operation will assign 0̂ to the node on the 1-arc to signify that the
solution cannot be completed to a feasible solution, and it will assign 1 to the node
on the 1-arc to signify that still only one variable is set to one. On the other hand, if
a partial solution has no variable set to one, the 1-arc will now be directed to a node
that has state 1 and the 0-arc will be directed to a node with state zero.
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BDD-based heuristics for binary optimization 217

Theorem 1 Let s be a sound state function for a binary optimization problem P.
Algorithm 1 generates an exact BDD for P.

Proof We show by induction that at the end of iteration j , the set

⋃
u∈L j+1

Sol(Br,u)

exactly corresponds to the set of feasible partial solutions of P on x1, . . . , x j . This
implies that after iteration n, Sol(Br,t ) = Sol(P), since all feasible solutions x have
the same state s(x) = ∅ and hence Ln+1 will contain exactly one node at the end of
the procedure, which is the terminal t .

Consider the first iteration. We start with the root r and s(r) = s0, which is the
initial state corresponding to not assigning any values to any variables. r is the only
node in L1. When d = 0, if there exists no feasible solution with x1 = 0, no new node
is created. Hence no solutions are introduced into B. If otherwise there exists at least
one solution with x1 = 0, we create a new node, add it to L2, and introduce a 0-arc
from r to the newly created node. This will represent the partial solution x1 = 0. This
is similarly done for d = 1.

Consider the end of iteration j . Each solution x ′ = (x ′′, d) that belongs to Sol(Br,u)

for some node u ∈ L j+1 must go through some node u′ ∈ L j with bd(u′) = u. By
induction, x ′′ is a feasible partial solution with s(u′) = s(x ′′) �= 0̂. But when the
arc ad(u′) is considered, we must have update(u′, d) �= 0̂, for otherwise this arc
would not have been created. Therefore, each solution in Sol(Br,u) is feasible. Since
u ∈ L j+1 was chosen arbitrarily, only feasible partial solutions exists in Sol(Br,u) for
all nodes u ∈ L j+1.

What remains to be shown is that all feasible partial solutions exist in Sol(Br,u)

for some u ∈ L j+1. This is trivially true for the partial solutions x1 = 0 and x1 = 1.
Take now any partial feasible solution x ′ = (x ′′, d) on the first j variables, j ≥ 2.
Since x ′ is a partial feasible solution, x ′′ must also be a partial feasible solution. By
induction, x ′′ belongs to Sol(Br,u), for some u ∈ L j . When Algorithm 1 examines
node u, update(s(u), d) must not return 0̂ because F(x ′) �= ∅. Therefore, the d-arc
directed out of u is created, ending at some node bd(u) ∈ L j+1, as desired. �
Theorem 2 Let s be a complete state function for a binary optimization program P.
Algorithm 1 generates an exact reduced BDD for P.

Proof By Theorem 1, B is exact. Moreover, for each j , each node u ∈ L j will have
a unique state because of line 9. Therefore, any two partial solutions x ′, x ′′ ending at
unique nodes u′, u′′ ∈ L j will have F(x ′) �= F(x ′′). �
Theorem 3 Let B = (U, A) be the exact BDD outputted by Algorithm 1 for a BOP
P with a sound state function s. Algorithm 1 runs in time O(|U |K ), where K is the
time complexity for each call of the update function.

Proof Algorithm 1 performs two calls of update for every node u added to B.
Namely, one call to verify if u has a d-arc for each domain value d ∈ {0, 1}. �
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Theorem 3 implies that, if update can be implemented efficiently, then Algo-
rithm 1 runs in polynomial time in the size of the exact BDD B. Indeed, there are
structured problems for which one can define complete state functions with a polyno-
mial time-complexity for update (Andersen et al. 2007; Bergman et al. 2011, 2012).
This will be further discussed in Sect. 5.

4 Restricted BDDs

Constructing exact BDDs for general binary programs using Algorithm 1 presents
two main difficulties. First, the update function may take time exponential in the
input of the problem. This can be circumvented by not requiring a complete state
function, but rather just a sound state function. The resulting BDD is exact according
to Theorem 1, but perhaps not reduced. This poses only a minor difficulty, as there
exist algorithms for reducing a BDD B that have a polynomial worst-case complexity
in the size of B (Wegener 2000). A more confining difficulty, however, is that even an
exact reduced BDD may be exponentially large in the size of the BOP P . We introduce
the concept of restricted BDDs as a remedy for this problem. These structures provide
an under-approximation, i.e. a subset, of the set of feasible solutions to a problem P .
Such BDDs can therefore be used as a generic heuristic procedure for any BOP.

More formally, let P be a BOP. A BDD B is called a restricted BDD for P if
Sol(B) ⊆ Sol(P). Analogous to exact BDDs, optimizing additively separable objec-
tive functions over Sol(B) reduces to a shortest path computation on B if the arc
weights are assigned appropriately. Thus, once a restricted BDD is generated, we can
readily extract the best feasible solution from B and provide an upper bound to P .

We will focus on limited-width restricted BDDs, in which we limit the size of the
BDD B by requiring that ω(B) ≤ W for some pre-set maximum allotted width W .

Example 3 Consider the BOP from Example 1. Figure 2 shows a width-2 restricted
BDD. There are eight paths in the BDD, which correspond to eight feasible solutions.
Assigning arc costs as in Example 1, a shortest path from the root to the terminal
corresponds to the solution (0, 1, 0, 0, 1) with an objective function value of −6. The
optimal value is −8.

Limited-width restricted BDDs can be easily generated by performing a simple
modification to Algorithm 1. Namely, we insert the procedure described in Algorithm 2
immediately after line 3 of Algorithm 1. This procedure is described as follows. We
first verify whether ω j = |L j | > W . If so, we delete a set of |L j | − W nodes in the
current layer, which is chosen by a function node_select(L j ). We then continue
building the BDD as in Algorithm 1.

It is clear that the modified algorithm produces a BDD B satisfying ω(B) ≤ W .
In addition, it must create a restricted BDD since we are never changing the states of
the nodes during the construction, but rather just deleting nodes. Since Algorithm 1
produces an exact BDD, this modified algorithm must produce a restricted BDD.

Theorem 4 describes how the time complexity of Algorithm 1 is affected by the
choice of the maximum allotted width W .
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Fig. 2 Width-2 restricted BDD
for the BOP presented in
Example 1

Algorithm 2 delete_nodes
Insert immediately after line 3 of Algorithm 1.
1: if ω j = |L j | > W then
2: M := node_select(L j ) // where |M | = ω j −W
3: L j ← L j \M

Theorem 4 The modified version of Algorithm 1 for width-W restricted BDDs has a
worst-case time complexity of O(nL+nW K ), where L and K are the time complexity
for each call of the node_select and update functions, respectively.

Proof Because the function node_select is called once per layer, it contributes to
O(nL) to the overall time complexity. The update function is called twice for each
BDD node. Since there will be at most O(nW ) nodes in a width-W restricted BDD,
the theorem follows. �

The selection of nodes in node_select(L j ) can have a dramatic impact on the
quality of the solutions encoded by the restricted BDD. In fact, as long as we never
delete the nodes u1, . . . , un that are traversed by some optimal solution x∗, we are
sure to have the optimal solution in the final BDD.

We observed that the following node_select procedure yields restricted BDDs
with the best quality solutions in our computational experiments. We are assuming a
minimization problem, but a maximization problem can be handled in an analogous
way. Each node u ∈ L j is first assigned a value lp(u) = min f (x) ∈ Sol(Br,u),
where f is the objective function of P . This can be easily computed for a number of
objective functions by means of a dynamic programming algorithm; for example linear
cost functions whose arc weights are as described in Sect. 2. The node_select(L j )

function then deletes the nodes in L j with the largest lp(u) values. We henceforth use
this heuristic for node_select in the computational experiments of Sect. 6. It can
be shown that the worst-case complexity of this particular heuristic is O(W log W ).
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5 Applications

We now describe the application of restricted BDDs to two fundamental problems in
binary optimization: the set covering problem and the set packing problem (SPP). For
both applications, we describe the problem and provide a sound state function. We
then present the update operation based on this state function which can be used by
the modified version of Algorithm 1.

5.1 The set covering problem

The SCP is the binary program

minimize cT x

subjectto Ax ≥ e

x j ∈ {0, 1}, j = 1, . . . , n

where c is an n-dimensional real-valued vector, A is a 0–1 m × n matrix, and e is the
m-dimensional unit vector. Let ai, j be the element in the i th row and j th column of A,
and define A j = {i | ai, j = 1} for j = 1, . . . , n. The SCP asks for a minimum-cost
subset V ⊆ {1, . . . , n} of the sets A j such that for all i, ai, j = 1 for some j ∈ V , i.e.
V covers {1, . . . , m}.

5.1.1 State function

We now present a sound state function for the purpose of generating restricted BDDs
by means of Algorithm 1. Let Ci be the set of indices of the variables that participate
in constraint i , Ci = { j |ai, j = 1}, and let last(Ci ) = max{ j | j ∈ Ci } be the largest
index of Ci . We consider the state space S = 2{1,...,m} ∪ {0̂}. For a partial solution x ′
on variables x1, . . . , x j , we write the state function

s(x ′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0̂, if ∃ i :
j∑

k=1
ai,k x ′k = 0 and j ≥ last(Ci ),

{
i :

j∑
k=1

ai,k x ′k = 0

}
, otherwise.

We first argue that the function above assigns a state 0̂ to a partial solution x ′ if and
only if F(x ′) = ∅. Indeed, the condition

∑ j
k=1 ai,k x ′k = 0, j ≥ last(Ci ) for some i

implies that all variables that relate to the i th constraint
∑n

k=1 ai, j x j ≥ 1 are already
zero in x ′, and hence the constraint can never be satisfied. If otherwise that condition
does not hold, then (1, . . . , 1) is a feasible completion of x ′.

In addition, the following Lemma shows that s is a sound state function for the
SCP.
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Lemma 1 Let x1, x2 be two partial solutions on variables x1, . . . , x j . Then, s(x1) =
s(x2) implies that F(x1) = F(x2).

Proof Let x1, x2 be two partial solutions with dimension j for whichs(x1) = s(x2) =
s′. If s′ = 0̂ then both have no feasible completions, so it suffices to consider the case
when s′ �= 0̂. Take any completion x̃ ∈ F(x1). We show that x̃ ∈ F(x2).

Suppose, for the purpose of contradiction, that (x2, x̃) violates the i∗th SCP
inequality,

j∑
k=1

ai∗,k x2
k +

n∑
k= j+1

ai∗,k x̃k = 0, (1)

while
j∑

k=1

ai∗,k x1
k +

n∑
k= j+1

ai∗,k x̃k ≥ 1 (2)

since (x1, x̃) is feasible.
By (1), we have that

n∑
k= j+1

ai∗,k x̃k = 0 (3)

and
j∑

k=1

ai∗,k x2
k = 0. (4)

The equality (4) implies that i∗ ∈ s(x2) and therefore i∗ ∈ s(x1). But then∑ j
k=1 ai∗,k x1

k = 0. This, together with (3), contradicts (2). �
Assuming a partial solution x ′ on variables x1, . . . , x j and that s(x ′) �= 0̂, the

corresponding update operation is given by

update(s(x ′), d)

=
⎧⎨
⎩
s(x ′)\{i | ai, j+1 = 1}, d = 1
s(x ′), d = 0, ∀ i∗ ∈ s(x ′) : last(Ci∗) > j + 1
0̂, d = 0, ∃ i∗ ∈ s(x ′) : last(Ci∗) = j + 1

and has a worst-case time complexity of O(m) for each call.

Example 4 Consider the SCP instance with

c = (2, 1, 4, 3, 4, 3)

and

A =
⎛
⎝

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1

⎞
⎠
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(a) (b)

Fig. 3 Exact and restricted BDDs for the SCP instance in Example 4. a Exact reduced BDD and b width-2
restricted BDD

Figure 3a shows an exact reduced BDD for this SCP instance where the nodes
are labeled with their corresponding states. If outgoing 1-arcs (0-arcs) of nodes in
layer j are assigned a cost of c j (zero), a shortest r–t path corresponds to solution
(1, 1, 0, 0, 0, 0) and proves an optimal value of three. Figure 3b depicts a width-2
restricted BDD where a shortest r–t path corresponds to solution (0, 1, 0, 1, 0, 0),
which proves an upper bound of four.
Example 5 The implication in Lemma 1 is not sufficient as the state function is not
complete. Consider the set covering problem

minimize x1 + x2 + x3

subjectto x1 + x3 ≥ 1

x2 + x3 ≥ 1

x1, x2, x3 ∈ {0, 1}

and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have s(x1) = {2} and
s(x2) = {1}. However, both have the single feasible completion x̃ = (1).

There are several ways to modify the state function to turn it into a complete one
(Bergman et al. 2011). The state function s can be strengthened to a complete state
function. This requires only polynomial time to compute per partial solution, but
nonetheless at an additional computational cost. Sect. 6 reports results for the simpler
(sound) state function presented above.

5.2 The set packing problem

A problem closely related to the SCP, the SPP is the binary program
maximize cT x

subject to Ax ≤ e

x j ∈ {0, 1}, j = 1, . . . , n
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where c, A, and e are as in the SCP. Letting A j be as in Sect. 5.1, the SPP asks for the
maximum-cost subset V ⊆ {1, . . . , n} of the sets A j such that for all i, ai, j = 1 for at
most one j ∈ V .

5.2.1 State function

For the SPP, the state function identifies the set of constraints for which no variables
have been assigned a one and could still be violated. More formally, consider the state
space S = 2{1,...,m} ∪ {0̂}. For a partial solution x ′ on variables x1, . . . , x j , we write
the state function

s(x ′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0̂, if ∃ i :
j∑

k=1
ai,k x ′k > 1

{
i :

j∑
k=1

ai,k x ′k = 0 and last(Ci ) > j

}
, otherwise.

We first argue that the function above assigns a state 0̂ to a partial solution x ′ if and
only if F(x ′) = ∅. Indeed, the condition

∑ j
k=1 ai,k x ′k > 1 for some i immediately

implies that x ′ is infeasible; otherwise, (0, . . . , 0) is a feasible completion for x ′.
As the following lemma shows, if the states of two partial solutions on the same

set of variables are the same, then the set of feasible completions for these partial
solutions are the same, thus proving that this state function is sound.

Lemma 2 Let x1, x2 be two partial solutions on variables x1, . . . , x j . Then, s(x1) =
s(x2) implies that F(x1) = F(x2).

Proof Let x1, x2 be two partial solutions for which s(x1) = s(x2) = s′. If s′ = 0̂
then both have empty sets of feasible completions, so it suffices to consider the case
when s′ �= ∅. Take any partial solution x̃ ∈ F(x1). We show that x̃ ∈ F(x2).

Suppose, for the purpose of contradiction, that (x2, x̃) violates the i∗th SPP inequal-
ity,

j∑
k=1

ai∗,k x2
k +

n∑
k= j+1

ai∗,k x̃k > 1, (5)

while
j∑

k=1

ai∗,k x1
k +

n∑
k= j+1

ai∗,k x̃k ≤ 1, (6)

since (x1, x̃) is feasible.
First suppose that

∑n
k= j+1 ai∗,k x̃k = 1. By (6),

∑ j
k=1 ai∗,k x1

k = 0. This implies

that F(x1) contains i∗ since no variables in Ci∗ are set to 1 and there exists � ∈ Ci∗
with � > j . Therefore F(x2) also contains i∗, implying that no variable in Ci∗ is set
to one in the partial solution x2. Hence

∑ j
k=1 ai∗,k x2

k = 0, contradicting (5).
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(a) (b)

Fig. 4 a Exact reduced BDD, b width-2 restricted BDD, exact and restricted BDDs for the SPP instance
in Example 6

Now suppose that
∑n

k= j+1 ai∗,k x̃k = 0. Then
∑ j

k=1 ai∗,k x2
k > 1, contradicting

the assumption that s′ = s(x2) �= ∅. �
Given a partial solution x ′ on variables x1, . . . , x j with s(x ′) �= 0̂, the correspond-

ing update operation is

update(s(x ′), d) =
⎧⎨
⎩
s(x ′)\{i | last(Ci ) = j + 1}, d = 0
s(x ′)\{i | j + 1 ∈ Ci }, d = 1, A j+1 ⊆ s(x ′)
0̂, d = 1, A j+1 �⊆ s(x ′)

and has a worst-case time complexity of O(m) for each call.

Example 6 Consider the SPP instance with the same constraint matrix A as in Exam-
ple 4, but with weight vector

c = (1, 1, 1, 1, 1, 1).

Figure 4a shows an exact reduced BDD for this SPP instance. The nodes are labeled
with their corresponding states, and we assign arc costs 1/0 to each 1/0-arc. A longest
r–t path, which can be computed by a shortest path on arc weights c′ = −c because
the BDD is acyclic, corresponds to solution (0, 0, 1, 0, 1, 1) and proves an optimal
value of three. Figure 4b depicts a width-2 restricted BDD where a longest r–t path,
for example, corresponds to solution (1, 0, 0, 0, 0, 1), which has length two.

Example 7 As in the case of the SCP, the above state function is not complete. For
example, consider the problem

maximize x1 + x2 + x3

subjectto x1 + x3 ≤ 1

x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}
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and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have distinct states s(x1) =
{2} and s(x2) = {1}, but both have the single feasible completion, x̃ = (0).

There are several ways to modify the state function above to turn it into a complete
one. For example, one can reduce the SPP to an independent set problem and apply
the state function defined in Bergman et al. (2012). We only consider the sound state
function in this work.

6 Computational experiments

In this section, we perform a computational study on randomly generated set covering
and set packing instances. We evaluate our method by comparing the bounds provided
by a restricted BDD with the ones obtained via state-of-the-art IP technology. We
acknowledge that a procedure solely geared toward constructing heuristic solutions
for BOPs is in principle favored against general-purpose IP solvers. Nonetheless, we
sustain that this is still a meaningful comparison, as modern IP solvers are the best-
known general bounding technique for 0–1 problems due to their advanced features and
overall performance. This method of testing new heuristics for BOPs was employed by
the authors in Bertsimas et al. (2013) and we provide a similar study here to evaluate
the effectiveness of our algorithm.

The tests ran on an Intel Xeon E5345 with 8 GB of RAM. The BDD code was
implemented in C++. We used Ilog CPLEX 12.4 as our IP solver. In particular, we
took the bound obtained from the root node relaxation. We set the solver parameters to
balance the quality of the bound value and the CPU time to process the root node. The
CPLEX parameters that are distinct from the default settings are presented in Table 1.
We note that all cuts were disabled, since we observed that the root node would
be processed orders of magnitude faster without adding cuts, which did not have a
significant effect on the quality of the heuristic solution obtained for the instances
tested.

Our experiments focus on instances with a particular structure. Namely, we provide
evidence that restricted BDDs perform well when the constraint matrix has a small
bandwidth. The bandwidth of a matrix A is defined as

bw(A) = max
i∈{1,2,...,m}{ max

j,k:ai, j ,ai,k=1
{ j − k}}.

Table 1 CPLEX parameters

Parameters (CPLEX internal name) Value

Version 12.4

Number of explored nodes (NodeLim) 0 (only root)

Parallel processes (Threads) 1

Cuts (Cuts, Covers, DisjCuts, . . .) −1 (off)

Emphasis (MIPEmphasis) 4 (find hidden feasible solutions)

Time limit (TiLim) 3,600
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The bandwidth represents the largest distance, in the variable ordering given by the
constraint matrix, between any two variables that share a constraint. The smaller the
bandwidth, the more structured the problem, in that the variables participating in
common constraints are close to each other in the ordering. The minimum bandwidth
problem seeks to find a variable ordering that minimizes the bandwidth (Martí et
al. (2008); Corso and Manzini (1999); Feige (2000); Gurari and Sudborough (1984);
Martí et al. (2001); Piñana et al. (2004); Saxe (1980)). This underlying structure, when
present in A, can be captured by BDDs, resulting in good computational performance.

6.1 Problem generation

Our random matrices are generated according to three parameters: the number of
variables n, the number of ones per row k, and the bandwidth bw. For a fixed n, k, and
bw, a random matrix A is constructed as follows. We first initialize A as a zero matrix.
For each row i , we assign the ones by selecting k columns uniformly at random from
the index set corresponding to the variables {xi , xi+1, . . . , xi+bw }. As an example, a
constraint matrix with n = 9, k = 3, and bw = 4 may look like

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Consider the case when bw = k. The matrix A has the consecutive ones property
and is totally unimodular (Fulkerson and Gross 1965) and IP finds the optimal solution
for the set packing and set covering instances at the root node. Similarly, we argue
that an (m + 1)-width restricted BDD is an exact BDD for both classes of problems,
hence also yielding an optimal solution for when this structure is present. Indeed, we
show that A containing the consecutive ones property implies that the state of a BDD
node u is always of the form { j, j + 1, . . . , m} for some j ≥ �(u) during top–down
compilation.

To see this, consider the SCP. We claim that for any partial solution x ′ that can be
completed to a feasible solution, s(x ′) = {i(x ′), i(x ′) + 1, . . . , m} for some index
i(x ′), or s(x ′) = ∅ if x ′ satisfies all of the constraints when completed with 0’s. Let
j ′ ≤ j be the largest index in x ′ with x ′j = 1. Because x ′ can be completed to a
feasible solution, for each i ≤ bw + j − 1 there is a variable x ji with ai, ji = 1.
All other constraints must have x j = 0 for all i with ai, j = 0. Therefore s(x ′) =
{bw + j, bw + j + 1, . . . , m}, as desired. Hence, the state of every partial solution
must be of the form i, i + 1, . . . , m or ∅. Because there are at most m+ 1 such states,
the size of any layer cannot exceed (m + 1). A similar argument works for the SPP.

Increasing the bandwidth bw, however, destroys the totally unimodular property of
A and the bounded width of B. Hence, by changing bw, we can test how sensitive IP
and the BDD-based heuristics are to the staircase structure dissolving.
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Fig. 5 Restricted BDD performance versus the maximum allotted width for a set covering instance with
n = 1,000, k = 100, bw = 140, and random cost vector. a Upper bound and b time

We note here that generating instances of this sort is not restrictive. Once the
bandwidth is large, the underlying structure dissolves and each element of the matrix
becomes randomly generated. In addition, as mentioned above, algorithms to solve
the minimum bandwidth problem exactly or approximately have been investigated.
To any SCP or SPP one can therefore apply these methods to reorder the matrix and
then apply the BDD-based algorithm.

6.2 Relation between solution quality and maximum BDD width

We first analyze the impact of the maximum width W on the solution quality provided
by a restricted BDD. To this end, we report the generated bound versus maximum
width W obtained for a set covering instance with n = 1,000, k = 100, bw = 140,
and a cost vector c where each c j was chosen uniformly at random from the set
{1, . . . , nc j }, where nc j is the number of constraints in which variable j participates.
We observe that the reported results are common among all instances tested.

Figure 5a depicts the resulting bounds, where the width axis is in log-scale, and
Fig. 5b presents the total time to generate the W -restricted BDD and extract its best
solution. We tested all W in the set {1, 2, 3, . . . , 1,000}. We see that as the width
increases, the bound approaches the optimal value, with a super-exponential-like con-
vergence in W . The time to generate the BDD grows linearly in W , as expected from
the complexity result in Sect. 4.

6.3 Set covering

First, we report the results for two representative classes of instances for the SCP.
In the first class, we studied the effect of bw on the quality of the bound. To this
end, we fixed n = 500, k = 75, and considered bw as a multiple of k, namely
bw ∈ {�1.1k�, �1.2k�, . . . , �2.6k�}. In the second class, we analyzed if k, which is
proportional to the density of A, also has an influence on the resulting bound. For
this class we fixed n = 500, k ∈ {25, 50, . . . , 250}, and bw = 1.6k. In all classes we

123



228 D. Bergman et al.

 20

 25

 30

 35

 40

 45

 50

 55

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

A
ve

ra
ge

 O
pt

im
al

ity
 G

ap
 (

%
)

Bandwidth/k

IP
BDD

 20

 25

 30

 35

 40

 45

 50

 55

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

A
ve

ra
ge

 O
pt

im
al

ity
 G

ap
 (

%
)

Bandwidth/k

IP
BDD

(a) (b)

Fig. 6 Average optimality gaps for combinatorial and weighted set covering instances with n = 500,
k = 75, and varying bandwidth. a Combinatorial and b weighted

generated 30 instances for each triple (n, k, bw) and fixed 500 as the restricted BDD
maximum width.

It is well-known that the objective function coefficients play an important role in the
bound provided by IP solvers for the set covering problem. We considered two types
of cost vectors c in our experiments. The first is c = 1, which yields the combinatorial
SCP. For the second cost function, let nc j be the number of constraints that include
variable x j , j = 1, . . . , n. We chose the cost of variable x j uniformly at random from
the range [0.75nc j , 1.25nc j ]. As a result, variables that participate in more constraints
have a higher cost, thereby yielding harder SCPs to solve. This cost vector yields the
weighted SCP.

The feasible solutions are compared with respect to their optimality gap. The opti-
mality gap of a feasible solution is obtained by first taking the absolute difference
between its objective value and a lower bound to the problem, and then dividing this
by the solution’s objective value. In both BDD and IP cases, we used the dual value
obtained at the root node of CPLEX as the lower bound for a particular problem
instance.

The results for the first instance class are presented in Fig. 6. Each data point in the
figure represents the average optimality gap, over the instances with that configuration.
We observe that the restricted BDD yields a significantly better solution for small
bandwidths in the combinatorial set covering version. As the bandwidth increases, the
staircase structure is lost and the BDD gap becomes progressively worse in comparison
to the IP gap. This is a result of the increasing width of the exact reduced BDD for
instances with larger bandwidth matrices. Thus, more information is lost when we
restrict the BDD size. The same behavior is observed for the weighted set covering
problem, although we notice that the gap provided by the restricted BDD is generally
better in comparison to the IP gap even for larger bandwidths. Finally, we note that
the restricted BDD time is also comparable to the IP time, which is on average less
than 1 s for this configuration. This time takes into account both BDD construction
and extraction of the best solution it encodes by means of a shortest path algorithm.

The results for the second instance class are presented in Fig. 7. We note that
restricted BDDs provide better solutions when k is smaller. One possible explanation
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Fig. 7 Average optimality gaps for combinatorial and weighted set covering instances with n = 500,
varying k, and bw = 1.6k. a Combinatorial and b weighted
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Fig. 8 Average optimality gaps and times for weighted set covering instances with varying n, k = 75, and
bw = 2.2, k = 165. The y axis in the time plot is in logarithm scale. a Average optimality gap (in %) and
b Time (in seconds)

for this behavior is that a sparser matrix causes variables to participate in fewer con-
straints thereby decrease the possible number of BDD node states. Again, less infor-
mation is lost by restricting the BDD width. Moreover, we note once again that the
BDD performance, when compared with CPLEX, is better for the weighted instances
tested. Finally, we observe that the restricted BDD time is similar to the IP time, always
below one second for instances with 500 variables.

Next, we compare solution quality and time as the number of variables n increases.
We generated random instances with n ∈ {250, 500, 750, . . . , 4,000}, k = 75, and
bw = 2.2k = 165 to this end. The choice of k and bw was motivated by Fig. 6b,
corresponding to the configuration where IP outperforms BDD with respect to solution
quality when n = 500. As before, we generated 30 instances for each n. Moreover,
only weighted set covering instances are considered in this case.

The average optimality gap and time are presented in Fig. 8a, b, respectively. The y
axis in Fig. 8b is in logarithm scale. For n > 500, we observe that the restricted BDDs
yield better-quality solutions than the IP method, and as n increases this gap remains
constants. However, IP times grow in a much faster rate than restricted BDD times. In
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particular, with n = 4,000, the BDD times are approximately two orders-of-magnitude
faster than the corresponding IP times.

6.4 Set packing

We extend the same experimental analysis of the previous section to set packing
instances. Namely, we initially compare the quality of the solutions by means of
two classes of instances. In the first class we analyze variations of the bandwidth
by generating random instances with n = 500, k = 75, and setting bw in the
range {�1.1k�, �1.2k�, . . . , �2.5k�}. In the second class, we analyze variations in the
density of the constraint matrix A by generating random instances with n = 500,
k ∈ {25, 50, . . . , 250}, and with a fixed bw = 1.6k. In all classes, we created 30
instances for each triple (n, k, bw) and set 500 as the restricted BDD maximum width.

The quality is also compared with respect to the optimality gap of the feasible
solutions, which is obtained by dividing the absolute difference between the solution’s
objective value and an upper bound to the problem by the solution’s objective value.
We use the the dual value at CPLEX’s root node as the upper bound for each instance.

Similarly to the SCP, experiments were performed with two types of objective
function coefficients. The first, c = 1, yields the combinatorial set packing problem.
For the second cost function, let nc j again denote the number of constraints that include
variable x j , j = 1, . . . , n. We chose the objective coefficient of variable x j uniformly
at random from the range [0.75nc j , 1.25nc j ]. As a result, variables that participate
in more constraints have a higher cost, thereby yielding harder set packing problems
since this is a maximization problem. This cost vector yields the weighted SPP.

The results for the first class of instances are presented in Fig. 9. For all tested
instances, the solution obtained from the BDD restriction was at least as good as the
IP solution for all cost functions. As the bandwidth increases, the gap also increases
for both techniques, as the upper bound obtained from CPLEX’s root node deteriorates
for larger bandwidths. However, the BDD gap does not increase as much as the IP
gap, which is especially noticeable for the weighted case. We note that the difference
in times between the BDD and IP restrictions are negligible and lie below 1 s.
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Fig. 9 Average optimality gaps for combinatorial and weighted set packing instances with n = 500,
k = 75, and varying bandwidth. a Combinatorial and b weighted
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Fig. 10 Average optimality gaps for combinatorial and weighted set packing instances with n = 500,
varying k, and bw = 1.6k. a Combinatorial and b weighted
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Fig. 11 Average optimality gaps and times for weighted set packing instances with varying n, k = 75, and
bw = 2.2k = 165. The y axis in the time plot is in logarithm scale. a Average optimality gap (in %) and b
Time (in seconds)

The results for the second class of instances are presented in Fig. 10. For all instances
tested, the BDD bound was at least as good as the bound obtained with IP, though
the solution quality from restricted BDDs was particularly superior for the weighted
case. Intuitively, since A is sparser, fewer BDD node states are possible in each layer,
implying that less information is lost by restricting the BDD width. Finally, we observe
that times were also comparable for both IP and BDD cases, all below one second.

Next, we proceed analogous to the set covering case and compare solution quality
and time as the number of variables n increases. As before, we generated random
instances with n ∈ {250, 500, 750, . . . , 4,000}, k = 75, and bw = 2.2k = 165, and
30 instances per configuration. Only weighted set packing instances are considered.

The average optimality gap and solving times are presented in Fig. 11a, b, respec-
tively. Similar to the set covering case, we observe that the BDD restrictions outperform
the IP heuristics with respect to both gap and time for this particular configuration. The
difference in gaps between restricted BDDs and IP remains approximately the same
as n increases, while the time to generate restricted BDDs is orders-of-magnitude less
than the IP times for the largest values of n tested.
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7 Conclusion

Unlike problem-specific heuristics, general-purpose heuristics for BOPs have received
much less attention in the literature. Often, the latter end up incorporated into integer
programming software, many of which have dozens of such heuristics at their disposal.
With each heuristic likely to be better suited for BOPs with different mathematical
structures, IP solvers typically run many of them at the root node, as well as during
search, hoping to find strong primal bounds to help with node pruning and variable
fixing. Therefore, it is important for these heuristics to produce high-quality solutions
quickly.

We introduce a new structure, restricted BDDs, and describe how they can be used
to develop a new class of general-purpose heuristics for BOPs. A restricted BDD is a
limited-size directed acyclic multigraph that represents an under-approximation of the
feasible set. One of the advantages of representing BOPs with BDDs is that finding
the best feasible solution for any separable objective function only requires solving
a shortest path problem. Secondly, adapting a generic restricted BDD to a particular
problem type is simple; it amounts to defining two criteria used while building the
BDD: how to delete nodes from layers that grow beyond the maximum allowed width,
and how to combine equivalent nodes in a given layer. Our empirical observations
indicate that a good rule of thumb for the first criterion is to keep nodes whose paths
to the root of the BDD are the shortest when dealing with minimization objectives, or
the longest when dealing with maximization objectives. The second criterion is more
problem-specific, as detailed in Sect. 5, but still often easy to implement.

To test its effectiveness, we apply our restricted-BDD approach to randomly gen-
erated set covering and set packing instances, and compare its performance against
the heuristic solution-finding capabilities of the state-of-the-art IP solver CPLEX.
Our first empirical observation is that, among all instances tested, the quality of the
solution obtained by the restricted BDD approaches the optimal value with a super-
exponential-like convergence in the value of the maximum BDD width W , whereas
the time to build the BDD and calculate the solution only grows linearly in W . For
both the set covering and set packing problems we consider combinatorial instances,
which have all costs equal to one, as well as weighted instances, which have arbitrary
costs.

For the SCP, solutions obtained by the restricted BDD can be up to 30 % better on
average than solutions obtained by CPLEX. This advantage progressively decreases
as either the bandwidth of the coefficient matrix A increases, or the sparsity of A
decreases. In general, the BDD performs better on weighted instances. In terms of
execution time, the BDD approach has a slight advantage over the IP approach on
average, and can sometimes be up to twice as fast.

For the SPP, the BDD approach exhibits even better performance on both the com-
binatorial and weighted instances. Its solutions can be up to 70 % better on average
than the solutions obtained by CPLEX, with the BDD performing better on weighted
instances than on combinatorial instances once again. Unlike what happened in the
set covering case, on average, the BDD solutions were always at least as good as the
ones produced by CPLEX. In addition, the BDD’s performance appears to improve as
the bandwidth of A increases. As the sparsity of A changes, the BDD’s performance

123



BDD-based heuristics for binary optimization 233

is good for sparse instances, drops at first as sparsity starts to increase, and tends to
slowly increase again thereafter. In terms of execution time, the BDD approach can
be up to an order of magnitude faster than CPLEX.

In summary, our results indicate that restricted BDDs can become a useful addition
to the existing library of heuristics for binary optimization problems. Several aspects
of our algorithm may still need to be further investigated, including the application to
broader classes of problems and how BDDs can be incorporated into existing complete
or heuristic methods. For example, they could be used as an additional primal heuristic
during a branch-and-bound search. Moreover, restricted BDDs could also be applied
to problems for which no strong linear programming relaxation is known, since they
can accommodate constraints of arbitrary form.
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